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Abstract. Karchmer, Kushilevitz and Nisan formulated the formula
size problem as an integer programming problem called the rectangle
bound and introduced a technique called the LP bound, which gives a
formula size lower bound by showing a feasible solution of the dual prob-
lem of its LP-relaxation. As extensions of the LP bound, we introduce
novel general techniques proving formula size lower bounds, named a
quasi-additive bound and the Sherali-Adams bound. While the Sherali-
Adams bound is potentially strong enough to give a lower bound match-
ing to the rectangle bound, we prove that the quasi-additive bound can
surpass the rectangle bound.

1 Introduction

Proving formula size lower bounds is a fundamental problem in complexity the-
ory as a weaker version of the circuit size lower bound problem and P 6= NP.
A super-polynomial formula size lower bound for a function in NP implies
NC1 6= NP [19]. As generalizations of the classical result of Khrapchenko [8]
who proved an n2 formula size lower bound for the parity function, there are a lot
of techniques studied to improve formula size lower bounds. With all the efforts,
improvements are far and few between. Karchmer, Kushilevitz and Nisan [6]
formulated the formula size problem as an integer programming problem called
the rectangle bound and introduced a technique called the LP bound, which
gives a lower bound by showing a feasible solution of the dual problem of its
LP-relaxation. At the same time, they also showed that it cannot prove a lower
bound larger than 4n2 for non-monotone formula size in general. Lee [14] proved
that the LP bound [6] subsumes the quantum adversary bound of Laplante, Lee
and Szegedy [10], which in turn subsumes most of known techniques such as
Khrapchenko [8], its extension by Koutsoupias [9] and a key lemma used in the
proof of H̊astad [3] showing the current best formula size lower bound n3−o(1).
Ueno [20] devised a stronger version of the LP bound by a cutting plane approach
utilizing the theory of stable set polytope. However, it is difficult to determine
the complete facet structure of the polytope associated with the formula size
problem. Thus, improvements of the approach are limited.



Lift-and-project methods systematically incorporate tighter and tighter con-
straints into any LP formulation. There are several lift-and-project methods such
as Sherali and Adams [16, 17], Balas, Ceria and Cornuejols [2] and Lovász and
Schrijver [15] and Lasserre [11]. Laurent [12] gave a comparison among these tech-
niques. Among the several techniques, the technique of Sherali and Adams [16,
17] has some advantages as the strongest one for LP formulations with relatively
simpler descriptions. These techniques have attracted much attention from sev-
eral contexts. In Section 5, we devise further another stronger version of the
LP bound using the lift and project method of Sherali and Adams [16, 17] and
its application to the set partition polytope by Sherali and Lee [18]. It yields a
convex hull of integral solutions and completely closes the integrality gap which
causes the limit of the original technique. It is potentially strong enough to prove
a lower bound matching to the rectangle bound.

More recently, Hrubeš, Jukna, Kulikov and Pudlák [5] discussed a notion
of subadditive rectangle measures on combinatorial rectangles as a conceptual
extension of a well-known notion of formal complexity measures. Inspired by this
notion and the Sherali-Adams bound, we introduce yet another stronger version
of the LP bound, which we name a quasi-additive bound, in Section 3. It directly
gives a lower bound for formula size and the protocol partition number of the
Karchmer-Wigderson game. In Section 4, we show that the quasi-additive bound
can surpass the rectangle bound. So, the quasi-additive bound is not upper-
bounded by the rectangle bound in general. This is quite surprising because
the quasi-additive bound can be seen as a simple extension of the LP bound of
Karchmer, Kushilevitz and Nisan [6], which is originally defined as a relaxation
of the rectangle bound. In fact, we can prove that the quasi-additive bound
is potentially strong enough to prove the matching formula size lower bound
for any Boolean function and the matching protocol partition number for any
relation. Another interesting property of the quasi-additive bound is that we can
derive a formula size lower bound for any Boolean function from a solution of
the quasi-additive bound for the universal relation.

