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Abstract—This paper aims at establishing a method for designing high-performance network topologies to bridge a gap between
theoretical and practical studies. To this end, we present a novel graph called a host-switch graph, which consists of host vertices and
switch vertices with maximum degree 1 and r, respectively. This graph represents a network topology of a practical parallel/distributed
computer system with host computers connected by r-port switches. We discuss important metrics for designing high-performance
interconnection networks: the host-to-host average shortest path length (h-ASPL) and the bisection width (BiW). In particular, we explore
a method for constructing host-switch graphs with low h-ASPL and high BiW that connect the fixed number of hosts via any number of
r-port switches. We demonstrate that the number of switches that provides the minimum h-ASPL can mathematically be approximated,
and the minimum number of switches that provides a certain BiW can experimentally be approximated. On the basis of the
approximations, we propose a randomized algorithm for searching host-switch graphs. We then apply the graphs to interconnection
networks and compare them with typical network topologies. As compared with the torus, the dragonfly, and the fat-tree, our networks
attain higher performance and smaller power and costs.

Index Terms—Network topology, interconnection network, average shortest path length, bisection width, optimization.
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1 INTRODUCTION

1.1 Theoretical Studies of Interconnection Networks

THEORETICALLY, a topology of a computer network is rep-
resented as an undirected graph, in which vertices and

edges correspond to computers and communication links,
respectively. The performance potentiality of the network
can be measured by analysing topological properties of the
graph. In the design of networks for computer systems such
as multiprocessors and supercomputers, there are certain
requirements and limitations. In particular, requirements
include the number of nodes, and limitations include the
degree and the diameter. Hence the three parameters above
have been studied in graph theory. The degree/diameter
problem (DDP) is a classical problem for such studies.
The DDP is the problem of finding the largest number
of vertices in a graph of given maximum degree ∆ and
diameter D. The known upper bound—called the Moore
bound [1]—on the number of vertices of an undirected graph
is 1 + ∆

∑D−1
i=0 (∆− 1)i. Near-optimal/optimal solutions of

the DDP are considered for topologies of interconnection
networks [2]–[4].

However, the DDP solutions may not be usable for
building network topologies in practical interconnection
networks. This is because the DDP requires the specific
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number of vertices, and hence we cannot meet technical
requirements such as the number of nodes. To cover this
shortcoming, we should fix the number of vertices (order) of
a graph. We can consider the order/degree problem (ODP),
the problem of finding the smallest diameter in a graph of
given order and degree. Although less attention is given to
the ODP as compared with the DDP, the ODP is recently
studied by designers of interconnection networks [5].

In the field of network science, researchers find that
complex networks such as social networks provide low
diameter and ASPL. Thus some models are proposed, e.g, a
cycle plus a random matching [6], the Erdős-Rényi model
(random graph) [7], and the Watts-Strogatz model (small-
world networks) [8]. Some solutions for the ODP are such
complex graphs and applied to computer systems, including
high-performance computing systems [9], data centers [10],
and on-chip networks [11]. To apply such complex topologies
to practical networks, physical layouts [12] and routing
algorithms [13] are also studied.

Even if we tackle the ODP, however, a shortcoming
remains; in conventional graph theory, one kind of vertex is
considered on a graph, though two types of nodes—hosts
and switches—exist in typical interconnection networks.
Hence, the mapping between vertices and physical devices
is not obvious. If we regard vertices as switches, we have
no information for hosts. This is a serious issue because the
mapping strongly affects the network performance (we show
this in Section 4). Therefore, we should radically change both
a model of interconnection networks and a graph problem.

1.2 Practical Studies of Interconnection Networks

Practical studies on topologies of interconnection networks
for parallel/distributed computer systems have a long
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history. In the 1970s, hypercubes were used in many systems
such as Cosmic Cube [14]; in the 1980s, 2-D/3-D tori and
meshes became the mainstream due to their short cables
that provide high bandwidth and cost-efficiency; from the
1990s to 2000s, as the number of nodes becomes over 10
thousand, high-radix networks such as the dragonfly [15] are
researched for reducing communication overhead; and now,
in the 2010s, the high-radix networks are used in commercial
high-performance computers [16], [17].

All the networks above are direct networks, which denote
the networks such that a certain number of hosts are con-
nected to each switch. In addition to direct networks, indirect
networks are also used, which denote the networks such that
some switches are connected with a certain number of hosts
while the other switches are connected with no hosts. Above
all, the fat-tree [18] is widely used in parallel/distributed
computer systems from generation to generation, though
technology for each generation is different (e.g., both CM-
5 [19] in the 1980s and Tianhe-2 [20] in the 2010s use the
fat-tree). In this respect, indirect networks contrast with direct
networks. For this reason, the question of our interest is how
we should uniformly discuss direct and indirect networks
(note that prior theoretical study based on the DDP and
the ODP deals with only direct networks). This should be
studied systematically, but there has been no prior research
to answer this question yet. Also, the rationality of existing
topologies should be backed by graph theory.

1.3 Our Concept and Contribution
The study set forth in this paper aims at establishing a novel
method for designing high-performance network topologies
to bridge a gap between theoretical studies based on graph
theory and practical studies based on computer engineering.
To this end, we present a novel graph called a host-switch
graph, which consists of host vertices and switch vertices
(Fig. 1). A host can be connected to exactly one switch using
an edge. A switch can be connected to at most r vertices,
each of which is a host or a switch. Clearly, a host-switch
graph represents a topology of a computer network with
1-port host computers and r-port network switches. Thus,
studying the topological characteristics of host-switch graphs
leads to find good topologies for practical computer systems.

In this paper, we deal with two topological properties that
are important for designing interconnection networks, the
host-to-host average shortest path length (h-ASPL) and the
bisection width (BiW). We propose a method for designing
a topology with low h-ASPL and high BiW. By analysing
host-switch graphs, we provide answers to the following
questions: (1) given the number of hosts and the number of ports
per switch, how many switches should be used?; and (2) which is
better, direct or indirect networks, in terms of the h-ASPL and the
BiW?

1.4 Structure of the Paper
First, Section 2 provides theoretical foundation of host-
switch graphs; we formally define a host-switch graph
and provide upper and lower bounds on the maximum
number of hosts, the diameter, and the h-ASPL. Second,
Sections 3-4 present host-switch graphs with low h-ASPL; we
take deterministic and heuristic approaches in each section.

h0 h1 h2 h3 h4

h6 h8 h9 h10 h11 h12 h13 h14

s0 s1 s2 s3

h5 h7

Fig. 1. An example of a host-switch graph (n = 15,m = 4, r = 6).

Here we demonstrate that the heuristic approach is more
practical than the deterministic one for certain reasons. We
empirically show that the optimal number of switches is a
key parameter for host-switch graphs in terms of the h-ASPL
and also the BiW. Third, in Section 5, we practically compare
proposed network topologies with existing ones in terms
of performance, topological properties, power consumption,
and cost breakdowns. Finally, we conclude the paper in
Section 6.

2 A HOST-SWITCH GRAPH

2.1 Definition and Notation

A host-switch graph is a 3-tuple G = (H,S,E) with integer
parameters n > 3, m > 1, and r > 3 where

• H = {h0, h1, . . . , hn−1} is a set of n elements called
host vertices (or simply hosts),

• S = {s0, s1, . . . , sm−1} is a set of m elements called
switch vertices (or simply switches), and

• E = {{si, sj} | si, sj ∈ S} ∪ {{hi, sj} | (hi ∈ H) ∧
(sj ∈ S)} is a set of elements called edges.

