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a b s t r a c t

In this paper, the computational performance of four different mixed integer programming (MIP)
formulations for various single machine scheduling problems is studied. Based on the computa-
tional results, we discuss which MIP formulation might work best for these problems. The results
also reveal that for certain problems a less frequently used MIP formulation is computationally
more efficient in practice than commonly used MIP formulations. We further present two sets of
inequalities that can be used to improve the formulation with assignment and positional date
variables.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Scheduling is motivated by questions that arise in production
planning, in balancing processes sent to compute nodes, in tele-
communication and generally in all situations in which scarce
resources have to be allocated to activities over time. Although
finding a feasible solution to a scheduling problem is often
easy, it is usually nontrivial to find an optimal solution to a
scheduling problem. In this paper, we approach scheduling
problems from the point of view of a practitioner who does
not have expertise in scheduling and integer programming. For-
mulating a problem as a mixed integer program (MIP) and
using the default settings of one of the commercially available
software to solve this model is the first thing that a practitioner
without an expertise in scheduling would do instead of using
problem specific algorithms. Therefore this paper is focused on
solving scheduling problems using mixed integer programming
formulations.

In this paper, we compare the computational performance
of different mixed integer programming (MIP) formulations
for different single machine scheduling problems. The MIP for-
mulations for scheduling problems are often classified based
on the choice of the decision variables. The different decision
variables used to distinguish four different MIP formulations in
this paper are: (i) completion time variables Balas (1985) (ii)
time index variables Sousa and Wolsey (1992) (iii) linear
ordering variables Dyer and Wolsey (1990) and (iv) assign-
ment and positional date variables Lasserre and Queyranne
(1992). Queyranne and Schulz (1994) give a comprehensive
ll rights reserved.
survey of these MIP formulations. We complement this paper
by comparing the computational performances of these
formulations.

We study various single machine problems, where n jobs are
processed through one machine and there is no preemption al-
lowed while processing the jobs. Let pj, dj, wj, rj, Cj and Sj be the pro-
cessing time, due date, weight, release date, completion time and
start time of job j, respectively. We define N 2 {1, 2, . . . ,n} as the
set of the jobs. The lateness of job j, Lj, is defined as Lj = Cj � dj

and the tardiness of job j, Tj, is defined as Tj = max{Cj � dj,0}. A bin-
ary variable Uj is defined to count the number of tardy jobs such
that Uj is equal to 1 if job j is tardy, i.e. Cj > dj and 0 otherwise.
The objective functions that are studied in this paper are total
weighted completion time ½

P
wjCj�, maximum lateness [Lmax],

number of tardy jobs ½
P

Uj� and total weighted tardiness
½
P

wjTj�. In the scheduling notation of Graham, Lawler, Lenstra,
and Rinnooy Kan (1979), the problems studied in this paper are de-
noted as 1jj

P
wjcj; jj

P
Lmaxjj;1jj

P
Uj;1jj

P
wjTj;1jrjj

P
wjCj;

1jrjj
P

Lmax;1jrjj
P

Uj and 1jrjj
P

wjTj.
Three out of the eight single machine problems that we study

are solvable in polynomial time by well known algorithms: WSPT
(weighted shortest processing time first) for total weighted compe-
tition time Smith (1956), EDD (earliest due date) for maximum
lateness Jackson (1955) and Moore’s algorithm for number of tardy
jobs Moore (1968). However with the release date constraints,
these problems become NP-hard Lenstra, Rinnooy Kan, and Bruc-
ker (1977), Kise, Ibaraki, and Mine (1978). The total weighted tar-
diness problem is NP-hard with and without the release dates
Lawler (1977). We wanted to get a wider understanding of the
computational efficiencies and behavior of different MIP formula-
tions and therefore we also considered some easy problems as well
as the harder problems.
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Table 1
Previous research on formulations for single machine scheduling problems

Performance
measure

Different MIP formulations

(1) Completion time variables (2) Time index variables (3) Linear ordering variables (4) Assignment and
positional date
variablesP

wjCj Balas (1985), Queyranne and
Wang (1991), Queyranne
(1993), Queyranne and Schulz
(1994)

Abdul-Razaq et al. (1990), Queyranne and
Schulz (1994), Šorić (2000), Sousa and
Wolsey (1992), van den Akker et al. (1999)

Blazewicz et al. (1991), Chudak and Hochbaum
(1999), Dyer and Wolsey (1990), Potts and Van
Wassenhove (1983), Queyranne and Schulz (1994)

Lasserre and
Queyranne (1992),
Queyranne and
Schulz (1994)

Lmax Blazewicz et al. (1991)P
Uj Queyranne and Schulz (1994) Dauzère-Pérès

(1997), Dauzère-
Pérès and Sevaux
(2003)P

wjTj Khowala et al. (2005),
Queyranne (1993)

Abdul-Razaq et al. (1990), Khowala et al.
(2005), Queyranne and Schulz (1994)

Khowala et al. (2005), Blazewicz et al. (1991) Khowala et al. (2005)
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2. MIP formulations

This section lists the four different MIP formulations used to
model single machine scheduling problems.

2.1. Completion time variables [F1]

In the first MIP formulation we use completion time variable,
Cj, to model the problems. We also introduce a binary variable,
yjk, which is equal to 1 if job j is processed before job k and
equal to 0 otherwise. The constraints of the MIP formulation
with completion time variables are given below. These con-
straints could also be written in terms of the start time
variables.

Cj P pj 8j 2 N; ð1:1Þ
Cj þ pk 6 Ck þMð1� yjkÞ for j; k 2 N and j < k; ð1:2Þ
Ck þ pj 6 Cj þMyjk for j; k 2 N and j < k; ð1:3Þ
Cj P 0 8j 2 N; ð1:4Þ
yjk 2 f0;1g 8j; k 2 N and j < k: ð1:5Þ
Table 2
Results for single machine total weighted completion time problem 1jj

P
wjCj for P = U [1

Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved in
1 h

Average
number
of nodes

Number of test cas
for optimal solutio
computation time,

Completion time
variables [F1]

20 0 1882569 0
40 0 395559 0
60 0 172588 0

100 0 45430 0

Time index
variables [F2]

20 0 0 3 [41.14]
40 0 0 3 [478.9]
60 0 0 3 [1926.48]

100 3 0 0

Linear ordering
variables [F3]

20 0 0 3 [0.1]
40 0 0 3 [1.09]
60 0 0 3 [4.25]

100 0 0 3 [22.92]

Positional &
assignment
variables [F4]

20 0 2813399 0
40 0 475664 0
60 0 164150 0

100 0 1108 0
Constraint set (1.1) ensures that the completion time of each job is
greater than or equal to its processing time. Constraint sets (1.2)
and (1.3) are disjunctive constraints which enforce that either job
j is processed before job k or job k is processed before job j for
any pair of jobs. Further, constraint sets (1.4) and (1.5) are the
non-negativity and integrality constraints. In this formulation, the
value of big M is generally taken to be equal to the sum of the pro-
cessing times of all jobs. For the problems with release dates, the
value of M is taken to be greater than the sum of processing time
of all the jobs and the maximum value of the release date for all
the jobs.