Since the Sherali-Adams and quasi-additive bounds are pure extensions of the
LP bound, they can prove formula size lower bounds provable by any techniques
subsumed by the LP bound. To extend a solution space for them, we intro-
duce two useful techniques, named a cross argument and a triplet argument in
Section 4 and Section 6, respectively. The cross argument is useful to break the
rectangle bound barrier and applicable only for the quasi-additive bound. On the
other hand, the triplet argument can cover a main part of techniques discussed
in [20] and is applicable for both the Sherali-Adams and quasi-additive bounds.
Breaking the rectangle bound barrier against formula size lower bounds implies
a strong potential of the quasi-additive bound because the rectangle bound is
not so far from formula size in general (See Theorem 2 and [13]) and almost all
Boolean functions require formula size of at least Ω(2n/ log n) (See, e.g., [21]).
We hope that our generic techniques will be useful to surpass the best formula
size lower bound n3−o(1) of H̊astad [3].



2 Preliminaries

We assume that the readers are familiar with the basics of Boolean functions and
linear programming. A Boolean function f is called monotone if x ≤ y implies
f(x) ≤ f(y) for all x, y ∈ {0, 1}n.

Definition 1 (Formula Size). A formula is a binary tree with each leaf labeled
by a literal and each internal node labeled by either of the binary connectives ∧
and ∨. A literal is either a variable or its negation. The size of a formula is its
number of literals. We define formula size L(f) of a Boolean function f as the
size of the smallest formula computing f . We also define Lm(f) as the monotone
formula size of a monotone Boolean function f where a monotone formula is a
formula without negations.

Karchmer and Wigderson [7] characterize formula size of any Boolean func-
tion in terms of a communication game. In the game, given a Boolean function
f , Alice gets an input x such that f(x) = 1 and Bob gets an input y such that
f(y) = 0. The goal of the game is to find an index i such that xi 6= yi. Here,
xi and yi denote the i-th bits of x and y, respectively. The number of leaves
in a best communication protocol for the Karchmer-Wigderson game is equal
to the formula size of f . From the Karchmer-Wigderson game, we consider the
following matrix called the communication matrix.

Definition 2 (Communication Matrix). Given a Boolean function f , its
communication matrix is defined as a matrix whose rows and columns are indexed
by X = f−1(1) and Y = f−1(0), respectively. Each cell of the matrix contains
indices i such that xi 6= yi. A combinatorial rectangle is a direct product X ′ ×
Y ′ where X ′ ⊆ X and Y ′ ⊆ Y . A combinatorial rectangle X ′ × Y ′ is called
monochromatic if every cell (x, y) ∈ X ′ × Y ′ contains the same index i. To
describe it simply, we define a relation Rf ⊆ X × Y × {1, 2, · · · , n} as Rf =
{(x, y, i) | x ∈ X, y ∈ Y, xi 6= yi}. We can also define the monotone version of
the communication matrix and the relation associated with a monotone Boolean
function f as Rmf = {(x, y, i) | x ∈ X, y ∈ Y, xi = 1, yi = 0}.

To prove a lower bound, we sometimes restrict rows and columns of the
communication matrix as R′ = {(x, y, i) | (x, y, i) ∈ R, x ∈ X ′, y ∈ Y ′}
for some X ′ ⊆ X and Y ′ ⊆ Y . The number of leaves in a best communication
protocol for the Karchmer-Wigderson game is equivalent to the following bound.

Definition 3 (Protocol Partition Number). For any combinatorial rectan-
gle X ′×Y ′, we call its partition a pair of X ′1×Y ′ and X ′2×Y ′ where X ′ = X ′1∪X ′2
and X ′1 ∩ X ′2 = ∅, or a pair of X ′ × Y ′1 and X ′ × Y ′2 where Y ′ = Y ′1 ∪ Y ′2 and
Y ′1 ∩ Y ′2 = ∅. The minimum number of disjoint monochromatic rectangles which
recursively partition the communication matrix associated with a relation R is
defined as CP (R), called the protocol partition number.

Then, the theorem of Karchmer and Wigderson [7] can be stated as follows.

Theorem 1 ([7]). ∀f, CP (Rf ) = L(f) and CP (Rmf ) = Lm(f) .



The minimum number of disjoint monochromatic rectangles which exactly
cover all cells in the communication matrix gives a lower bound for the protocol
partition number because a protocol partition itself is one of exact covers by
disjoint monochromatic rectangles. We call it the rectangle bound defined as
follows.

Definition 4 (Rectangle Bound). The minimum size of an exact cover by
disjoint monochromatic rectangles for the communication matrix associated with
a relation R is defined as CD(R), called the rectangle bound.

On the relation between the protocol partition number and the rectangle
bound, we know the following result. For the proof, we recommend [13].