The number n of hosts is called the order of G. Each host
must be connected with exactly one edge while each switch is
connected with at most r edges. Thus each switch must have
at least r ports. The number r of required ports per switch
is called the radix of G. In Fig. 1 we illustrate an example
of a host-switch graph with 15 hosts and 4 switches with
radix r = 6. Throughout this paper, a circle and a rectangle
represent a host and a switch, respectively.

Clearly, at least m− 1 edges are necessary to connect m
switches such that they are reachable each other. Since m
switches can connect at most mr edges, we can state:

Lemma 1 (Trivial upper bound on the order) For any con-
nected host-switch graph with m r-port switches, the order n
is not greater than mr − 2(m− 1).

For any two hosts hi and hj , let `(hi, hj) denote the
number of edges along the shortest path between hi and
hj . For example, `(h0, h14) of a host-switch graph shown
in Fig. 1 is 4, because the shortest path between them
is (h0, s0, s1, s3, h14). Using `(hi, hj), we can define two
topological properties. The diameter D(G) of a host-switch
graph is defined as max{`(hi, hj) | 0 6 i < j < n}. The host-
to-host average shortest path length (h-ASPL) A(G) is defined
as
∑

06i<j<n `(hi, hj)/
(n
2

)
. These metrics are essentially
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different from the diameter and the average shortest path
length (ASPL) of an ordinary undirected graph in that the
considered path is between hosts rather than switches. In this
paper we mainly discuss the h-ASPL, because it measures
the ideal all-to-all communication latency of interconnection
networks.

2.2 Upper and Lower Bounds
Let us consider tight upper bound on the order of a host-
switch graph with r and D(G). For any source host hs ∈ H ,
we can partition all the hosts in H into subsets H0, H1, . . .
such that Hi = {hd ∈ H | `(hs, hd) = i}. Similarly, we can
partition all the switches in S into subsets S1, S2, . . . such
that Si = {sd ∈ S | `(hs, sd) = i}. Let Ahs

(G) and Dhs
(G)

denote a single-source h-ASPL from hs and a single-source
diameter from hs, respectively. Using these notations, we
obtain the upper bound on the order, as follows:

Theorem 1 (Upper bound on the order) For any host-switch
graph with radix r and diameterD(G), the order n of a host-switch
graph is not greater than (r − 1)D(G)−1 + 1.

Proof: For any fixed host hs of a host-switch graph, let
Ni be the upper bound on |Hi|+ |Si|. Clearly, Ni is equal to

|H0| = 1, if i = 0

|S1| = 1, if i = 1

|Si−1| (r − 1) . if i > 1

(1)

Hence, to maximize the order, we must satisfy Ni = |Si| for
1 6 i < D(G) and Ni = |Hi| for i = D(G). In this situation,
the order is

D(G)∑
i=0

|Hi| = (r − 1)
D(G)−1

+ 1.

The lower bound on the diameter follows from Theo-
rem 1:

Corollary 1 (Lower bound on the diameter) For any host-
switch graph with order n and radix r, the diameter is not less
than dlogr−1(n− 1)e+ 1.

Let us call a host-switch graph with a root host hs and
(r − 1)Dhs (G)−1 leaf hosts a full host-switch tree. Clearly, the
lower bound on Ahs

(G) is the lower bound on A(G).
We define a complete host-switch tree as follows:

1) A full host-switch tree is a complete host-switch tree.
2) A host-switch tree obtained by performing the fol-

lowing operations to any complete host-switch tree
T is also a complete host-switch tree: (A) if T has a
switch connected to less than r vertices, then connect
a new host to it; and (B) if T has no such switch, then
we pick one of the hosts closest to hs and replace it
by a new switch with two hosts.

Both operations (A) and (B) increase the order n by one, and
hence a complete graph host-switch tree is a full host-switch
tree if and only if n is equal to (r − 1)d−1 + 1 for some d.

In a complete host-switch tree T with a root host hs,
HDhs (T ) ∪HDhs (T )−1 includes all the leaf hosts. Clearly, a

complete host-switch tree has at least one host in HDhs (T )−1
if it is not a full host-switch tree. Also, at most one switch
in SDhs (T )−1 in a complete host-switch tree can take degree
less than r.

Now we can state the following theorem:

Theorem 2 (Lower bound on the h-ASPL) A single-source
h-ASPL from the root of a complete host-switch tree provides
the lower bound on the h-ASPL.

Proof: Consider any host-switch tree T with a root
host hs. If there exists a host ha ∈ Hi (1 6 i 6 Dhs

(T )− 2),
then we can decrease Ahs

(T ) by performing the following
operations: (1) replace ha with a new switch sm connected
with a host; (2A) if r > 3, then reconnect more than two
hosts in HDhs (T ) to sm; and (2B) if r = 3, then reconnect
two hosts in HDhs (T ) and replace a switch in SDhs (T )−1
with another host in HDhs (T ). Hence, a host-switch tree can
provide the lower bound on Ahs

(T ) only if Hi is empty
for all i (1 6 i 6 Dhs

(T ) − 2); in this case, Ahs
(T ) takes

the minimum value if and only if a host-switch tree is a
complete host-switch tree. Therefore a complete host-switch
tree provides the lower bound on the single-source h-ASPL,
which is also the lower bound on the h-ASPL.

By Theorem 2, we can compute the lower bound on the
h-ASPL as follows:{

D−, if n = (r − 1)D
−−1 + 1

D− − α/(n− 1), otherwise

where D− = dlogr−1(n − 1)e + 1 is the lower bound on
the diameter of G, and α denotes the number of hosts in
HDhs (T )−1 in a complete host-switch graph T . In HDhs (T )−1,
at most (r − 1)D

−−2 hosts can be connected. However, it
is less than n by (n − 1 − (r − 1)D

−−2) if T is not a full
host-switch tree, and hence we must run operations (B) and
then (A). After we run operation (B), we can increase the
number of hosts by r − 2 (remove one host from HDhs (T )−1
and add r − 1 hosts to HDhs (T )). Thus, we have

α = (r − 1)D
−−2 −

⌈
(n− 1− (r − 1)D

−−2)

(r − 2)

⌉
.

3 DETERMINISTIC CONSTRUCTION OF HOST-
SWITCH GRAPHS

In this section we discuss host-switch graphs that can deter-
ministically be constructed. Here, the relationship between
the diameter and the order is easy to analyse. We thus discuss
the radix/diameter problem (RDP), which is similar to a classical
problem called the degree/diameter problem [1], [21]. The
RDP is defined as follows:

Problem 1 (Radix/Diameter Problem) Given natural num-
bers r and D, find a host-switch graph with radix r and diameter
D that can connect the largest possible number of hosts.

The upper bound for this problem is given by Theorem 1.
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3.1 Host-Switch Graphs of Diameter 2
Since two hosts are connected via at least one switch, the
shortest path lengths between any pair of hosts are at least 2.
We thus begin with host-switch graphs of diameter 2. In this
case, all the hosts must be connected with a single switch,
and thus we can state:

Theorem 3 A host-switch graphs of diameter 2 can connect at
most r hosts.

3.2 Host-Switch Graphs of Diameter 3
In a host-switch graph of diameter 3, every path must be
either host-switch-host or host-switch-switch-host. Thus the
m switches in the host-switch graph must constitute a clique
(complete graph). Let us call such a graph a clique host-switch
graph (or specifically an m-switch clique host-switch graph).
Each switch of a clique host-switch graph must be connected
with m− 1 switches, and hence the host-switch graph can be
connected with at most r −m+ 1 hosts. Thus, we can state:

Lemma 2 A host-switch graph can take diameter 3 only if m 6
r + 1 and n 6 m(r −m+ 1).

Since ∂m(r − m + 1)/∂m = −2m + r, the order n is
maximized when m = (r + 1)/2 if r is odd and m = r/2 or
m = r/2 + 1 if r is even. Thus, we can state:

Theorem 4 A host-switch graph of diameter 3 can connect at
most (r+ 1)2/4 hosts if r is odd and r(r+ 2)/4 hosts if r is even.