The objective function for minimizing the total weighted com-
pletion time can be written as

Pn
j¼1wjCj. The problem of minimiz-

ing the maximum lateness can be modeled by minimizing LMAX as
the objective function and adding the following constraints to
(1.1)–(1.5):

LMAX P ðCj � djÞ 8j 2 N: ð1:6Þ

The problem of minimizing the number of tardy jobs is formulated
by minimizing

Pn
j¼1Uj as the objective function and adding the fol-

lowing constraints to (1.1)–(1.5):
, 100]

es solved
n [Avg.
seconds]

Number of test cases unsolved in
1 h

Number of time optimal or best
feasible solution obtained
compared to other formulations

Test cases
with no
integer
solution

Test cases with some
integer solution
[Avg. optimality gap]

0 3 [60.78%] 0
0 3 [88.23%] 0
0 3 [93.41%] 0
0 3 [96.79%] 0

0 0 3
0 0 3
0 0 3
3 0 0

0 0 3
0 0 3
0 0 3
0 0 3

0 3 [87.73%] 0
0 3 [98.20%] 0
0 3 [99.25%] 0
3 0 0



Table 3
Results for single machine maximum lateness problem 1jj

P
Lmax for P = U [1, 100]

Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved
in 1 h

Average
number of
nodes

Number of test cases solved
for optimal solution [Avg.
computation time, seconds]

Number of test cases unsolved in
1 h

Number of time optimal or
best feasible solution
obtained compared to
other formulations

Test cases
with no
integer
solution

Test cases with some
integer solution
[Avg. optimality gap]

Completion time
variables [F1]

20 0 1938442 5 [2.93] 0 13 [344.84%] 16
40 0 559034 4 [5.29] 0 14 [276.4%] 14
60 0 213123 3 [62.77] 0 15 [341.40%] 10

100 0 41459 0 1 17 [243.97%] 9

Time index
variables [F2]

20 0 269 6 [767.6] 3 9 [147.54%] 6
40 12 4 3 [413.6] 15 0 3
60 18 0 0 18 0 0

100 18 0 0 18 0 0

Linear ordering
variables [F3]

20 0 192698 6 [0.18] 0 12 [156.16%] 18
40 0 232 6 [557.4] 12 0 6
60 0 2 3 [239.1] 15 0 3

100 16 0 0 18 0 0

Positional & assignment
variables [F4]

20 0 259094 17 [6.7] 0 1 [34.41%] 18
40 0 623075 10 [40.52] 0 8 [149.73%] 12
60 0 382129 6 [30.66] 0 12 [87.40%] 8

100 0 86241 7 [261.93] 0 11 [102.20%] 12
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Cj 6 dj þMUj 8j 2 N; ð1:7Þ
Uj 2 f0;1g 8j 2 N: ð1:8Þ

The problem of minimizing the total weighted tardiness is formu-
lated by minimizing the

Pn
j¼1wjTj as the objective function and add-

ing the following constraints to (1.1)–(1.5):

Tj P Cj � dj 8j 2 N; ð1:9Þ
Tj P 0 8j 2 N: ð1:10Þ

To complete the formulation using completion time variables for
the problems with the release date constraints, the Eq. (1.1) is re-
placed by

Cj P pj þ rj 8j 2 N: ð1:11Þ

Balas (1985) presented the first work on formulating scheduling
problems using disjunctive constraints. This MIP formulation is
also studied by Queyranne and Wang (1991) and Queyranne
(1993).

2.2. Time index variables [F2]

In the time index variables formulation, the planning horizon is
discretized into the periods 1, 2, 3, . . .T, where period t starts at
time t � 1 and ends at time t. We introduce a binary time index
variable, xjt, which is equal to 1 if job j starts at time t and is equal
to 0 otherwise. The constraints of the MIP formulation with time
index variables are as follows:

XT�pjþ1

t¼1
xjt ¼ 1 8j 2 N; ð2:1Þ

Xn

j¼1

Xt

s¼maxð0;t�pjþ1Þ
xjs 6 1 t ¼ 1; . . . ; T; ð2:2Þ

xjt 2 f0;1g 8j 2 N; t ¼ 1; . . . ; T: ð2:3Þ

The first constraint set (2.1) enforces that each job can start only at
exactly one particular time and the second constraint set (2.2) en-
sures that at any given time at most one job can be processed. Con-
straint set (2.3) states the integrality restriction. T assumes a value
greater than the sum of processing times of all the jobs. For the
problems with release dates, T assumes a value greater than the
sum of processing time of all the jobs and the maximum value of
the release date for all the jobs. Using the time index variables,
the completion time of a job j can be written as

Cj ¼
XT�pjþ1

t¼1

ðt � 1þ pjÞxjt 8j 2 N: ð2:4Þ

The objective function is

minimize
Xn

j¼1

XT�pjþ1

t¼1

njtxjt ;

where

njt ¼ wjðt � 1þ pjÞ 8j 2 N; t ¼ 1; . . . ; T; ð2:5Þ

if we are minimizing the total weighted completion time;

njt ¼
1; if t > ðdj � pj þ 1Þ; 8j 2 N; t ¼ 1; . . . ; T;

0; otherwise;

�
ð2:6Þ

if we are minimizing the number of tardy jobs; and

njt ¼ wj max½0; t � 1þ pj � dj� 8j 2 N; t ¼ 1; . . . ; T; ð2:7Þ

if we are minimizing the total weighted tardiness. Note that for
all these problems we do not need any additional variables or
constraints.

The problem of minimizing the maximum lateness can be mod-
eled by minimizing LMAX as the objective function and adding the
constraint (1.6) by substituting Cj from (2.4).

To complete the formulation using time index variables for the
problems with the release date constraints, we set xjt = 0 for t 6 rj,
"j 2 N.

