Exercises from Lecture 1

We formulated the asymetric travelling salesman problem as follows. Let *n* be the number of cities and a_{ij} be the distance from city *i* to city *j*, which is not necessarily the same as a_{ji} .

$$\max \sum_{1 \le i, j \le n} a_{ij} x_{ij}$$

s. t. $\sum_{j=1}^{n} x_{ij} = 1$ $i = 1, 2, ..., n$ (1)

$$\sum_{i=1}^{n} x_{ij} = 1 \quad j = 1, 2, \dots, n$$
(2)

$$\sum_{i,j\in S} x_{ij} \le |S| - 1, \quad S \subset \{1, 2, \dots, n\}, S \ne \emptyset$$
(3)

$$x_{ij} = 0/1 \quad 1 \le i, j \le n$$
 (4)

1. Prove that feasible solutions to (1)-(4) are travelling salesman tours and vice versa.

2. Using lp_solve, try to find a small problem for which the fractional solution (replace (4) by $0 \le x_{ij} \le 1$) is strictly smaller than the integer solution.

3. Find an efficient method to solve the fractional knapsack problem: max $c^T x$

s. t. $a^T x \le b$, $0 \le x \le 1$

for integer vectors a, c of length n and integer constant b.

4. Find a natural combinatorial problem for which the feasible solutions are those that satisfy (1),(2),(4) above.