3.3 Host-Switch Graphs of Diameter 4
3.3.1 Biclique Host-Switch Graph
A typical host-switch graph of diameter 4 is a host-switch
graph with the switches that constitute a complete bipartite
graph (a.k.a. biclique). Let us call such a graph a biclique host-
switch graph. Let Km1,m2

denote a biclique host-switch graph
such that the switches constitute a biclique G = (V1, V2, E)
with |V1| = m1 and |V2| = m2; then m is equal to m1 +m2.
In Fig. 2a we illustrate an example of a biclique host-switch
graph. Since any switch must be connected with all the
switches in the other subset, we can state:

Lemma 3 Any biclique host-switch graph satisfies m1 6 r,
m2 6 r, and m < 2r.

The maximum number nmax of hosts connected with
Km1,m2

is

m1 (r −m2) +m2 (r −m1) = r (m1 +m2)− 2m1m2. (2)

Thus, the increment of m1 by 1 induces the increment of
nmax by r − 2m2. Let ∆nmax be r − 2m2. Let us discuss the
value of nmax in the following cases.
Case 1: m2 = r/2.
In this case ∆nmax is equal to 0, and thus nmax is constantly
r2/2 regardless of the value of m1.
Case 2: m2 < r/2.
In this case ∆nmax is greater than 0. Thus nmax is maximized
when m1 = r, and then nmax becomes r2 −m2r. This value
is maximized when m2 = 1. Consequently, nmax is at most
r(r − 1) in this case.

s1 s2 s3

s4 s5

(a)

s0

s5

s1

s3

s4

s2

(b)

Fig. 2. Examples of a biclique host-switch graph with r = 5; (a)
{m1,m2} = {3, 2}, n = 13 and (b) star host-switch graph with n = 20.

Case 3: m2 > r/2.
In this case ∆nmax

is less than 0. Thus nmax is maximized
when m1 = 1, and then nmax becomes r +m2(r − 2). Since
r is more than 2 from the definition of a host-switch graph,
nmax is maximized when m2 = r. Consequently, nmax is at
most r(r − 1) in this case.

Since r2/2 is less than r(r − 1), we can state:

Theorem 5 A biclique host-switch graph can connect at most
r(r − 1) hosts if {m1,m2} = {r, 1}.

We name a biclique host-switch graph with {m1,m2} =
{r, 1} a star host-switch graph after a star network [22]. In
Fig. 2b we illustrate an example of a star host-switch graph.

3.3.2 XY-Clique Host-Switch Graph
Suppose that m switches are arranged in a

√
m × √m 2-

dimensional grid. Every switch is connected to other switches
in the same column and in the same row. We call the host-
switch graph above an XY-clique host-switch graph. In Fig. 3
we show an example of an XY-clique host-switch graph.
Each switch is connected with 2(

√
m − 1) switches, and

consequently it can be connected with at most r − 2
√
m+ 2

hosts. Thus, we can state:

Lemma 4 An XY-clique host-switch graph can be constructed if
and only if m < (r + 2)2/4 and n 6 m(r − 2

√
m+ 2).

Since ∂(m(r−2
√
m+2))/∂m = −3

√
m+r+2, the value

of n is maximized when m = (r + 2)2/9. Thus, assuming
m ∈ Q, we can state that an XY-clique host-switch graph
can connect at most (r+ 3)2/27 hosts. In reality, however, m
must be a natural number, and hence the statement above
holds only when r mod 3 = 1. When r mod 3 = 2, we can
set m = (r + 1)2/9 or m = (r + 4)2/9, and consequently n
becomes (r+1)2(r+4)/27 and (r+4)2(r−4)/27, respectively;
since r > 0, the former case is better. When r mod 3 = 0, we
can set m = r2/9 or m = (r + 3)2/9, and consequently n
becomes r2(r + 6)/27 and r(r + 3)2/27, respectively; since
r > 0, the latter case is better. Thus, we can state:

Theorem 6 An XY-clique host-switch graph can have at most
r(r+3)2

27 , if r mod 3 = 0
(r+2)3

27 , if r mod 3 = 1
(r+1)2(r+4)

27 . if r mod 3 = 2
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At most r − 2(
√
m− 1) hosts can be connected with each host.

Clique (x-axis direction)

Clique (y-axis direction)

Fig. 3. An example of an XY-clique host-switch graph.

hosts.

Accordingly, an XY-clique host-switch graph can con-
nect Θ(r3) hosts. This is asymptotically better than a star
host-switch graph, which can connect Θ(r2) hosts. More
accurately, we can state:

Theorem 7 An XY-clique host-switch graph can connect more
hosts than a star host-switch graph if and only if r > 19.

A specific example of an XY-clique host-switch graph is
found in the field of computer architecture. It is called the
flattened butterfly [23].

3.3.3 Polarity Host-Switch Graph

A polarity graph [24] (a.k.a. Brown’s construction or Brown
graph [25]) is a well-known undirected graph of diameter 2.
For a prime power q, the polarity graph B(q) provides an
undirected graph with q2 + q + 1 vertices. The maximum
degree is q + 1; in detail, q2 vertices have degree q + 1, and
q + 1 vertices have degree q.

We can construct a host-switch graph by connecting hosts
to a polarity graph. Let us call such a graph a polarity host-
switch graph. Clearly we can state:

Lemma 5 A polarity host-switch graph can connect at most
r(q2 + q + 1)− q(q + 1)2 hosts.

Let nmax be r(q2+q+1)−q(q+1)2. Since ∂nmax/∂q is equal
to −3q2 + 2q(r− 2) + r− 1, the value of nmax is maximized
when q = (

√
r2 − r + 1+r−2)/3 and r = (3q2+4q+1)/(2q+

1). Substituting this value of r to r(q2+q+1)−q(q+1)2, nmax

becomes (q4 + 2q3 + 4q2 + 4q+ 1)/(2q+ 1). Thus, a polarity
host-switch graph can potentially connect more hosts than a
star host-switch graph and an XY-clique host-switch graph.

3.4 Relationship between RDP and h-ASPL

Until now we discuss the RDP, but an important question
remains: does the best host-switch graph in terms of the RDP have
the lowest h-ASPL? Let us consider this question.

When D(G) is equal to 2, the h-ASPL of a host-switch
graph with the largest possible hosts (i.e., r hosts) is obvi-
ously 2 (i.e., minimum). Thus, the answer to the question
above is yes. When D(G) is equal to 3, we can prove that
a clique host-switch graph, which can connect the largest
possible hosts, takes the minimum value of the h-ASPL
when n > r (See Appendix in [26]). Thus, the answer to the
question above is also yes.

However, once D(G) exceeds three, there exist no trivial
solutions for the RDP. We should thus consider an alternative
question: does better host-switch graph in terms of the RDP have
lower h-ASPL? We can find counter-evidence to this question.
Let us consider the case of biclique host-switch graphs. As
we mentioned before, the best biclique host-switch graph
in terms of the RDP is a star host-switch graph. However,
the h-ASPL of a star host-switch graph in Fig 2b (≈ 3.68) is
higher than the h-ASPL of a biclique host-switch graph in
Fig 2a (≈ 3.26). In this way, a host-switch graph with larger
hosts does not always provide lower h-ASPL.

In summary, the deterministic approach is effective for
host-switch graphs of diameter 3 or less, but not effective for
those of diameter 4 or more. Thus it would not be appropriate
for designing practical interconnection networks. However,
we cannot rule out the possibility that a practical host-switch
graph can deterministically be constructed, and hence the
RDP remains of interest.