Time index variables formulation was introduced by Sousa and
Wolsey (1992) for non-preemptive single machine scheduling
problems. van den Akker, van Hoesel, and Savelsbergh (1999)
and Šorić (2000) later studied this formulation for different ma-
chine settings and objective functions.

2.3. Linear ordering variables [F3]

This formulation is based on binary linear ordering variables, djk,
which are equal to 1 when job j precedes job k and equal to 0,



Table 4
Results for single machine number of tardy jobs problem 1jj

P
Uj for P = U [1, 100]

Formulation Number
of jobs

Number of runs where
LP relaxation cannot be
solved in 1 h

Average
number
of nodes

Number of test cases solved for
optimal solution [Avg.
computation time, seconds]

Number of test cases unsolved in 1 h Number of time optimal or best
feasible solution obtained
compared to other formulations

Test cases
with no
integer
solution

Test cases with some
integer solution [Avg.
optimality gap]

Completion
time
variables
[F1]

20 0 1988581 7 [2.15] 0 11 [92.42%] 15
40 0 701762 0 0 18 [91.23%] 0
60 0 189275 0 0 18 [90.30%] 0

100 0 24792 0 0 18 [93.82%] 7

Time index
variables
[F2]

20 0 2 18 [19.74] 0 0 18
40 0 4 17 [414.8] 0 1 [38.03%] 18
60 0 2 12 [995.2] 2 4 [38.43%] 16

100 13 0 0 18 0 0

Linear
ordering
variables
[F3]

20 0 46699 8 [0.39] 0 10 [72.45%] 17
40 0 131 8 [21.3] 0 10 [93.49%] 8
60 4 2 6 [362.6] 4 10 [98.32%] 6

100 16 0 0 16 2 [10.00%] 0

Positional &
assignment
variables
[F4]

20 0 620506 16 [165.13] 0 2 [100.00%] 18
40 0 556003 8 [3] 1 9 [86.72%] 12
60 0 308130 4 [62.6] 6 10 [79.83%] 8

100 0 78154 2 [158] 7 9 [79.04%] 11
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otherwise. The constraints of the MIP formulation with linear
ordering variables are as follows:

djk þ dkj ¼ 1 1 6 j 6 k 6 n; ð3:1Þ
djk þ dkl þ dlj 6 2 j; k; l 2 N and j–k–l; ð3:2Þ
djk 2 f0;1g 8j; k 2 N: ð3:3Þ

Constraint set (3.1) is a set of conflict constraints, which ensure
that either job j is processed before job k or job k is processed
before job j. Constraint set (3.2) represents the transitivity con-
straints that ensure a linear order between three jobs. Constraint
set (3.3) states the integrality restriction. Using linear ordering
variables, the completion time of job j can be written as shown
in constraint set (3.4) and holds only if all the release dates are
equal to zero.

Cj ¼
X
k 2 N

k–j

pkdkj þ pj 8j 2 N:
ð3:4Þ
Table 5
Results for single machine total weighted tardiness problem 1jj

P
wjTj for P = U [1, 100]

Formulation Number
of jobs

Number of runs where
LP relaxation cannot be
solved in 1 h

Average
number
of nodes

Number of test cases solv
optimal solution [Avg.
computation time, second

Completion
time
variables
[F1]

20 0 1773223 6 [277.7]
40 0 646424 0
60 0 295818 0

100 0 47623 0

Time index
variables
[F2]

20 0 2186 16 [584.2]
40 0 1118 7 [408]
60 1 30 5 [874.45]

100 16 0 0

Linear
ordering
variables
[F3]

20 0 97658 10 [200]
40 0 645 7 [630.3]
60 1 289 4 [1318]

100 13 32 0

Positional &
assignment
variables
[F4]

20 0 839441 15 [316.9]
40 0 525773 5 [195.2]
60 0 185670 2 [154.78]

100 0 9229 0
The objective function for minimizing the total weighted comple-
tion time can be written as

P
j; k 2 N
k–j

wjpkdkj þ
P

j2Nwjpj. The MIP for-

mulations for the other three objectives can be obtained by
substituting Cj from (3.4) into the constraints (1.6), (1.7) and (1.9),
and adding them to (3.1)–(3.3).

To formulate the problems with release date constraints using
linear ordering variables, we arrange the jobs in non increasing or-
der of the release dates and add the following constraints (3.5) and
(3.6) (Nemhauser & Savelsbergh, 1992 can be referred for extra
details).

Sj P ridij þ
X

k<i;k–j

pkðdik þ dkj � 1Þ þ
X

kPi;k–j

pkdkj 8i; j 2 N; ð3:5Þ

djj ¼ 1; 8j 2 N: ð3:6Þ

Further to formulate the various objective functions:P
wjCj; Lmax;

P
Uj and

P
wjTj with release date constraint, the term
ed for

s]

Number of test cases unsolved in 1 h Number of time optimal or best
feasible solution obtained
compared to other formulations

Test cases
with no
integer
solution

Test cases with some
integer solution [Avg.
optimality gap]

0 12 [97.60%] 6
0 18 [92.77%] 0
9 9 [99.88%] 0
9 9 [100.00%] 3

0 2 [4.89%] 16
0 11 [10.26%] 14
5 8 [48.70%] 9

18 0 0

0 8 [65.37%] 16
11 0 7
12 2 [1.26%] 6
17 1 [1.47%] 1

0 3 [44.65%] 16
0 13 [83.42%] 6
0 16 [87.46%] 8

11 7 [100.00%] 6



Table 6
Results for 1jj

P
wjCj and 1jj

P
Lmax for P = U [1, 10]

Problem Formulation Number
of jobs

Number of runs
where LP
relaxation cannot
be solved in 1 h

Average
number
of nodes

Number of test cases
solved for optimal
solution [Avg.
computation time,
seconds]

Number of test cases unsolved
in 1 h

Number of time optimal or
best feasible solution
obtained compared to other
formulations

Test cases
with no
integer
solution

Test cases with
some integer
solution [Avg.
optimality gap]

1jj
P

wjCj Does not
matter as this is
not a due date
based objective

Time index
variables
[F2]

20 0 0 3 [0.21] 0 0 3
40 0 0 3 [1.69] 0 0 3
60 0 0 3 [7.67] 0 0 3

100 0 0 3 [38.3] 0 0 3
Positional &
assignment
variables
[F4]

20 0 2484222 0 0 3 [88.48%] 0
40 0 433311 0 0 3 [98.51%] 0
60 0 119325 0 1 2 [98.84%] 0