Theorem 2 ([6]). ∀R, CD(R) ≤ CP (R) ≤ 2O(log2 CD(R)).

Karchmer, Kushilevitz and Nisan [6] formulate the rectangle bound as an
integer programming problem and give its LP relaxation.

Definition 5 (LP Bound). We define LP(R) as the optimal value of the fol-
lowing linear programming formulation associated with a relation R. Let C be
the set of all defined cells, M be the set of all monochromatic rectangles and Zr
be a variable associated with each monochromatic rectangle r ∈ M . Then, the
LP-relaxation can be written as min

∑
r∈M Zr such that

∑
r3c Zr = 1 for each

cell c ∈ C and Zr ≥ 0 for each r ∈ M . The dual problem can be written as
max

∑
c∈CWc such that

∑
c∈rWc ≤ 1 for each r ∈ M . Here, Wc is a variable

indexed by a cell c ∈ C.

From the duality theorem, showing a feasible solution of the dual problem
gives a formula size lower bound.

Theorem 3 ([6]). ∀f, LP(Rf ) ≤ L(f) and LP(Rmf ) ≤ Lm(f).

They define the universal relation to show the limitation of their technique.

Definition 6 (Universal Relation). The universal relation Un represents a
matrix whose rows and columns are indexed by X = Y = {0, 1}n and each cell
(x, y) is indexed by {i | xi 6= yi}. It is defined as Un = {(x, y, i) | x ∈ {0, 1}n, y ∈
{0, 1}n, xi 6= yi}. CP (Un) and CD(Un) are defined in the same way. Note that
any cell (x, y) where x = y is undefined and are not counted for any partition.
That is, monochromatic rectangles partition all defined cells without covering
undefined cells.

It subsumes any relation Rf as a submatrix. Its protocol partition number
and rectangle bound also subsume those of any Boolean function as CP (Rf ) ≤
CP (Un) and CD(Rf ) ≤ CD(Un) for any Boolean function f . They show a limi-
tation of their technique by showing the following theorem.

Theorem 4 ([6]). ∀f, LP(Rf ) ≤ LP(Un) ≤ 4n2.

Thus, the LP bound and all the subsumed techniques [10] cannot prove a
formula size lower bound larger than 4n2. Limits inherent in previously known
proof techniques which get stuck around Ω(n2) heavily rely on the above theo-
rem.



3 A Quasi-Additive Bound for Formula Size Lower
Bounds

In this section, we devise a stronger version of the LP bound, which is derived
from a concept of subadditive rectangle measures by Hrubeš, Jukna, Kulikov and
Pudlák [5] and inspired by the Sherali-Adams bound discussed in Section 5. We
write Γ as the set of combinatorial rectangles and < as the set of real numbers.
Hrubeš, Jukna, Kulikov and Pudlák [5] introduce a notion of rectangle measures.
We call µ : Γ 7→ < a subadditive rectangle measure if it satisfies the following
two properties.

1. Normalization: µ(m) ≤ 1 for each monochromatic rectangle m ∈M .
2. Subadditivity: µ(r) ≤ µ(r1) + µ(r2) for each combinatorial rectangle r ∈ Γ

and its arbitrary partition into r1 and r2.

They show that µ(r) gives a lower bound for the protocol partition number
CP (R) by a simple inductive argument and any relation R where r is the whole
rectangle associated with the relation R. We can simply extend it for the uni-
versal relation as follows.

Lemma 1 ([5]). If µ is a subadditive rectangle measure for a relation R, then
µ(X × Y ) ≤ CP (R), even in the case of the universal relation in which µ(r) =
0 for every combinatorial rectangle r containing only an undefined cell, where
X × Y is the whole matrix associated with the relation R.

A remarkable fact is that, if we strengthen the condition “Subadditivity” as

3. Additivity: µ(r) = µ(r1) + µ(r2) for each combinatorial rectangle r ∈ Γ and
its arbitrary partition into r1 and r2,

then it is equivalent to the dual problem of the original LP formulation of Karch-
mer, Kushilevitz and Nisan [6]. Then, we consider the following LP formulation.