4 HEURISTIC CONSTRUCTION OF HOST-SWITCH
GRAPHS

In this section we propose a heuristic approach for construct-
ing a host-switch graph with low h-ASPL. In particular, we
present a randomized algorithm with fixed parameters n, m,
and r, and discuss the optimal number m switches.

4.1 Overview

First, let us formulate a problem to solve. Unlike the
deterministic approach, a heuristic one enables us to optimize
h-ASPL directly, and hence the problem is below.

Problem 2 (Order/Radix Problem) Given natural numbers n
and r, find a host-switch graph with order n and radix r that
provides the minimum possible value of h-ASPL.

To solve this problem, we use a randomized algorithm
similar to prior studies [27], [28] that searches an undirected
regular graph with low diameter/ASPL. We adopt simulated
annealing (SA) to escape from a local solution.

4.2 Minimizing h-ASPL

4.2.1 Computation of h-ASPL
Let us begin with a simple case, computing the ASPL of
an ordinary undirected graph—not a host-switch graph. To
compute the ASPL, we should solve the all-pairs-shortest paths
(APSP) problem for an undirected unweighted graph.
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sa sc

sdsb

sa sc

sdsb

Fig. 4. Swap operation which changes endpoints of two switch-switch
edges.

Several algorithms are proposed for the APSP problem.
Among them the simplest one is using the breadth-first
search (BFS) from every vertex with an O(|V ||E|) running
time in total. The h-ASPL is given by

∑
06i<j<m(`(si, sj) +

2) · wiwj/
(n
2

)
, where wi denotes the number of hosts con-

nected with si. Thus, the time complexity is equal to that
of computing the ASPL between switches. As a result, BFS
enables us to compute the h-ASPL with an O(m2r −mn)
running time. Note that the order n does not increase the time
complexity. On the contrary, n decreases it. Also, it reduces
to O(m2) if n takes the upper bound given by Lemma 1, i.e.,
n = mr − 2(m− 1).

In our experiments in this paper, we use a BFS-based
algorithm because it is fast enough especially for sparse
graphs, but we would be able to improve time complexity
by using faster algorithms [29] for large m or dense graphs.

4.2.2 Swap Operation: Local Search Restricted to Regular
Host-Switch Graphs
Let a k-regular host-switch graph (or simply regular host-switch
graph) G = (H,S,E) denote a host-switch graph such that
any switch in S has the fixed number k of neighbor switches
and p− k hosts, respectively. We shall begin with a simple
algorithm that can be applied only for a regular host-switch
graph.

We can use a local search algorithm where a neighbor
solution is given by a swap operation (Fig. 4), which converts
{sa, sb}, {sc, sd} ∈ E to {sa, sd}, {sb, sc}. Since the number
of hosts per switch of a regular host-switch graph is averagely
n/m, the lower bound on the h-ASPL of a k-regular host-
switch graph is obtained by the Moore bound [1], the known
lower bound on the ASPL of a K-regular graph with N
vertices, say M(N,K), as follows:

A(G) >
(n/m)2

(m
2

)
(M(m, r − n/m) + 2) + 2

(n/m
2

)
m(n

2

)
=
M(m, r − n/m)(mn− n)

mn−m + 2. (3)

The results of the algorithm using the swap operation is
compared with the extended algorithm below.

4.2.3 Swing Operation: Local Search for Any Host-Switch
Graph
We extend the algorithm above so that it can change end-
points of host-switch edges as well as those of switch-switch
edges. The extended algorithm is based on a new operation
called a swing operation (Fig. 5). The swing operation converts

sa

scsb

sa

scsb

Fig. 5. Swing operation which changes endpoints of a switch-switch edge
and a host-switch one.

sa

sb

sc

sd

sa

sb

sc

sd

sa

sb

sc

sd

initial solution 1-neighbor solution 2-neighbor solution

Fig. 6. 2-neighbor swing operation (hosts are omitted for simplicity).

{sa, sb}, {sc, hi} ∈ E to {sa, sc}, {sb, hi}, and hence it
changes endpoints of host-switch edges. In other words, this
operation changes the number of hosts connected with each
switch. Let SWING(sa, sb, sc) denote the swing operation.

As stated above, the swap operation never changes
endpoints of host-switch edges, and contrariwise the swing
operation always changes them. Thus we should combine
them to obtain good solutions. To this end, we introduce a
2-neighbor swing operation (Fig. 6). Note that hosts are omitted
in the figure for simplicity.

The 2-neighbor swing operation has the following four
steps:
Step 1: Operate SWING(sa, sb, sc) and evaluate the solution,
called the 1-neighbor solution.
Step 2: If the 1-neighbor solution is accepted, then move to
the 1-neighbor solution and the operation ends. Otherwise,
go to the next step.
Step 3: Operate SWING(sd, sc, sb) and evaluate the solution,
called the 2-neighbor solution.
Step 4: If the 2-neighbor solution is accepted, then move to
the 2-neighbor solution. Otherwise, the initial solution holds.
Consequently, this operation contains both of the swap
operation (if the 2-neighbor solution is accepted) and the
swing operation (if the 1-neighbor solution is accepted).

4.2.4 Discussion about Optimal Number of Switches
We discuss the optimal number of switches, because a
randomized algorithm must fix it during optimization. To
discuss it, we carry out SAs with the swap operation and
the 2-neighbor swing operation, and compare their results
with the lower bound given by Theorem 2 and the Moore
bound. In SAs, initial host-switch graphs are constructed
randomly. We obtain the results for n = 128, 256, 512, 1024
and r = 12, 24, and show typical results among them in
Fig. 7. We pick up the typical results, and other cases are
similar to either of the three results. Here, the Moore bound
is calculated by (3); however, n/m must be an integer, and
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(c) n = 1024, r = 24

Fig. 7. Relationship between h-ASPL and the number of switches.
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(b) n = 256, r = 12
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(c) n = 1024, r = 24

Fig. 8. Host distribution when m = mopt.
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Fig. 9. Comparison between the Moore bound and the continuous Moore
bound.

thus the Moore bound of a host-switch graph has a value
for specific pairs of n, m, and r. We hence extend the Moore
bound so that the degree can be a rational number, not only
an integer. We call it the continuous Moore bound. In Fig. 9
we show the difference between the Moore bound and the
continuous Moore bound in the case of n = 1024 and r = 24.

The h-ASPL is less than 3 only in the case of n = 128
and r = 24 (Fig. 7a), because the switches can constitute a
clique only in this case as described in Section 3. In other
words, n can be less than m(r−m+ 1) only in this case (see
Lemma 2). Also, in this case, the h-ASPL is close to the lower
bound derived by Theorem 2, which suggests it is almost
optimal. In the cases of other pairs of n and r, however,
n � m(r −m + 1) holds for any m, and consequently the
h-ASPLs exceed 3.

In Fig. 7, a dotted line represents the number m of
switches such that the continuous Moore bound takes the
minimum value. The important thing is that this value of m
accords with the value of m such that the h-ASPL takes
the minimum value in all the cases. Let mopt and Aopt

denote this value of m and the h-ASPL when m = mopt,
respectively. In Fig. 8 we show the distribution of the number
of connected hosts of a switch, which we call the host distribu-
tion. Interestingly, the obtained graph includes switches that
have different number of hosts. This corresponds to neither
conventional direct nor indirect networks.

