POLYHEDRAL COMBINATORICS (EXTENDED FORMULATIONS): EXERCISE SHEET 2

HANS RAJ TIWARY

Ex. 1: Let P, K and Q be three polytopes in \mathbb{R}^d such that $P \supseteq K \supseteq Q$. Define the slack matrix of P with respect to Q, denoted by S(P,Q), as follows: the (i, j)-th entry contains the slack of the *i*-th facet of P with the *j*-th vertex of Q. Let S(K) be slack matrix of K. Then prove that

$$\operatorname{cc}(S(K) \ge \operatorname{cc}(S(P,Q)$$

where cc(M) denotes the communication complexity of matrix M.

(**Hint:** Construct a protocol for S(P,Q) from that of S(K). Use facts like: vertices of Q can be represented as a convex combination of vertices of K.

Ex. 2: Let P_1, P_2 be two polytopes in \mathbb{R}^d . Give upper bounds on the extension complexity of the following polytopes in terms of that of P_1 and P_2 .

1

- $P_1 \cap P_2$
- $\operatorname{conv}(P_1 \cup P_2)$, where $\operatorname{conv}(S)$ denotes the convex hull of S.