Definition 7 (Quasi-Additive Bound). Let C be the set of all cells, M be
the set of all monochromatic rectangles and Γ be the set of all combinatorial
rectangles associated with a relation R. We define QA(R) as the optimal value
of the following linear program formulation.

max
∑
c∈C

Vc

s.t.
∑
c∈r

Vc +
∑
c 6∈r

Vc,r ≤ 1, (for each r ∈M)∑
c6∈r1

Vc,r1 +
∑
c6∈r2

Vc,r2 ≥
∑
c6∈r

Vc,r.

(for each r ∈ Γ and its arbitrary partition into r1 and r2)

When we consider the universal relation, we fix Vc = 0 for every undefined cell
and Vc,r = 0 for every combinatorial rectangle r which only contains an undefined
cell.



We refer to it as the quasi-additive bound. It is stronger than the LP bound
and gives a lower bound for the protocol partition number.

Lemma 2. ∀R, LP(R) ≤ QA(R) ≤ CP (R).

Proof. If we set Vc,r = 0 for each c and r of the quasi-additive bound, it is
equivalent to the original LP bound. So, we have LP(R) ≤ QA(R). To see
QA(R) ≤ CP (R), we regard µ(r) =

∑
c∈r Vc +

∑
c 6∈r Vc,r as a rectangle mea-

sure. Then, we have µ(X × Y ) =
∑
c∈C Vc, which is equal to the objective value

of the quasi-additive bound, because C = X×Y is the whole rectangle associated
with R. From the additivity of Vc, the conditions “Normalization” and “Subad-
ditivity” is equivalent to the first and second constraints of the quasi-additive
bound, respectively. Thus, if assignments of Vc and Vc,r satisfy all of the first and
second constraints of the quasi-additive bound, µ(r) is a subadditive rectangle
measure. Consequently, we have QA(R) ≤ CP (R). ut

We can derive a formula size lower bound for any Boolean function from a so-
lution for QA(Un) by calculating

∑
c∈r Vc+

∑
c 6∈r Vc,r where r is f−1(1)×f−1(0).

We can eliminate the redundancy of the quasi-additive bound by summarizing
variables as V r =

∑
c6∈r Vc,r for each combinatorial rectangle r and adding a

constraint V X×Y = 0. However, as we will show, this redundancy is useful to
construct a solution for the quasi-additive bound. We can also prove that it is
potentially strong enough to give the matching formula size lower bounds.

Theorem 5. ∀R, QA(R) = CP (R).

Proof. From the information of the protocol partition number P (r) for each
combinatorial rectangle r, we can construct a feasible solution whose objective
value is equal to P (X × Y ) (= CP (R)). More precisely, we assign Vc so as to
satisfy

∑
c∈C Vc = P (X × Y ). Then, we assign Vc,r so as to satisfy

∑
c6∈r Vc,r =

P (r)−
∑
c∈r Vc. These assignments satisfy all the constraints of the quasi-additive

bound and give the matching lower bound. ut

Corollary 1. ∀f, QA(Rf ) = L(f) and QA(Rmf ) = Lm(f).

4 A Cross Argument for the Quasi-Additive Bound

In this section, we give an example of a relation for which the quasi-additive
bound can surpass the rectangle bound. For this purpose, we devise a novel
technique named a cross argument to give a solution of the quasi-additive bound.

Theorem 6. ∃R, QA(R) > CD(R).

Proof. We take 2 disjoint subsets of {0, 1}8 as

X = {10011000, 00101001, 00010110, 01100100},

Y = {01011101, 10110101, 01111010, 10101110}.



01011101 10110101 01111010 10101110

10011000 1 5 1 4

00101001 3 5 8 8

00010110 7 7 6 4

01100100 3 2 6 2

Fig. 1. The Monotone Communication Matrix of the Relation R

01011101 10110101 01111010 10101110

10011000 a b c d

00101001 e f g h

00010110 h g f e

01100100 d c b a

Fig. 2. 8 pairs of 2 cells from 16 cells

Then, we consider the monotone relation R of X and Y as Figure 1. For the
relation R, it is easy to see that CP (R) ≤ 10, CD(R) ≤ 8 by a cover with 8
maximal monochromatic rectangles and LP(R) ≥ 8 by assigning a weight 1

2 for
each cell.