Other phenomenon of interest is that, when m < mopt

or m � mopt, the h-ASPL of a regular host-switch graph
significantly exceeds Aopt as compared with the h-ASPL of a
non-regular host-switch graph. Let us discuss each case.
Case 1: m� mopt.
In this case, there exist unused switches that are not included
in any shortest path between hosts, in a non-regular host-
switch graph. In the case of (n,m, r) = (1024, 1024, 24)
shown in Fig. 7c, the host distribution is similar to Fig. 10,
which illustrates over 70% switches connect no hosts. This is
similar to indirect networks, but there exists a clear difference.
In the case of indirect networks, all the switches are on some
shortest path. In our case of (n,m, r) = (1024, 1024, 24),
however, many switches are not on any shortest path
between hosts, i.e., they are redundant. A regular host-switch
graph cannot contain such redundant switches and all the
switches must connect hosts.
Case 2: m < mopt

In this case, only a host-switch graph with small number
of switches can be constructed. Hence, when a host-switch
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Fig. 10. Host distribution of a host-switch graph with unused switches
when (n,m, r) = (1024, 1024, 24).

graph is regular, the degree becomes too small and conse-
quently the h-ASPL drastically increases. When a host-switch
graph is not regular, however, a tree-like graph in which only
a few switches exist can be constructed. That is why the
h-ASPL can be less than the continuous Moore bound.

From the above, we have the essential observation about
the optimal number of switches, as follows:

Observation 1 For fixed n and r, a host-switch graph attains
the minimum h-ASPL when it has m switches such that the
continuous Moore bound takes the minimum value.

On the basis of this observation, we carry out the randomized
algorithm with fixed m.

4.3 Maximizing BiW
Our randomized algorithm can be applied for optimizing
a parameter other than the h-ASPL. Now we focus on the
bisection width (BiW) because it is another important metrics
for interconnection networks.

4.3.1 Computation of BiW of Host-Switch Graphs
A bisection width (BiW) of an ordinary undirected graph G
is the minimum number of edges that have to be removed
from G to partition it in two halves. In general, intercon-
nection networks with larger BiW are better in terms of
performance because minimum cut determines maximum
possible flows through a network, according to the max-
flow min-cut theorem [30]. Also, the BiW corresponds to the
bisection bandwidth of a network if all the links have a fixed
bandwidth.

Unlike the h-ASPL, the BiW is hard to compute. Although
the BiWs of some specific graphs [31]–[33] and its bounds
based on spectral graph theory [34] are studied, its calcu-
lation for arbitrary graph is NP-complete [35]. We hence
compute it approximately by using a graph partitioning
software called hMETIS [36], which is a family of METIS [37]
generalized for hypergraphs and provides more accurate
results.

Based on the above, we also define the BiW for host-
switch graphs. A bisection width (BiW) of a host-switch graph
is defined as the minimum number of cut edges between
two subgraphs with bn/2c and dn/2e hosts, respectively.1 A

1. Note that this definition is more practical than that in [26], which is
the minimum number of cut edges between two subgraphs that include
b(n+m)/2c and d(n+m)/2e vertices, respectively.

0 20000 40000 60000 80000 100000
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Fig. 11. Changes of h-ASPL and BiW during optimization.

host-switch graph is said to be full-bisection if its BiW is more
than bn/2c, and half-bisection if its BiW is between bn/4c and
bn/2c.

4.3.2 First Attempt: Direct Optimization
We firstly attempt to maximize the BiW directly. To this
end, we should change the objective function of SA to
the BiW and retune SA’s parameters such as the initial
temperature. However, this methodology cannot optimize
the BiW. There are two reasons as follows. First, an objective
function is approximated, and thus SA cannot accurately
select a better neighbor solution. Second, the change of the
BiW is significant and almost uniform, because it is an integer
in contrast to h-ASPL, which is a rational number. For these
reasons the BiW should not be included in an objective
function.

4.3.3 Reducing h-ASPL Yields Increasing BiW
Our idea to increase the BiW is to optimize another metric cor-
related with the BiW. Previous studies find some parameters
such as maximal congestion [38] are correlated with the BiW,
but they are also hard to compute. Hence we hypothesize
that h-ASPL is correlated with bisection width and verify it;
intuitively, a host-switch graph with low h-ASPL has many
paths between any pair of switches on average.

In Fig. 11 we show the changes of the h-ASPL and the
BiW when we reduce h-ASPL by SA. Intriguingly the BiW
increases as the h-ASPL decreases, though the BiW is not
considered in the optimization. Furthermore, the change
ratio of the BiW is larger than that of the h-ASPL. We
repeatedly run the simulation with various parameters, and
similar results are obtained. Based on the results, we have
the following observation:

Observation 2 In a host-switch graph with fixed n, m, and r,
reducing the h-ASPL yields increasing the BiW.

Thus our method described in Section 4.2 can be used also
for maximizing the BiW.

4.3.4 Discussion about Relationship between Number of
Switches and BiW
We discuss the relationship between the number of switches
and the BiW. The same as before, we carry out SAs with the
2-neighbor swing operation.
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In Fig. 12 we show typical results. We observe that, except
for some plots, the BiW linearly increases as the number of
switches increases. We find the exception is provided by
indirect networks, and hence we plot direct and indirect
networks separately. The exception provides worse BiW.
This indicates that direct networks provide better tradeoffs
between the h-ASPL and the BiW than indirect networks
provide, in the case that we optimize the h-ASPL by SA. The
fat-tree gives a better BiW at the cost of higher h-ASPL.

From the results, we have the following observation:

Observation 3 In a direct host-switch graph with fixed n and
r and the minimum h-ASPL, the BiW linearly increases as the
number m of switches increases.

By this observation, we can approximate the minimal number
of switches that provides half- or full-bisection host-switch
graphs, as with the approximation of the optimal number of
switches in terms of the h-ASPL.

4.4 Three Proposed Topologies
So far we have described heuristic approach to find host-
switch graphs with low h-ASPL and high BiW. In summary,
the heuristic approach is more practical than the determinis-
tic one for the following reasons.

• We can directly optimize the h-ASPL without depend-
ing on the diameter (we can also, if necessary, consider
both of the h-ASPL and the diameter as with [27]).

• We can generate host-switch graphs with prescribed
parameters n, m, and r. In particular, m is essential
for host-switch graphs because it strongly affects
topological properties.

• We can use various objective functions. However, we
find that, in the case of optimizing the BiW, reducing
h-ASPL yields increasing the BiW. Interestingly, the
BiW of host-switch graph with the minimized h-ASPL
linearly increases as the number of switches up to
certain number in the cases of direct networks.

Notwithstanding, the deterministic approach based on the
RDP is still of great interest from a theoretical viewpoint.

On the basis of the results in this section, we propose
three topologies, as follows:

1) Minimum h-ASPL: a host-switch graph with mopt.
2) Full-bisection: a full-bisection host-switch graph

with minimum m.
3) Half-bisection: a half-bisection host-switch graph

with minimum m.

Designers can select them depending on technical require-
ments. The three topologies are evaluated in Section 5 with
existing topologies.

5 EVALUATION

Hitherto we might neglect practical viewpoints. However,
this section can compensate it; we evaluate our proposed
topologies with other topologies, including topologies pro-
posed in Section 3, previously proposed topologies, and
existing topologies applied to supercomputers ranked in
TOP500 and demonstrate the advantage of our proposed
topologies.

5.1 Previously proposed topologies
5.1.1 WK-recursive networks
The WK-recursive network [39] WK(K,L) is recursively
defined with two parameters, the degree K and the level L,
as follows.

1) WK(K, 1) is a K-clique.
2) WK(K,L) for L > 1 is a K-clique regarding

WK(K,L− 1) as a node (called a virtual node). Here,
any two virtual nodes are connected with exactly
one edge, and the degree of the nodes must be equal
to or less than K .