100 0 1150 0 3 0 0

1jj
P

Lmax L = {0.5},
R = {0.4, 0.8, 1.4}

Time index
variables
[F2]

20 0 129961 7 [23.14] 0 2 [75.26%] 9
40 0 5548 8 [698.48] 0 1 [2.5%] 9
60 0 1919 3 [839.74] 5 1 [105.21%] 3

100 0 107 1 [475.35] 6 2 [0.95%] 3
Positional &
assignment
variables
[F4]

20 0 895025 8[112.10] 0 1[2.70%] 9
40 0 747097 4[5.96] 0 5[78.61%] 7
60 0 163658 6[17.71] 0 3[110.20%] 6

100 0 111947 4[332.215] 0 5[80.64%] 6
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Pk–j
k2Npkdkj is replaced by Sj from the objective function and the

inequalities.
The linear ordering formulation was first introduced by Dyer

and Wolsey (1990). It was later studied by Blazewicz, Dror, and
Weglarz (1991), Nemhauser and Savelsbergh (1992) and Chudak
and Hochbaum (1999).

2.4. Assignment and positional date variables [F4]

In this formulation, we define binary assignment variables, ujk,
which are equal to 1 if job j is assigned to position k and are equal
to 0 otherwise. Further, we introduce positional date variables, ck,
which define the completion time of the job at position k. The con-
straints of the MIP formulation with assignment and positional
date variables are as follows:
Table 7
Results for 1jj

P
Uj and 1jj

P
wjTj for P = U [1, 10]

Problem Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved in
1 h

Average
number
of nodes

Number of te
solved for op
[Avg. compu
seconds]

1jj
P

Uj

L = {0.5},
R = {0.4,
0.8, 1.4}

Time index
variables
[F2]

20 0 0 9 [0.18]
40 0 3 9 [2.05]
60 0 10 9 [15.84]

100 0 31 9 [119.1]
Positional &
assignment
variables
[F4]

20 0 693528 7[1.00]
40 0 727446 2[22.43]
60 0 145725 5[44.18]

100 0 82411 1[92.81]

1jj
P

wjTj

L = {0.5},
R = {0.4,
0.8, 1.4}

Time index
variables
[F2]

20 0 65 9 [1.02]
40 0 31848 9 [255.4]
60 0 6568 9 [194.2]

100 0 37130 2 [633.74]
Positional &
assignment
variables
[F4]

20 0 1777692 4 [86.48]
40 0 799491 0
60 0 238139 0

100 0 8569 0
X
k 2 N

ujk ¼ 1 8j 2 N; ð4:1ÞX
j 2 N

ujk ¼ 1 8k 2 N; ð4:2Þ

c1 P
X

j

pjuj1 ð4:3Þ

ck P ck�1 þ
X

j

pjujk k ¼ 2; . . . ; N; ð4:4Þ

ck P 0 8k 2 N; ð4:5Þ
ujk 2 f0;1g 8j; k 2 N: ð4:6Þ

The constraint sets (4.1) and (4.2) ensure that a particular job is as-
signed exactly to one position and each position is assigned to ex-
actly one job. Constraint sets (4.3) and (4.4) give the completion
time of the job at position k. Constraint sets (4.5) and (4.6) are
the non negativity and integrality constraints, respectively.
st cases
timal solution
tation time,

Number of test cases unsolved in
1 h

Number of time optimal or
best feasible solution
obtained compared to other
formulations

Test cases
with no
integer
solution

Test cases with
some integer
solution [Avg.
optimality gap]

0 0 9
0 0 9
0 0 9
0 0 9
0 2[38.29%] 9
0 7[46.94%] 4
0 4[17.05%] 5
3 5[24.18%] 1

0 0 9
0 0 9
0 0 9
0 7 [2.67%] 9
0 5 [46.92%] 4
0 9 [85.70%] 0
0 9 [91.43%] 0
2 7 [98.65%] 0
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In the MIP formulation of minimizing maximum lateness, we
minimize LMAX as the objective function and add the following
constraints to (4.1)–(4.6):

LMAX P ck �
X

j

djujk

 !
8k 2 N; ð4:7Þ
where
P

jdjujk gives the due date of the job at position k. The prob-
lem of minimizing the number of tardy jobs is formulated by min-
imizing

Pn
k¼1Uk as the objective function and adding the following

constraint sets to (4.1)–(4.6):

ck 6
X

j

djujk þMUk 8k 2 N; ð4:8Þ

Uk 2 f0;1g 8k 2 N: ð4:9Þ

To define the objectives of total weighted completion time and
total weighted tardiness we need the completion time of the
job j; therefore we need the following inequalities to find the
completion time of job j. Constraint set (4.10) helps define the
lower bounds on Cj

Cj P ck �Mð1� ujkÞ 8j; k 2 N; ð4:10Þ
Cj P 0 8j 2 N: ð4:11Þ

Hence the objective of minimizing the total weighted completion
time can be formulated by minimizing

P
wjCj as the objective

function and adding the constraint sets (4.10) and (4.11) to
(4.1)–(4.6). The tardiness constraint sets (1.9) and (1.10) are
added along with the sets (4.10) and (4.11) to (4.1)–(4.6) to com-
plete the formulation for the objective of minimizing the total
weighted tardiness.

The formulation for the problems with release date constraints
using assignment and positional date variables can be completed
by adding the following inequality (4.12).

ck P
X

j

ðpj þ rjÞujk 8k 2 N: ð4:12Þ

The value of M is taken to be greater than the sum of the pro-
cessing times of all the jobs. For the problems with release dates,
the value of M is taken to be greater than the sum of processing
time of all the jobs and the maximum value of the release date
for all the jobs.

Lasserre and Queyranne (1992) introduced the formulation
using assignment and positional date variables for the single ma-
chine scheduling problems. Dauzère-Pérès (1997) and Dauzère-
Pérès and Sevaux (2003) later studied this problem for minimizing
the number of tardy jobs. A summary of the prior research done in
this area is presented in Table 1.

3. Computational comparison of the formulations

3.1. Data sets

We run our experiments for different set of parameters for all
of these four formulations. We adopt the idea of parameter
selection presented by Hariri and Potts (1983), Potts and Van
Wassenhove (1983, 1982), Abdul-Razaq, Potts, and Van Was-
senhove (1990).