Now, we prove QA(R) ≥ 10. We assign Vc = 5
8 for each cell. So, the total

weight is 10. To give an assignment rule of Vc,r, we consider 2 sorts of 8 pairs
from 16 cells. One is composed of 8 pairs each of which has 2 cells with the same
index in Figure 1. The other is composed of 8 pairs each of which has 2 cells with
the same alphabet in Figure 2. For any 2 cells c1 and c2 and any combinatorial
rectangle r such that c1 6∈ r1 and c2 ∈ r2, we define ∆c1,r(c2) as follows. Let c′2
be the other cell which has the same index with c2.

– If c1 and c2 have the same alphabet and r contains c′2, we define ∆c1,r(c2) =
− 1

8 .
– If c1 and c2 have the same alphabet and r does not contain c′2, we define
∆c1,r(c2) = 3

8 .
– If c1 and c2 have different alphabets, we define ∆c1,r(c2) = 0.

Then, we assign Vc1,r =
∑
c2∈r∆c1,r(c2) for any c1 6∈ r. To verify the first

constraints of the quasi-additive bound, it is sufficient to consider the 2 cases
as monochromatic rectangles with either 1 or 2 cells. In both cases, we have∑
c∈r Vc +

∑
c6∈r Vc,r = 1.

From now on, we consider the second constraint
∑
c6∈r1 Vc,r1 +

∑
c6∈r2 Vc,r2 ≥∑

c6∈r Vc,r where r1 and r2 be an arbitrary partition of a combinatorial rectangle
r. We can assume that there is a pair of 2 cells c1 and c2 with the same alphabet in
r. Otherwise, the constraint cannot be violated because ∆c1,r(c2) = ∆c1,r1(c2) =
∆c1,r2(c2) = 0 for any c1, c2 ∈ r. We can also assume that the pair is partitioned
into the 2 combinatorial rectangles as c1 ∈ r1 and c2 ∈ r2 in the following
argument. We consider the case in which any pair of 2 cells c1 and c2 in r with



the same alphabet are also in r1. In this case, the assignments of ∆ concerned
with any pair of c1 and c2 in r do not decrease by the partition because 3

8 ≥ −
1
8 .

Moreover, no (negative) assignments of ∆ do not appear by the partition. Hence,
the constraint cannot be violated. The same thing is true for the case of r2 instead
of r1.

Then, we define the diagonal pair pd of a pair p in Figure 2 as the pair such
that the 4 cells in pd and p compose a 4 × 4 combinatorial rectangle. As an
example, we consider the case when c1 = [1, a] ∈ r1 and c2 = [2, a] ∈ r2 without
loss of generality. Here, we identify each cell by its index and alphabet in the
figures. In this case, r1 and r2 must also partition the diagonal pair c3 = [3, d]
and c4 = [4, d]. Then, we take c′1 = [1, c], c′2 = [2, c], c′3 = [3, e] and c′4 = [4, e] be
the 4 cells which have the same index with c1, c2, c3 and c4, respectively. If at
least one of 4 pairs (c1, c′1) , (c2, c′2), (c3, c′3) and (c4, c′4) has been already divided
at the time of the partition into r1 and r2, then the changes of assignments of ∆
concerned with only c1, c2, c3 and c4 are represented as either 3

8 −
1
8 −

1
8 −

1
8 ≥ 0,

3
8 + 3

8−
1
8−

1
8 ≥ 0, 3

8 + 3
8 + 3

8−
1
8 ≥ 0 or 3

8 + 3
8 + 3

8 + 3
8 ≥ 0. Any of these does not cause

a violation of the constraint. The same thing is true for any other pairs with the
same alphabet. So, we can assume either c1, c′1, c3, c

′
3 ∈ r1 and c2, c

′
2, c4, c

′
4 ∈ r2,

or c1, c′1, c4, c
′
4 ∈ r1 and c2, c′2, c3, c

′
3 ∈ r2. In both cases, we have

∑
c6∈r1 Vc,r1 = 0

and
∑
c6∈r2 Vc,r2 = 0 where r1 and r2 are 2 × 4 combinatorial rectangles. Since

r is the whole rectangle, we also have
∑
c6∈r Vc,r = 0. Consequently, all the

constraints of the quasi-additive bound are satisfied. ut

We also know a smaller relation R′ of a 3× 3 matrix having the gap between
the rectangle bound and the protocol partition number. In this case, the gap is
also smaller as CP (R′) = 6 and CD(R′) = 5.