Regarding a node of a WK-recursive network as a switch, we
can construct a host-switch graph. From the definition above,
the number m of switches of WK(K,L) is

m = KL. (4)

Each switch is connected to at least K−1 other switches, and
the number of switch-switch links is incremented by K − 1
with each recursive call. Thus, the following is satisfied:

r > K, (5)

n 6 KL(r −K + 1)− (L− 1)(K − 1). (6)

5.1.2 Recursive dual-net
The recursive dual-net RDPk(B) [40] is an interconnection
network based on a recursive dual-construction of a base
network B where k is a level of the recursion. According
to [40], a k-level dual-construction for k > 0 creates a
network containing (2mB)2

k

/2 nodes and dB + k links per
node, where mB and dB denote the number of nodes and the
number of links per node of a base network B, respectively.

Thus, a host-switch graph based on a recursive dual-net
satisfies:

m = (2mB)2
k

/2, (7)

n 6 (r − k − dB) · (2mB)2
k

/2, (8)
r > dB + k. (9)

5.2 Existing topologies
There are many existing topologies for practical intercon-
nection networks. Among them, we pick up three typical
topologies: the torus [41], the dragonfly [15], and the fat-
tree [42]. They are applied to supercomputers ranked in
TOP500 for June 2017 [43]; for example, Titan [44] and
Sequoia [45] use the torus, Cori [16] and Piz Daint [17]
use the dragonfly, and Tianhe-2 [20] uses the fat-tree. We
review them as a host-switch graph to compare them with
our proposed host-switch graphs. Note that the definitions
described below are specialized for comparisons and there
can be other variants of each topology.

5.2.1 Torus
A K-ary N -torus host-switch graph is a host-switch graph with
additional parameters K and N . Each switch is identified
by a N -bit base-K address, aN−1aN−2 · · · a0, and connected
to switches with addresses a′N−1a

′
N−2 · · · a′0 where a′i ± 1

(mod K) = ai for any i (0 6 i 6 N − 1) and a′j = aj for all
j (0 6 j 6 N − 1 and j 6= i).
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Fig. 12. Relationship between the BiW and the number of switches.

From the above, the number m of switches of a K-ary
N -torus host-switch graph is

m = KN . (10)

Since each switch is connected with 2N other switches, the
order n and the radix r of a torus host-switch graph satisfy:

n 6 (r − 2N) ·KN , (11)
r > 2N. (12)

5.2.2 Dragonfly
A dragonfly host-switch graph is a host-switch graph with
additional parameters a, h, g, and p. The switches are divided
into g groups, each of which has a switches that construct a
clique. Each switch is connected with p hosts and h switches
in other groups so that the groups constitute a clique if we
regard a group as a node; consequently, g must be equal to
ah+ 1. According to the original paper [15], the parameters
should satisfy a = 2h = 2p to balance traffic loads, and
hence we assume this equation holds.

From the above, the number m of switches of a dragonfly
host-switch graph is

m = ag =
a3

2
+ a. (13)

The radix r of a dragonfly host-switch graph is

r = (a− 1) + h+ p = 2a− 1. (14)

The order n of a dragonfly host-switch graph satisfies:

n 6 mp =
a4

4
+
a2

2
. (15)

5.2.3 Fat-tree
There exist many variants of fat-trees. In this paper, we adopt
a three-layer fat-tree such that the number of ports of a switch
is uniform, which is a special instance of Clos network called
a K-ary fat-tree [42]. It is an indirect network unlike the torus
and the dragonfly.

A K-ary fat-tree host-switch graph is a host-switch graph
that corresponds to a K-ary fat-tree consisting of three layers:
the core layer withK2/4 switches, the aggregation layer with
K2/2 switches, and the edge layer with K2/2 switches. Thus
the number m of switches of a K-ary fat-tree host-switch
graph is

m = 5K2/4. (16)

Each switch in the edge layer can be connected with K/2
hosts. Thus the order n of a K-ary fat-tree host-switch graph
satisfies:

n 6 K3/4. (17)

The value of K corresponds to the number of links for each
switch, and thus the radix r is simply

r = K. (18)

5.3 Fundamental Properties
Table 1 summarizes the fundamental properties of host-
switch graphs presented in Sections 3, 4, 5.1, and 5.2. We have
considered graphs presented in Sections 3 and 4, so let us
now compare them with the graphs presented in Section 5.1
and 5.2. The WK-recursive network is identical to a clique
host-switch graph when L = 1. However, once L becomes
greater than 1, the diameter rapidly increases with O(2L).
When L = 2, the diameter is the same as that of the dragonfly.
When L = 3, the diameter becomes nine, which is excessively
large. Thus, let us compare WK(K, 2) and the dragonfly.

One might notice that WK(K, 2) and the dragonfly are
quite similar; technically, WK(K, 2) is a dragonfly such that
a is equal to g, h is equal to 0 or 1, and p is variable (cf.
Section 5.2.2). Let us consider WK(K, 2) with the parameters
of the dragonfly for comparison. Since K corresponds to a,
the number m of switches is

m = a2. (19)

The order n must satisfy:

n 6 a2(r − a+ 1)− (a− 1) = −a3 + a2(r + 1)− a+ 1.
(20)

When we assume r = 2a − 1 as with the dragonfly, (20)
reduces to

n 6 a3 − a+ 1. (21)

As a result, the dragonfly can connect more hosts than
WK(K, 2) when a > 3.

Next, we consider the recursive dual-net. We may say that
its diameter is large; even if k = 1 and D(B) = 1 (i.e., B is a
clique), the diameter is 6, which is the same as the diameter
of the fat-tree. Let us compare the recursive dual-net with
k = 1 and the fat-tree in terms of scalability. WhenD(B) = 1,
dB must be mB − 1, and k is equal to one. Thus, the order n
is not greater than (r −mB) · 2m2

B and consequently grows
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TABLE 1
Summary of fundamental properties of host-switch graphs.

Graph Section Parameters Order n #Switches m Radix r Diameter
Clique 3 – m(r −m+ 1) 6 r + 1 given 3
Star 3 – r(r − 1) r + 1 given 4
XY-Clique 3 – m(r − 2

√
m+ 2) < (r + 2)2/4 given 4

Polarity 3 q r(q2 + q + 1)− q(q + 1)2 q2 + q + 1 > q + 1 4
Randomly-optimized 4 – (r − 1)D(G)−1 + 1 variable given > dlogr−1(n− 1)e+ 1

WK-recursive 5.1 K, L KL(r −K + 1)− (L− 1)(K − 1) KL > K 2L + 1

Recursive dual-net 5.1 k, mB , dB (r − k − dB) · (2mB)2
k
/2 (2mB)2

k
/2 > dB + k 2kD(B) + 2k+1

Torus 5.2 K, N (r − 2N) ·KN KN > 2N bK/2c ·N + 2
Dragonfly 5.2 a a4/4 + a2/2 a3/2 + a 2a− 1 5
Fat-tree 5.2 K K3/4 5K2/4 K 6

with O(mr −m√m). On the other hand, the order of the
fat-tree is clearly O(mr). Thus, the fat-tree is more scalable
than the recursive dual-net.

We experimentally compare our proposed topology with
the torus, the dragonfly, and the fat-tree because they are
used in real systems, and the dragonfly and the fat-tree
are more scalable than the WK-recursive network and the
recursive dual-net as we have shown above.

5.4 Experimental Method

The existing topologies above and our three topologies are
compared in terms of performance, topological properties
(the h-ASPL and the BiW), power consumption, and cost
breakdowns. Since each existing topology must take a
specific combination of n, m, and r, we separately compare
each topology with our topologies. Note that our proposed
topologies can construct for any combination of n, m, and r.
The comparisons include two experiments below.

