Polyhedral Computation 2010/10/1

Lecture 1
Professor: David Avis Scribe: Yuichi Yoshida

In this course, we study geometric objects such as points, lines, planes, hyperplanes,
polyhedra, and triangulations. Polyhedral computation studies algorithms working on
those objects. The dimension is not usually considered fixed. When the dimension is fixed
to two or three, this area is often called computational geometry.

In this first lecture, we study some examples for the two-dimensional case. Throughout
this lecture, we assume that there are no three points on a line.

1 Convex Hull

The first problem we consider is the convex hull problem. A polygon P is called convez

if every line segment between two vertices in P is also in P (Here, P includes both the

boundary and the interior of the polygon). For a set S of n points p,...,p, € R?, we

define the convezr hull of S as the smallest convex polygon containing S, more precisely
CH(S) = N P.

p: convex polygon,
PDS

See Fig. 1 for an example.

Figure 1: The convex hull of a point set S = {p1,...,p9}

The convex hull problem asks to compute C'H(S) from a set of points S. The output
could be given in two ways.

1. The extreme points of CH(S).
2. The edges of CH(S).

Let S be the point set depicted in Fig. 1. Then, {p1,ps,ps, 6, 07,8, P9} is one of the
possible answers for the first case, and {pips, psp7, P3P7, P6P9, P1P4, PaPs, PsPy} is one of
the possible answers for the second case.

It is clear that, if we are given the edges of CH(.S), we can compute the extreme points
of CH(S) in linear time. However, to get the edges from the unsorted vertex list requires

1-1



Q(nlogn) time. We prove this by reducing the sorting problem for integers to this problem
as follows.

Let X = {z1,...,2,} be a set of unsorted integers. Then, we generate a set of points
S ={(z;,z?) |i=1,...,n}. Consider CH(S). From the convexity of the function y = 22,
all points of S are extreme points of the convex hull. So problem (1) above is trivial, just
return S. Note that the edges in order around the polygon give a sorting of the set X.
Furthermore, given an unsorted edge list it is easy to obtain the edges of the convex hull in
order, by using a double linked list. Therefore getting an unsorted edge list of CH(.S) from
S is at least as hard as sorting X. See Fig. 2 for an example for the case X = {3,1,4,2,6}
and S ={(3,9),(1,1),(4,16),(2,4),(6,36)}.

30
20

10

0 1 2 3 45 6

Figure 2: Sorting via a convex hull.

Since we need Q(nlogn) time to sort n integers, we have the same lower bound to
compute the convex hull of n points.

2 Delaunay Triangulation

Next, we consider Delaunay triangulations. Let S be a set of points. A triangulation
of S is a subdivision of the convex hull of S into triangles in such a way that no two
triangles intersect and the set of vertices of the triangles coincides with S. A triangulation
is called satisfying the empty circle condition if, for every triangle in the triangulation, the
circumcircle of the triangle does not contain any other point of S in its interior (see Fig. 3
for an example). A triangulation satisfying the empty circle condition is called a Delaunay
triangulation (DT). Note that if we take n > 3 points on a circle, then any triangulation of
the n points is a DT, and so it is not unique. We can use lexicography to define a unique
DT, but for simplicity let us just assume for now that no four input points lie on a circle.

It is known that for every set of points S, there exists a Delaunay triangulation. (why?)
We can output CH(S) if we have the Delaunay triangulation of S since the Delaunay
triangulation contains the edge set of CH(SS).

3 Voronoi Diagram

Finally, we consider Voronoi diagrams. Let S = {p1,...,pn} be a set of n points in
the plane. We define the distance between two points p = (z,,9,) and ¢ = (z4,Y4)

1-2



Figure 4: The Delaunay triangulation for a
Figure 3: Left: A triangulation satisfying the Point set S=A{p1,...,pe}-
empty circle condition. Right: A triangula-
tion not satisfying the empty circle condition.

as \/(zp — 2¢)? + (Yp — yg)?. Then, for each p;, we define a region V(p;) = {z € R? |
d(z,p;) < d(z,pj), 7 =1,...,n}. We note that the definition of V(p;) does not change
if we remove the square root from the distance function. We do this in practice as it
makes the calculations more numerically stable. In words, a point x in R? is contained
in V(p;) if p; is a closest point to = among the points in S. The decomposition of a
plane into V(p1),...,V(pn) is called a Voronoi diagram (see Fig. 5 for an example). Each
region V' (p;) is a (possibly unbounded) convex polygon. Note that the unbounded regions
correspond to points on the boundary of the convex hull. (why?) Also, the boundary
between V(P;) and V(P;) is a part of the bisector between p; and p;.

Figure 5: The Voronoi diagram for a point set S = {p1,...,ps}.

Consider the triangulation obtained by joining points p; and p; iff V(p;) and V(p;)
share an edge in common. We can see that the resulting triangulation coincides with the
Delaunay triangulation of S. (why?) Using terms of graph theory, the graph constructed
from boundaries of a Voronoi diagram is the dual of the graph constructed from a Delau-
nay triangulation. Thus, computing Voronoi diagrams and Delaunay triangulations are
equivalent. In particular, we can compute CH(S) if we have the Voronoi diagram of S.

In general, we cannot directly construct the Voronoi diagram of S from CH(S). How-
ever, there is a way to construct the Voronoi diagram from the convex hull of a 3-
dimensional polyhedron associated with S. This relation between convex hulls and Voronoi
diagrams can be extended to higher dimensions and we will study this in a later lecture.