For each job j, an integer processing time, pj, is generated
from uniform distribution [1, 100] and [1, 10] and an integer
weight wj is generated from the uniform distribution [1, 10].
The due date, dj, of job j is an integer generated from the uni-
form distribution [P(L � R/2),P(L + R/2)], where P is the sum of
processing times of all jobs and the two parameters L and R
are relative measures of the location and range of the distribu-
tion, respectively. The release date, rj, of job j is an integer gen-
erated from the uniform distribution [0, QP], where P is the sum
of processing times of all the jobs and the parameter Q defines
the range of the distribution. We choose L from the set
L 2 {0.5, 0.7}, R is chosen from the set R 2 {0.4, 0.8, 1.4}, and Q
is taken as 0.4, which makes the release date distribution range
to be [0, 0.4P]. We run 3 problem instances for each of the six
different combinations of L and R, generating a total of 18 runs
for each of the four different formulations for the problems. Also
we restrict our computation to L 2 {0.5} for the problems with
release dates, thus reducing from 18 to 9 runs for different for-
mulations. The number of jobs, n, is chosen from the set n 2 {20,
40, 60, 100}.

3.2. Results

The MIP formulations are modeled using AMPL and CPLEX 8.1
with default settings is used to solve the generated problem in-
stances. The experiments are run on a Linux distributed machine
with a 2.4 GHz processor and 1GB memory. The runs are termi-
nated after an hour of CPU time.

To compare the different formulations arising from the choice
of different variables, we look at the objective function value of
the LP relaxation, the number of nodes explored, the computa-
tional time for the problem instances for which the optimal solu-
tion is obtained within 1 h, the number of tests cases unsolved in
1 h, and the optimality gap for the instances that could not be
solved within 1 h. The formulations are also compared based on
the number of test instances in which either the optimal or the
best feasible solution (in case the optimal is not found by any for-
mulation) is obtained by each formulation.

The results obtained for total weighted completion time, maxi-
mum lateness, number of tardy jobs and total weighted tardiness
objectives when there are no release dates are presented in Tables
2–5, respectively.

For the
P

wjCj objective (see Table 2) without release dates
we test only three instances because the parameters L and R
are irrelevant as this objective is not due date based. For this
objective, F3 (formulation with linear ordering variables) per-
formed the best. It turns out that the LP relaxation of this for-
mulation reduces to the Weighted Shortest Processing Time
(WSPT) rule, which gives the optimal solution for this problem.
Hence even the test cases with 100 jobs were solved within
23 s. Similarly, F2 (formulation with time index variables) was
also able to provide the optimal solution at the root node, but
the computation time increased exponentially as the number
jobs increased and the test cases with 100 jobs were not solved
within 1 h of computational time. F1 (formulation with comple-
tion time variables) and F4 (formulation with assignment and
positional date variables) did not perform well for this problem.
These formulations were able to solve the LP relaxation much
faster but the bounds obtained were not tight enough to con-
verge to the optimal solution within 1 h of computational time.

The results obtained for the other three objectivesP
Lmax;

P
Uj and

P
wjTj

� �
without the release dates were similar.

The findings from the computations reported in Tables 3–5 are
summarized below:

� All formulations have difficulty as the number of jobs increases
(increase in the computational time).

� F1 and F2 do not produce optimal solutions as frequently as F3
and F4 when the number of jobs is increased. It is obvious that
F2 does not perform well because as the number of jobs
increases, we are not even able to solve the LP relaxation. F1
solves the LP relaxation faster, but that does not help us very
much as the bound is not tight.
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� F4 often finds a feasible solution, but the optimality gap is
higher than F3 because the lower bound obtained by the LP
relaxation of F4 is not as tight as the one for F3. Further, the
number of test instances unsolved with F3 is much higher than
with F4 when the number of jobs increases. This is because it
gets harder to solve the LP relaxation of F3 as the number of jobs
increases.

� Overall it is harder to solve the LP relaxations of F2 and F3 with
an increased number of jobs, though the bounds are tighter.
With F1 and F4, it is easier to solve the LP relaxations, but the
bounds are not very tight. Comparatively, the number of test
cases solved that have either the optimal solution or the best
feasible solution is much higher for F4 but usually with a large
optimality gap.

� F4 might be the choice of formulation for an expert in integer
programming because the LP relaxation of this formulation
can be solved faster and a larger number of nodes can be
Table 9
Results for single machine maximum lateness with release dates problem 1jrjj

P
Lmax for

Location &
range
parameters
for due date

Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved in
1 h

Average
number
of nodes

Number o
solved for
[Avg. com
seconds]

Q = {0.4},
L = {0.5},
R = {0.4,
0.8, 1.4}

Start time &
completion
time variables
[F1]

20 0 1739733 5 [576.98
40 0 479734 4 [644.59
60 0 213914 1 [42.95]

100 0 50020 1 [160.41
Time index
variables [F2]

20 0 1739 3 [129.67
40 2 3 4 [594.52
60 4 1 2 [2797.0

100 9 0 0
Linear
ordering
variables [F3]

20 0 43131 5 [325.57
40 0 40 1 [3180.6
60 2 1 0

100 8 0 0
Positional &
assignment
variables [F4]

20 0 937270 7 [10.74]
40 0 363343 3 [6.03]
60 0 281885 1 [59.46]

100 0 62686 3 [1118.7

Table 8
Results for single machine total weighted completion time with release dates problem 1jr

Location &
range
parameters
for due date

Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved in
1 h

Average
number
of nodes

Number o
solved for
[Avg. com
seconds]

Q = {0.4},
L = {0.5},
R = {0.4,
0.8, 1.4}

Start time &
completion
time variables
[F1]

20 0 2538467 0
40 0 648450 0
60 0 275931 0

100 0 85736 0
Time index
variables [F2]

20 0 455 9 [125.91
40 0 1305 1 [2421.0
60 0 72 0

100 9 0 0
Linear
ordering
variables [F3]

20 0 696 9 [21.68]
40 0 1335 0
60 0 27 0

100 3 1 0
Positional &
assignment
variables [F4]

20 0 1912557 0
40 0 273709 0
60 0 14563 0

100 0 356 0
explored in a fixed amount of time. This creates a potential to
use the recent advancements in integer programming literature
(e.g. branch and cut).