5.4.1 Evaluation of Performance and Topological Properties
The performance is evaluated by SIMGRID discrete event sim-
ulator (v3.15) [46]. One of the APIs implemented in SIMGRID,
called SMPI, can simulate unmodified MPI applications. We
use a shortest path routing scheme using the Floyd-Warshall
algorithm. Each host has a computation speed of 100 GFLOPS
in all the networks. We configure SIMGRID to use its built-in
version of the MVAPICH2 implementation of MPI collective
communications. For each topology, we generate a SIMGRID
platform called Autonomous System (AS) [47] and simulate
MPI implementation of NAS parallel benchmarks (v3.3.1,
Class A for IS and FT and Class B for the others) [48].

Since the NAS parallel benchmarks work only when the
number of processes is the power of four, we assume n is
equal to 1024 and set the network size to connect 1024 hosts.
Each existing topology is constructed by the smallest host-
switch graph such that the number of connectable hosts is
at least 1024, and 1024 hosts are sequentially connected to
switches. Our topologies are constructed so that r becomes
the same as each existing topology. Afterwards, hosts are
sequentially connected to switches in depth-first order by
backtracking.

Table 2 summarizes the parameters and the topological
properties of nine topologies used in the experiments. We
adopt the torus such that the dimension N is 5 (i.e., 5-D
torus), which is used in Sequia. From (10)–(12) we set K and
r to 3 and 15, respectively. Consequently the torus satisfies

n 6 1215, m = 243, and r = 15. From (13)–(15) we set a to
8 for the dragonfly, and consequently it satisfies n 6 1056,
m = 264 and r = 15. Since both the torus and the dragonfly
require 15-port switches, our topologies are constructed with
15-port switches to compare with them. From (16)–(18) we
adopt 16-ary fat-tree, and consequently the fat-tree satisfies
n 6 1024,m = 320, and r = 16. To compare with the fat-tree,
our topologies are constructed with 16-port switches.

From Table 2, we notice that the continuous Moore bound
for our proposed topologies is 13–15% larger than the lower
bound derived by Theorem 2. These differences are mainly
caused by the assumed host distribution and the assumed
value of m are different. While the continuous Moore bound
assumes the host is regularly connected and m is equal to
mopt, the lower bound derived by Theorem 2 holds for any
host-distribution and any value of m, which is more general
and less tight.

5.4.2 Evaluation of Power Consumption and Cost Break-
down
The power consumption and cost breakdowns are evaluated
on the basis of models of Mellanox InfiniBand FDR10
switches and Mellanox InfiniBand FDR10 40Gb/s QSFP
cables [2]. A physical floorplan is designed so that it is large
enough to align all the cabinets on a 2-D grid. Each cabinet
is 60 cm wide and 210 cm deep including space for the aisle,
and the number of cables and their lengths are calculated.
If a cable length is over 100cm, the cable is assumed to be
an electrical cable. Otherwise, the cable is assumed to be an
optical cable. The network sizes are the same as those in the
performance evaluation.

5.5 Results and Discussion
5.5.1 Comparison with 5D Torus
From Table 2, the h-ASPL of the torus (≈ 5.34) is much
higher than the continuous Moore bound (≈ 4.47). On the
other hand, our topologies have low h-ASPLs close to the
Moore bound. Also in terms of the BiW, all of our topologies
are better than the torus. It is interesting to note that our
topology with the minimum h-ASPL and the half-bisection
one provide similar topological properties.

In Fig. 13a we show the results of the performance
comparison. Our topology with the minimum h-ASPL
outperforms the torus by 22% on average (given by the
geometric mean). It achieves particularly high performance
in the cases of IS (Integer Sort), FT (Fast Fourier Transform),
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TABLE 2
Summary of nine topologies to connect more than 1024 hosts for simulation.

Topology Radix # of switches h-ASPL Continuous Moore bound Lower bound by Theorem 2 BiW
5D Torus 15 243 5.34 4.47 3.87 240 (46.9%)
Dragonfly 15 264 4.68 4.48 3.87 272 (53.1%)
Minimum h-ASPL 15 194 4.45 4.45 3.87 297 (58.0%)
Half-bisection 15 184 4.46 4.45 3.87 267 (52.1%)
Full-bisection 15 284 4.51 4.49 3.87 518 (101%)
Fat-tree 16 320 5.86 4.44 3.84 512 (100%)
Minimum h-ASPL 16 183 4.36 4.34 3.84 308 (60.2%)
Half-bisection 16 165 4.36 4.34 3.84 256 (50.0%)
Full-bisection 16 259 4.41 4.38 3.84 515 (101%)

and MG (Multi-Grid), because they require random mem-
ory accesses, all-to-all communications, and long-distance
communications, respectively, which are not appropriate for
regular structure with locality. Our half-bisection topology
provides similar performance as that with the minimum
h-ASPL. This is because the numbers m of switches and
the h-ASPLs of those topologies are similar (see Table 1).
Our full-bisection topology provides the best performance. It
outperforms the torus by 45% on average.

In Fig. 13b we show the results of the power comparison.
Our two topologies, one with the minimum h-ASPL and
half-bisection one, consume 20% and 24% lower power as
compared with the torus, respectively. This is because the
numbers m of switches are smaller than that of the torus.
Our full-bisection topology consumes 17% more power as
compared with the torus. However, the increasing ratio is
less than that of the performance (45%).

In Fig. 13c we show the results of the cost comparison.
Here cost breakdowns including switch and cable costs
are shown. The results of switch costs are the same as the
results of power comparison relatively. The results of cable
costs, however, are slightly different; the cable costs of our
topologies are larger than those of the torus. This is because
our topologies may have long cables to provide low h-ASPLs
while the torus requires only short cables. In total, however,
the cost of our topologies are not significant.

In Fig. 13d we show the results of the performance per
watt. Because of the reduction of the power consumption,
two of our topologies drastically improve the performance
per watt. In particular, our half-bisection topology provides
the best improvement (61% on average). On the other
hand, our full-bisection topology improves slightly since
it consumes large power.

Overall, as compared with the torus, our three topologies
provide higher performance. In addition, two of them
consume smaller power consumption and costs. One of
them, the full-bisection topology, consumes more power
consumption and costs, but it attains the best performance
and its improvement ratio is more than the increasing ratio of
power consumption and costs. In terms of the performance
per watt, our half-bisection topology is the best.

5.5.2 Comparison with Dragonfly
From Table 2, the dragonfly provides good topological
properties. Its h-ASPL (≈ 4.68) is close to the continuous
Moore bound (≈ 4.48) and its BiW (≈ 53.1%) is more than
n/4 (i.e., 50%). Hence we can confirm that the dragonfly is
near optimal topology with the specific pair of n, m, and r.

Notwithstanding, our topologies can slightly reduce h-ASPL
of the dragonfly, and two of them reduce the number of
switches.

In Fig 14a. we show the results of the performance
comparison. Our topology with the minimum h-ASPL out-
performs the dragonfly by 12% on average. These results
illustrate a different tendency from the comparison with
the torus, because the dragonfly provides low h-ASPL and
the performance does not degrade even when the long-
distance traffic occurs. These results substantiate that the
h-ASPL is important metrics for performance. It would be
strange that the EP benchmark is performing poorer on the
proposed networks than the dragonfly. This is because the
EP benchmark requires few communications, and hence the
h-ASPL has little effect on the performance. But rathar, the
application mapping affects the performance. Note that the
performance of the EP is hard to change even if the network
changes.

In Fig. 14b we show the results of the power comparison.
The results of our three topologies are the same as the case
of comparison with the torus since the radix is the same. The
dragonfly consumes more power than the torus, and thus
our topologies can efficiently reduce the power consumption.

In Fig. 14c we show the results of the cost comparison.
Here we assume the switches in a group are located in a rack,
and hence cable costs are small as compared with in the case
of comparison with the torus. The switch costs consequently
occupy a majority of total costs, and our topologies can
effectively save costs.

