POLYHEDRAL COMBINATORICS (EXTENDED FORMULATIONS): EXERCISE SHEET 1

HANS RAJ TIWARY

Ex. 1: Let $M_1 \subset \mathbb{R}^{m_1 \times d}$ and $M_2 \subset \mathbb{R}^{m_1 \times d}$ be non-negative matrices. Define matrix $M \subset \mathbb{R}^{(m_1+m_2) \times d}$ obtained by concatenating M_1, M_2 . That is

$$M = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix}$$

Prove that $cc(M) \leq max \{cc(M_1), cc(M_2)\} + 1.$

Ex. 2: Let P be a polytope and let Q be an extended formulation of P. Which of the following is true?

(1) $\operatorname{xc}(P) \leq \operatorname{xc}(Q)$ (2) $\operatorname{xc}(P) = \operatorname{xc}(Q)$ (3) $\operatorname{xc}(P) \geq \operatorname{xc}(Q)$

Why?

Ex. 3: Let *P* be a polytope and let *F* be a face of *P*. Prove that $xc(F) \leq xc(P)$. (**Hint:** If $P \cap \{x \mid \alpha^T x = \beta\}$ is a face of *P* then what can you say about $Q \cap \{x \mid \alpha^T x = \beta\}$, where *Q* is an extended formulation of *P*?)

1