Based on our personal communication with Queyranne (2004),
we decided to make additional experiments, since the performance
of F2 is known to be highly influenced by the sum of the processing
times. An initial set of computational experiments was done on the
total weighted tardiness problem. The results of these experiments
are presented in Khowala, Keha, and Fowler (2005). In these exper-
iments the processing times are created from the discrete uniform
distribution [1, 10]. As expected, F2 was found to be much more
efficient with a lower range of processing times. This is because
the number of the variables of F2 is a function of the sum of the
processing times of the jobs and the LP relaxation is much easier
to solve when the sum of the processing times of the jobs is small.
But as the number of jobs increases, F2 was not able to give even a
P = U [1, 100]

f test cases
optimal solution
putation time,

Number of test cases unsolved
in 1 h

Number of time optimal or
best feasible solution
obtained compared to other
formulation

Test
cases
with no
solution

Test cases with
some integer
solution [Avg.
optimality gap]

] 0 4 [74.52%] 6
] 0 5 [62.84%] 4

0 8 [41.48%] 2
] 0 8 [46.59%] 5
] 2 4 [47.61%] 3
] 5 0 4
5] 7 0 2

9 0 0
] 0 4 [35.98%] 9
6] 7 1 [5.30%] 1

9 0 0
9 0 0
0 2 [58.93%] 9
0 6 [74.58%] 7
0 8 [56.21%] 6

7] 2 4 [89.38%] 4

jj
P

wjCj for P = U [1, 100]

f test cases
optimal solution
putation time,

Number of test cases unsolved
in 1 h

Number of time optimal or
best feasible solution
obtained compared to other
formulation

Test
cases
with no
solution

Test cases with
some integer
solution [Avg.
optimality gap]

0 9 [22.5%] 0
0 9 [41.25%] 0
0 9 [42.71%] 0
0 9 [50.50%] 9

] 0 0 9
5] 0 8 [1.78%] 5

0 9[5.80%] 9
9 0 0
0 0 9
0 9 [3.88%] 4
9 0 0
9 0 0
0 9 [88.57%] 0
0 9 [99.62%] 0
9 0 0
9 0 0



Table 10
Results for single machine number of tardy jobs with release dates problem 1jrjj

P
Uj for P = U [1, 100]

Location &
range
parameters
for due date

Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved in
1 h

Average
number
of nodes

Number of test cases
solved for optimal solution
[Avg. computation time,
seconds]

Number of test cases unsolved
in 1 h

Number of time optimal or
best feasible solution
obtained compared to other
formulation

Test
cases
with no
solution

Test cases with
some integer
solution [Avg.
optimality gap]

Q = {0.4},
L = {0.5},
R = {0.4,
0.8, 1.4}

Start time &
completion
time variables
[F1]

20 0 787690 7 [85.17] 0 2 [70.31%] 8
40 0 680070 1 [6.78] 0 8 [42.61%] 1
60 0 198345 0 0 9 [51.51%] 0

100 0 30535 0 0 9 [64.70%] 9
Time index
variables [F2]

20 0 7 9 [16.45] 0 0 9
40 0 7 9 [331.51] 0 0 9
60 0 4 6 [995.10] 0 3 [14.85%] 9

100 4 0 0 7 2 [79.82%] 0
Linear
ordering
variables [F3]

20 0 14431 6 [16.74] 0 3 [52.99%] 8
40 0 37 2 [19.43] 0 7 [78.21%] 2
60 1 0 0 9 0 0

100 9 0 0 9 0 0
Positional &
assignment
variables [F4]

20 0 2002975 2 [0.87] 0 7 [38.97%] 8
40 0 491760 0 2 7 [59.79%] 2
60 0 245978 0 6 3 [58.80%] 0

100 0 38335 0 6 3 [66.89%] 0
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feasible solution. It was also observed that F1 and F4 also perform
better with the lower range of processing times because the value
of big M in F1 and F4 depends on the sum of the processing times of
the jobs. However improvements for F4 were more than those for
F1. The performance of F3 was not affected by changing the range
of the processing times because the constraints of F3 do not con-
tain processing times.

We tested F2 and F4 to see the effect of reducing the processing
time range. We only tested the instances with L = 0.5 to reduce the
number of experiments. These results are presented in Tables 6
and 7. F2 is more efficient with lower ranges of processing times,
but as we increase the number of jobs (therefore the sum of the
processing times), the performance of F2 is reduced.

Further we conducted a similar series of experiments for these
four problems with release dates. We limit our experimentations to
9 runs for each formulation and each different number of jobs by
selecting L = 0.5. As mentioned earlier, the value of Q is selected as
0.4 to determine the range for the release dates. These results are pre-
sented in Tables 8–11. The findings from the computational results
can be summarized below for the problems with release dates:
Table 11
Results for single machine total weighted tardiness with release dates problem 1jrjj

P
wjT

Location &
range
parameters
for due date

Formulation Number
of jobs

Number of runs
where LP relaxation
cannot be solved in
1 h

Average
number
of nodes

Number o
solved for
[Avg. com
seconds]

Q = {0.4},
L = {0.5},
R = {0.4,
0.8, 1.4}

Start time &
completion
time variables
[F1]

20 0 2464169 2 [1694.8
40 0 836104 0
60 0 297155 0

100 0 72422 0
Time index
variables [F2]

20 0 5285 7 [74.35]
40 0 1890 3 [1434.4
60 0 296 0

100 9 0 0
Linear
ordering
variables [F3]

20 0 41777 6 [444.13
40 0 110 0
60 5 2 0

100 9 0 0
Positional &
assignment
variables [F4]

20 0 2366900 1 [21.93]
40 0 406505 0
60 0 122699 0

100 0 936 0
� F3 can no longer solve the LP relaxation for the
P

wjCj problem
when there are release dates.

� F1, F3 and F4 do not produce an optimal solution as frequently
as the F2 formulation for most of the problems (except for theP

Lmax, which we feel could also behave the same if we allowed
the computation to run longer than 1 h). F2 is either able to pro-
vide an optimal solution with an increasing larger number of
jobs (up to 60 jobs) or is within an optimality gap of 30%.

� F1 and F4 often find a feasible solution, but the optimality gap is
higher than F2, because the lower bound obtained by the LP relax-
ation of F1 and F4 are not as tight as the one obtained from F2.

� F3 also provides much tighter lower bounds compared to F1
and F4, but the LP relaxation is much harder to solve. For
most of the test instances F3 terminated without any
solution.

