POLYHEDRAL COMBINATORICS (EXTENDED FORMULATIONS): EXERCISE SHEET 1

HANS RAJ TIWARY

Ex. 1: Let $M_{1} \subset \mathbb{R}^{m_{1} \times d}$ and $M_{2} \subset \mathbb{R}^{m_{1} \times d}$ be non-negative matrices. Define matrix $M \subset \mathbb{R}^{\left(m_{1}+m_{2}\right) \times d}$ obtained by concatenating M_{1}, M_{2}. That is

$$
M=\binom{M_{1}}{M_{2}}
$$

Prove that $\operatorname{cc}(M) \leqslant \max \left\{\operatorname{cc}\left(M_{1}\right), \operatorname{cc}\left(M_{2}\right)\right\}+1$.
Ex. 2: Let P be a polytope and let Q be an extended formulation of P. Which of the following is true?
(1) $\mathrm{xc}(P) \leqslant \mathrm{xc}(Q)$
(2) $\mathrm{xc}(P)=\mathrm{xc}(Q)$
(3) $\mathrm{xc}(P) \geqslant \mathrm{xc}(Q)$

Why?
Ex. 3: Let P be a polytope and let F be a face of P. Prove that $\mathrm{xc}(F) \leqslant \mathrm{xc}(P)$.
(Hint: If $P \cap\left\{x \mid \alpha^{T} x=\beta\right\}$ is a face of P then what can you say about $Q \cap\left\{x \mid \alpha^{T} x=\beta\right\}$, where Q is an extended formulation of P ?)