The communication matrix discussed in the above proof is monotone and re-
stricted. We can give an example of a non-monotone and whole communication
matrix with the gap between the rectangle bound and the protocol partition
number. Laplante, Lee and Szegedy [10] defined a 4-bit Boolean function fA
called Ambainis’ function following a similar construction of Ambainis [1]. (See
[10] and [4] for more detailed treatment of Ambainis’ function.) It outputs 1 when
x1 ≤ x2 ≤ x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4. In Figure 3, we write the whole com-
munication matrix RfA

of Ambainis’ function. We can prove LP(RfA
) ≥ 8 by

assigning a weight 1
2 for each cell whose number of indices is 1 and a weight 0 oth-

erwise. In Figure 4, we show an upper bound of its rectangle bound CD(RfA
) ≤ 8.

(Distinct numbers and numbers with apostrophe represent distinct monochro-
matic rectangles.) Thus, any rectangle bound based techniques cannot improve
the LP bound. On the other hand, we know a smallest formula of size 10 for
Ambainis’ function as

((x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ ¬x4) ∨ ((¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ x4).

Thus, L(fA) = CP (RfA
) ≤ 10. To the best of our knowledge, the quasi-additive

bound is the first generic technique which can prove the matching lower bound
L(fA) ≥ QA(RfA

) ≥ 10.



0100 0010 1010 0110 1001 0101 1101 1011

0000 2 3 1,3 2,3 1,4 2,4 1,2,4 1,3,4

1000 1,2 1,3 3 1,2,3 4 1,2,4 2,4 3,4

1100 1 1,2,3 2,3 1,3 2,4 1,4 4 2,3,4

1110 1,3 1,2 2 1 2,3,4 1,3,4 3,4 2,4

0001 2,4 3,4 1,3,4 2,3,4 1 2 1,2 1,3

0011 2,3,4 4 1,4 2,4 1,3 2,3 1,2,3 1

0111 3,4 2,4 1,2,4 4 1,2,3 3 1,3 1,2

1111 1,3,4 1,2,4 2,4 1,4 2,3 1,3 3 2

Fig. 3. The Communication Matrix of Ambainis’ function

0100 0010 1010 0110 1001 0101 1101 1011

0000 2 3 3 2 1’ 2 2 1’

1000 1 3 3 1 4’ 4’ 4’ 4’

1100 1 3 3 1 4’ 4’ 4’ 4’

1110 1 2’ 2’ 1 2’ 3’ 3’ 2’

0001 2 3 3 2 1’ 2 2 1’

0011 4 4 4 4 1’ 3’ 3’ 1’

0111 4 4 4 4 1’ 3’ 3’ 1’

1111 1 2’ 2’ 1 2’ 3’ 3’ 2’

Fig. 4. An Upper Bound 8 for the Rectangle Bound of Ambainis’ function

5 Applying Sherali-Adams’ Method to the LP Bound

In this section, we strengthen the technique of Karchmer, Kushilevitz and Nisan [6]
by a lift and project technique of Sherali and Adams [16, 17]. While it is upper-
bounded by the rectangle bound, it is worthwhile to introduce because it has a
similar structure with the quasi-additive bound. So, a solution for the Sherali-
Adams bound may be useful to give a solution for the quasi-additive bound.

We write P vM when all monochromatic rectangles in P ⊆M are disjoint.
We also write r⊥P when a monochromatic rectangle r does not intersect any
monochromatic rectangle in P . Let C be the set of all defined cells, M be the set
of all monochromatic rectangles and ZP be a variable associated with a set of
disjoint monochromatic rectangles P in M . Now, we apply the lift and project
technique to the LP-relaxation of the rectangle bound. The primal problem is
written as follows.

min
∑
r∈M

Z{r}

s.t.
∑

r:c∈r⊥P

ZP∪{r} = ZP , (for each c ∈ C and each P vM s.t. c 6∈
⋃
r∈P

r)

ZP ≥ 0, (for each P vM)
Z∅ = 1.



This is a simple modification of Sherali and Lee [18], which discuss the set
partition polytope in general. The dual problem is written as follows.

max
∑
c∈C

Wc,∅

s.t.
∑
c∈r

Wc,∅ −
∑
c6∈r

Wc,{r} ≤ 1, (for each r ∈M)∑
r∈P

∑
c∈r

Wc,P\{r} −
∑
r∈P

∑
c6∈r

Wc,P ≤ 0. (for each P vM s.t. |P | > 1)

Note that Wc,P is defined only when P v R and c 6∈
⋃
r∈P

r.