� The comparison of the quality of solution (comparing the
optimal or the best feasible solution) obtained from the
four formulations also indicates that F2 performs the best
and also the performance of F2 is better with increasing
number of jobs (except as noted above for

P
Lmax). The
j for P = U [1, 100]

f test cases
optimal solution
putation time,

Number of test cases unsolved
in 1 h

Number of time optimal or
best feasible solution
obtained compared to other
formulation

Test
cases
with no
solution

Test cases with
some integer
solution [Avg.
optimality gap]

3] 0 7 [61.86%] 2
0 9 [68.39%] 0
0 9 [71.82%] 0
0 9 [77.62%] 9
0 2 [4.68%] 8

5] 0 6 [8.47%] 9
0 9 [28.51%] 9
9 0 0

] 0 3 [12.38%] 9
9 0 0
9 0 0
9 0 0
0 8 [59.95%] 1
0 9 [96.17%] 0
1 8 [96.92%] 0
9 0 0



A.B. Keha et al. / Computers & Industrial Engineering 56 (2009) 357–367 365
increase in the efficiency of F2 after adding the release date
constraints can be attributed to the reduction in the time
index variables for these problems. The release data con-
straints forces the time index variables to be zero for the
values of t < rj.

� F2 should be the choice with the release date constraints for the
test cases we investigated.

4. Improved assignment and positional date formulation

The computational results presented in the subsequent sec-
tions and also in Khowala et al. (2005), suggested that the
bounds obtained from the formulations using time index vari-
ables and linear ordering variables were tighter than those from
the other formulations but the LP relaxations were harder to
solve, hence the branch and bound algorithm would not be able
to explore a large number of nodes given a fixed computational
time budget. On the other hand, the LP relaxation of the formu-
lation with assignment and positional variables was easy to
solve but the bounds were not tight enough to yield a better fea-
sible solution within a given computation time. Hence we fur-
ther studied this formulation and came up with two families
of valid inequalities that help in improving the lower bounds ob-
tained from this formulation. The first family of valid inequalities
will also help us to remove the big-M constraints given by (4.10)
and the second set of inequalities gives a better lower bound on
completion time variables. The inequalities assume that the jobs
are arranged in non decreasing order of the processing times, i.e.
0 6 p1 6 p26 . . .6pn.

For each j, k 2 N, we define pjk and qjk as

pjk ¼

Pk�1
l¼1 pl; if k 6 j;Pj�1
l¼1pl þ

Pk
l¼jþ1

pl; if k > j:

8><
>:

qjk ¼

Pn
l¼kþ1pl; if k P j;Pj�1
l¼k pl þ

Pn
l¼jþ1

pl; if k < j:

8><
>:

Note that pjk gives the minimum value the completion time of the
job at position k � 1 can take given that job j is at position k and
qjk gives the maximum value the sum of the processing times of
Table 12
Results for 1jj

P
wjCj and 1jj

P
wjTj for P = U [1, 10] with improved inequalities

Problem Formulation Number
of jobs

Average
number
of nodes

Number of test c
for optimal solut
computation tim

1jj
P

wjCj Does not
matter as this is not
a due date based
objective

Positional &
assignment
variables [F4]

20 2484222 0
40 433310 0
60 119324 0

100 1150 0
Positional &
assignment
variables (improved
formulation)

20 539638 0
40 40257 0
60 6373 0

100 9 0

1jj
P

wjTj L = {0.5},
R = {0.4, 0.8, 1.4}

Positional &
assignment
variables [F4]

20 1777692 4 [86.48]
40 799491 0
60 238139 0

100 8569 0
Positional &
assignment
variables (improved
formulation)

20 436811 6 [439.7]
40 98731 0
60 25570 0

100 651 0
the jobs that are positioned after the kth job can take given that
the job j is at position k.

Proposition 1. The inequality

Cj P ck �
Xk�1

l¼1

ajlujl þ
Xn

l¼kþ1

ajlujl 8j; k 2 N; ð4:13Þ

where

ajl ¼
qj;n�kþl; if l < k;

pj þ pj;l�k; if l > k;

(

is valid.

Proof. If ujk = 1, then the inequality reduces to Cj P ck which is
valid. If ujl = 1 for l < k then the inequality reduces to
Cj P ck � qj,n�k+l. The inequality is valid for this case because
cl P ck � qj,n�k+l from the definition of q0s. If ujl = 1 for l > k then
the inequality reduces to Cj P ck + pj,l�k + pj. The inequality is valid
for this case because cl P ck + pj,l�k + pj from the definition of
p0s. h

Also note that when ujk = 1 the inequality (4.13) forces Cj P ck,
therefore the inequalities given by (4.10) can be replaced by (4.13).

Proposition 2. For a job j 2 N, the inequality

Cj P pj þ
Xn

k¼2

pjkujk ð4:14Þ

is valid.

Proof. If the job j is at position k > 1 then ujk = 1 and (4.14)
becomes Cj P pj + pjk and is valid from the definition of p0jks. h
4.1. Computational performance of the improved formulation

Our findings so far, suggest F4 worked consistently well across
most of the problems without release dates. F4 could be improved
significantly for some problems by adding the new set of inequal-
ities described in the previous section. We conducted an additional
set of computational experiments by replacing the set of con-
straints in Eq. (4.10) by these two new set of inequalities (4.13)
and (4.14) for the 1jj

P
wjCj and 1jj

P
wjTj and problems. The
ases solved
ion [Avg.
e, seconds]

Number of test cases unsolved in
1 h

Number of time optimal or best
feasible solution obtained
compared to other
formulations

Test cases
with no
integer
solution

Test cases with
some integer
solution [Avg.
optimality gap]

0 3 [88.48%] 0
0 3 [98.51%] 3
1 2 [98.83%] 2
3 0 0
0 3 [6.15%] 3
2 1 [27.25%] 0
3 0 0
3 0 0

0 5 [46.92%] 4
0 9 [85.70%] 5
0 9 [91.43%] 4
2 7 [98.65%] 7
0 3 [35.65%] 8
0 9 [60.58%] 5
1 8 [69.29%] 5
9 0 0



Table 13
Results for 1jj

P
wjCj and 1jj

P
wjTjfor P = U [1, 100] with improved inequalities

Problem Formulation Number
of jobs

Average
number
of nodes

Number of test cases solved
for optimal solution [Avg.
computation time, seconds]

Number of test cases unsolved in
1 h

Number of time optimal or best
feasible solution obtained
compared to other
formulations

Test cases
with no
integer
solution

Test cases with
some integer
solution [Avg.
optimality gap]

1jj
P

wjCj Does not
matter as this is not
a due date based
objective

Positional &
assignment
variables [F4]

20 2813399 0 0 3 [87.73%] 1
40 475664 0 0 3 [98.20%] 1
60 164150 0 0 3 [99.25%] 0

100 1108 0 3 0 0
Positional &
assignment
variables (improved
formulation)