In Fig. 14d we show the results of the performance per
watt. Since the dragonfly consumes larger power than the
torus does, the improvements of the performance per watt
by our topologies becomes more significant. As shown in the
figure, our topologies improve the performance per watt of
the dragonfly in up to 60%. Interestingly, this ratio is almost
the same of the ratio in Fig. 13d.

Overall, as compared with the dragonfly, our three
topologies provide higher performance. In addition, two
of them consume smaller power consumption and costs.
One of them, the full-bisection topology, consumes more
power consumption and costs, but the increasing ratio is less
than that of performance. Since using racks reduces cable
costs, switch costs become significant, and consequently our
topologies for comparison with the dragonfly can effectively
save costs and reduce power consumption. In terms of the
performance per watt, our half-bisection topology is the best.
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Fig. 13. Results of comparisons between torus and proposed topology:
(a) Performance (eight benchmarks and the geometric mean); (b) Power
consumption; (c) Cost breakdown (Cable and Switch); (d) Performance
per watt.

5.5.3 Comparison with Fat-tree
From Table 2, the fat-tree has the highest h-ASPL (≈ 5.86),
which is much higher than the continuous Moore bound
(≈ 4.44). It is full-bisection, but, because of that, the number
of switches becomes the most. From these results, we can say
the fat-tree is far from optimum in terms of the h-ASPL, the
BiW, and switch costs.

In Fig. 15a we show the results of the performance
comparison (due to computational complexity, simulations
for IS and FT are omitted). Our topology with the minimum
h-ASPL outperforms the fat-tree by 84% on average. The
results are similar to that in Fig. 13a , because the fat-tree has
also regular structure with locality and the h-ASPL is high.
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Fig. 14. Results of comparisons between dragonfly and proposed
topology: (a) Performance (eight benchmarks and the geometric mean);
(b) Power consumption; (c) Cost breakdown (Cable and Switch); (d)
Performance per watt.

In particular, the fat-tree degrades performance especially
in MG, a memory intensive application that requires long-
distance communications; all of our topologies are more than
4 times faster than the fat-tree.

In Fig. 15b we show the results of the power comparison.
Unlike the torus and the dragonfly, the fat-tree consumes
more power than all of our topologies. The power consump-
tion of our topolgoies is almost the same as that of our
topologies for comparison with the torus and the dragonfly.
This is because the number of switches is reduced while the
radix increases.

In Fig. 15c we show the results of the cost comparison.
Unlike the torus and the dragonfly, the fat-tree requires
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Fig. 15. Results of comparisons between fat-tree and proposed topology:
(a) Performance (six benchmarks and the geometric mean); (b) Power
consumption; (c) Cost breakdown (Cable and Switch); (d) Performance
per watt.

not only higher cable costs but also higher switch costs as
compared with all of our topologies. This is because the
number of switches of the fat-tree is large.

In Fig. 15d we show the results of the performance per
watt. This shows the most drastic improvement, because our
topologies can efficiently improve both the performance and
the power consumption. As in the results above (Figs. 13d
and 14d), our half-bisection topology provides the best
improvement.

Overall, as compared with the fat-tree, our topologies
drastically improve performance with lower power consump-
tion and costs. This result indicates that indirect networks
are not good solutions for high-performance interconnection

networks in terms of the end-to-end latency. In terms of the
performance per watt, our half-bisection topology is the best.
From the results of the three comparisons thus far, we can
say that our half-bisection topology provides the best power
efficiency.

5.6 Practical Feasibility and Limitations
Finally, we discuss practical feasibility and limitations of the
proposed topologies.

5.6.1 Dead-lock Free Routing and Routing Tables
Our proposed topologies require a method for guaranteeing
dead-lock freedom since they have no regular structure.
Many methods that can be applied to non-structured topolo-
gies have been proposed until recently: avoiding cyclic
dependencies [49]–[51], using virtual channels [52], and
forwarding every flit in the deadlocked ring at the same
time [53]. There exist trade-offs between them in terms of
the performance (whether the path is the shortest path or
not) and the number of virtual channels, and hence we
should select the preferred method according to design
requirements.

In addition, our proposed topologies require routing
tables, and consequently the scale of topologies can be limited
by routing table size at each switch. However, we note that
most of the supercomputers listed in TOP500 are based on
Ethernet or InfiniBand. For all these systems, the routing
table size is thus also a scalability limitation regardless of the
network topology.

5.6.2 Application Mapping
A concern with non-structured topologies is the mapping
of application processes to compute nodes. Conventional
topologies can match application communication patterns
such as lattice communication, and decades of parallel
computing research have gone into designing algorithms
to compute efficient mappings of classes of applications.
The more random and unstructured the topology, the more
difficult it is to determine a good application mapping.
However, for parallel applications with dynamic workloads
and irregular parallel applications with non-deterministic or
complex communication patterns, it is difficult to compute
an efficient mapping of the processes to the compute nodes
even in a structured topology.

5.6.3 Combinations of n, m, and r
Our proposed topologies also relax a practical limitation.
Conventional topologies can be designed with specific
combinations of n, m, and r under strict conditions (as
shown in Table 1) although the scale of a system should
be determined based on power budget and costs. On the
other hand, our proposed topologies can be designed with
arbitrary r and variable m. As we have described until now,
the value of m is particularly important for the h-ASPL and
the BiW, and also for the power consumption and costs.

6 CONCLUSIONS

In this paper we have presented a novel graph called a
host-switch graph, which consists of two types of vertices,
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hosts and switches. The degree of each host and each
switch is 1 and r, respectively, and thus a host-switch graph
represents the topology of a computer network with 1-port
host computers and r-port switches. We firstly focus on
the host-to-host average shortest path length (h-ASPL) and
formulates an optimization problem called the order/radix
problem: given order and radix, find a host-switch graph
with the minimum objective function. For this problem,
we show the lower bound on the h-ASPL and present
a randomized algorithm based on the 2-neighbor swing
operation. We show the optimal number of switches that
provides the minimum h-ASPL can be approximated by the
continuous Moore bound.

Furthermore, we empirically show that reducing the h-
ASPL yields increasing the BiW as a side-effect. In the case
of direct networks, the BiW linearly increases as the number
of switches increases; in the case of indirect networks, on the
other hand, there exists no obvious relationship between the
h-ASPL and the bisection width. We can thus approximate
the minimum number of switches for direct networks to
provide a certain BiW. Based on the experimental results,
we have proposed three topologies, which are given by the
host-switch graph with the minimum h-ASPL, half- and
full-bisection host-switch graphs, respectively.

We have compared the proposed three topologies with
existing topologies applied to supercomputers ranked in
TOP500, the torus, the dragonfly, and the fat-tree, in terms
of performance, topological properties (the h-ASPL and the
BiW), power consumption, and cost breakdowns. Our results
demonstrate that, when the number of hosts is 1024, all the
proposed topologies outperform existing topologies in terms
of operation per second for MPI applications by 11%–84% on
average. The topology with the minimum h-ASPL and the
half-bisection topology can reduce the number of switches
by 20%–48%. As a result, our topologies can effeciently
improve the performance per watt; in particular, we have
shown that the half-bisection topology is the best in terms
of the performance per watt. Thus we have successfully
demonstrated that our method can directly be used for
designing interconnection networks.

Host-switch graphs arguably help theoreticians to discuss
practical interconnection networks without technical knowl-
edge thereof and, at the same time, provide theoretical base
for engineers who are not familiar with graph theory. In this
paper, we substantiate that direct networks are better than
indirect networks in terms of the h-ASPL, the BiW, and switch
costs. In particular, we confirm the dragonfly is near optimal,
but the number of switches should be further reduced. In
this sense, the study of host-switch graphs bridges a gap
between graph theory and computer engineering.
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