From the theory of Sherali and Adams [16, 17] and Sherali and Lee [18],
giving the optimal solution for this dual problem shows the rectangle bound of
the corresponding relation.

Definition 8 (Sherali-Adams Bound). We define SAh(R) as the optimal
value of the h-th level of the Sherali-Adams relaxation associated with R, which
corresponds to the restriction of Wc,P = 0 where |P | > h.

If we restrict the Sherali-Adams bound to the first level as SA1(R), we have
the following simplification of the dual problem by replacing Wc,∅ by Vc and
−Wc,{r} by Vc,r.

max
∑
c∈C

Vc

s.t.
∑
c∈r

Vc +
∑
c6∈r

Vc,r ≤ 1, (for each r ∈M)∑
c∈r1

Vc,r2 +
∑
c∈r2

Vc,r1 ≥ 0. (for each {r1, r2} vM)

Giving a feasible solution of the above formulation shows a lower bound for
the rectangle bound and hence formula size. Since CD(R) is upper-bounded by
the number of cells, we have the following theorem.

Theorem 7 ([16–18]).

∀R, LP(R) = SA0(R) ≤ SA1(R) ≤ · · · ≤ SA|C|(R) = CD(R).

6 A Triplet Argument for the Sherali-Adams and
Quasi-Additive Bounds

In this section, we introduce a general technique named a triplet argument for
giving a solution for the Sherali-Adams bound and the quasi-additive bound.
The technique is applicable for any relation. For the explanation, we look at the
3-bit majority function. A majority function MAJ2l+1 with 2l + 1 input bits
outputs 1 if the number of 1’s in the input bits is greater than or equal to l + 1
and 0 otherwise. Note that we know LP(RMAJ3) ≤ 4.5.



Proposition 1. SA1(RMAJ3) ≥ 5 and QA(RMAJ3) ≥ 5.

Proof. We consider a communication matrix of the 3-bit majority function whose
rows and columns are restricted to minterms and maxterms, respectively. We
consider a triplet (c1, c2, c3) composed of 3 cells. Here, in the case of the 3-bit
majority function, we consider a triplet of 3 cells each of which has 3 indices.

We firstly assume Vc,r = 0 for any c and r and change assignments of Vc,r (for
each triplet sequentially in general case) without violating the second constraints
of the Sherali-Adams bound and the quasi-additive bound in the following way.
If a combinatorial rectangle r contains 2 cells of the triplet, e.g., c2 and c3, we
increment Vc1,r by −2δ for the remaining 1 cell. If a combinatorial rectangle r
contains 1 cell of the triplet, e.g., c1, we increment Vc2,r and Vc3,r by δ for the
remaining 2 cells. In the case of 3-bit majority function, we set δ = 1

6 for the
triplet. Then, it is easy to verify the changes of assignments do not violate a con-
straint

∑
c 6∈r1 Vc,r1 +

∑
c6∈r2 Vc,r2 ≥ 0 for any 2 disjoint combinatorial rectangles

r1 and r2. We also have
∑
c6∈r(Vc,r−Vc,r1−Vc,r2) ≤ 0 for any combinatorial rect-

angle r and its arbitrary partition into r1 and r2. Thus, all the second constraints
cannot be violated.

We give a weight − 1
3 for each cell in the triplet and a weight 1 for each cell

from the other 6 cells with 1 index. Then, we can also verify the assignments
satisfies all the first constraints of the quasi-additive bound and the Sherali-
Adams bound. As a consequence, we have the lower bound of 5. ut

Combining the triplet argument explained in the above proof and the idea
of [20], we can prove the same lower bound L(MAJ2l+1) ≥ (l+1)2

1−ε(l) where ε(l) =
l2(l+1)

6·(2l+1
l ) as that of [20] for the majority function by both of the first level of the

Sherali-Adams bound and the quasi-additive bound.

7 Conclusions

In this paper, we introduced the novel general techniques proving formula size
lower bounds, the Sherali-Adams bound and the quasi-additive bound, as ex-
tensions of the LP bound of Karchmer, Kushilevitz and Nisan [6]. In particular,
we proved that the quasi-additive bound can surpass the rectangle bound by
the cross argument. We also showed that the quasi-additive and Sherali-Adams
bounds can cover a main part of techniques discussed in the previous paper [20]
by the triplet argument.
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