20 528710 0 0 3 [9.11%] 2
40 49645 0 0 3 [22.18%] 2
60 7734 0 0 3 [22.87%] 3

100 43 0 3 0 0
1jj
P

wjTj L = {0.5, 0.7},
R = {0.4, 0.8, 1.4}

Positional &
assignment
variables [F4]

20 839441 15 [316.9] 0 3 [44.65%] 16
40 525773 5 [195.2] 0 13 [83.42%] 7
60 185670 2 [154.78] 0 16 [87.46%] 8

100 9229 0 11 7 [100.00%] 7
Positional &
assignment
variables (improved
formulation)

20 778305 18 [216.25] 0 0 18
40 105692 6 [473.3] 0 12 [64.34%] 14
60 26871 2 [353.68] 3 13 [80.13%] 11

100 732 0 15 3 [100.00%] 1
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results are presented in Table 12 for the cases where the processing
times are from the discrete uniform distribution [1, 10], L = {0.5}
and R = {0.4, 0.8, 1.4} and in Table 13 for the cases where the pro-
cessing times are from the discrete uniform distribution [1, 100],
L = {0.5, 0.7} and R = {0.4, 0.8, 1.4}.

The results obtained for these two objectives had a similar pat-
tern, both for the original formulation as well as for the improved
formulation. The findings from the computational experiments re-
ported in Tables 12 and 13 are summarized below:

� The original formulation using the assignment and positional
variables for both of these problem solves the LP relaxation fas-
ter, but that does not help us very much as the bound is not tight
and the test instances end up with the optimality gaps between
50% and 100% in 1 h of computational time. For most of the test
cases the lower bounds generated by LP relaxations are equal to
zero. Also, the original formulation often finds a feasible solution
but the optimality gap is higher.

� After adding these two new classes of inequalities, the bounds
obtained were much tighter (for almost all of the test instances
the objective value of LP relaxation with improved formulation
was better), which helped in obtaining the optimal solutions
for larger number of test instances as well as reducing the opti-
mality gap to 5–20% range for

P
wjCj problem and to 35–85%

range for
P

wjTj problem.
� Table 14 shows the average percentage difference between the

objective values of the LP relaxation obtained for various num-
bers of jobs for

P
wjCj problem compared to the optimal solu-

tion. These averages for each particular number of jobs are for
three instances. Note that the objective values of the LP relax-
ations from the original formulation were zero for all the
instances for

P
wjCj.
Table 14
Results for 1jj

P
wjCj with P � U[1, 10] and P � U[1, 100]

Number of jobs Avg. optimality gap of the LP relaxation for
1jj
P

wjCj

P � U[1, 10] (%) P � U[1, 100] (%)

20 11.4 31.6
40 15.3 23.3
60 15.1 12.9

100 17.5 20.9
� It takes longer to solve the LP relaxation of the improved formu-
lation, but it provides a better bound. For most of the test
instances, the number of nodes explored is less with the
improved formulation. Since it takes longer to solve the LP relax-
ation of the improved formulation, the number of test cases with
no integer feasible solution is more for larger number of jobs.
The integer feasible solution could be achieved by providing
more computation time to the problem instances.

For some instances where a feasible solution can not be found
easily, primal heuristics could help us to find one easily. The frac-
tional optimal solution found at a node can be modified to satisfy
the integrality conditions. Suppose that at a node the solution
(u*,c*,C*) has at least one (j,k) pair such that ujk that is fractional.
We can sort the job indices in non-decreasing order of the comple-
tion time variables C*. These job indices will give us a feasible sche-
dule and an upper bound to the problem. Our preliminary
experiments showed that this primal heuristic gives solutions that
are either optimal or very close to the optimal after a few number
of nodes are explored. These results are not given here as the main
focus of this paper is to compare the formulations with default set-
tings of a commercial solver.

5. Conclusions and future work

In this paper, we have compared the computational perfor-
mance of four different formulations on single machine scheduling
problems with varying complexity. The performances of these for-
mulations very much depend on the objective function, number of
jobs and the sum of the processing times of all the jobs. F2 and F3
appear to be the most widely used formulations in the Integer Pro-
gramming and Scheduling literature and F4 appears to be the least
widely used. F1 often appears in textbooks and other literature that
simply formulate/describe the problem (not the solution method-
ology) and it clearly does not generally perform well in practice.

With F1 and F4, the LP relaxation is easy to solve and provides a
feasible solution easily. F2 and F3 have been preferred due to the
fact that they generally produce tighter bounds. However, we have
found that the LP relaxation of these formulations tends to be
much more difficult to solve. This is particularly true for F2 when
P (sum of processing time of all the jobs) is large. Therefore fewer
nodes of the branch and bound tree can be explored for a fixed
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computational budget. This limits one’s ability to explore recent
advancement in IP methodology (such as branch and cut). On the
other hand, the LP relaxation of F4 can be solved relatively quickly,
so this MIP formulation offers more promise for these new ad-
vanced techniques. In Section 4 we gave two simple families of
inequalities that improved the bounds obtained from the LP- relax-
ation. A more detailed polyhedral study would make this formula-
tion work better. We note that when P is small or with release date
constraints, F2 becomes the preferred formulation.

There was noticeable improvement in terms of achieving a bet-
ter bound (LP relaxation) and reduction in the optimality gap by
adding the new set of inequalities to F4 and removing the big-M
constraint. Further if we are able to trade off the solution quality
(in terms of reducing the optimality gap and obtaining better inte-
ger feasible solution) versus the computational time, this new for-
mulation will be preferred, as we can notice the improvement in
the solution quality.

We are aware that for most of the problems studied in this pa-
per problem specific algorithms have been proposed and they are
shown to be more effective than solving MIP formulations. But it
should be noted that these are problem specific algorithms and re-
quire expertise in coding and scheduling. Also these algorithms are
hard to modify for other problems in the same domain. The MIP
formulations studied in this paper on the other hand could be eas-
ily solved using commercial solvers and don’t require expertise in
scheduling or coding.

This paper is, as of our knowledge, the first paper that
compares the computational performances of these four MIP
formulations in the scheduling literature. As future research,
the MIP formulations can be compared with other additional
restrictions, such as precedence constraints, or for more com-
plex machine environments. F4 might be the choice of formu-
lation for an expert in integer programming because the LP
relaxation of this formulation can be solved faster and a larger
number of nodes can be explored in a fixed amount of compu-
tational time. This creates a potential to use recent advance-
ments found in the integer programming literature. Studying
the polyhedral structure of this formulation and using the valid
inequalities at a branch-and-cut algorithm is the subject of a
forthcoming paper.
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