Low-Distortion Embeddings of Metric Spaces

Yoshio Okamoto

Dept. Information and Computer Sciences, Toyohashi University of Technology

October, 2007

NHC Autumn School on Computational Geometry and Integer Programming

We want to do

Transform one metric space into another

□→ < □→</p>

э

э

Algorithmic applications

- Geometric approximation algorithms Closest pairs, Nearest neighbors, ...
- Combinatorial approximation algorithms Sparsest cuts, Multi-commodity flows, Bandwidths, ... (cf. J. Lee's NHC Workshop Talk)
- Inapproximability (integrality gap of SDP relaxation)
 Vertex covers, Unique game conjectures, ...
- On-line algorithms

Metrical task systems, ...

Streaming algorithms

• ...

Criteria

- efficiently
- into a space as low-dimensional as possible
- into a space as simple as possible
- without much distortion

Contents

- Introduction
- \bullet Embedding into ℓ_∞
- $\bullet \ \ Embedding \ \ into \ \ \ell_2$
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

Books

- "Lectures on Discrete Geometry" by Matoušek, Springer, 2002
- "Geometry of Cuts and Metrics" by Deza and Laurent, Springer, 1997

Surveys

- "Low-distortion embeddings of finite metric spaces" by Indyk and Matoušek, in "Handbook on Discrete and Computational Geometry," 2004
- "Algorithmic applications of low-distortion embeddings" by Indyk, FOCS 2001
- "Finite metric spaces—combinatorics, geometry and algorithms" by Linial, ICM 2002

Def.: metric space

A pair (X, μ) of a set X and a map $\mu \colon X \times X \to \mathbb{R}_+$ is called a metric space if

•
$$\mu(x,y) = 0 \Leftrightarrow x = y$$
,

•
$$\mu(x,y) = \mu(y,x)$$
 for all $x, y \in X$,

•
$$\mu(x,y) + \mu(y,z) \ge \mu(x,z)$$
 for all $x, y, z \in X$.

< ∃ > <

Def.: metric space

A pair (X, μ) of a set X and a map $\mu \colon X \times X \to \mathbb{R}_+$ is called a metric space if

•
$$\mu(x,y) = 0 \Leftrightarrow x = y$$
,

•
$$\mu(x,y) = \mu(y,x)$$
 for all $x, y \in X$,

•
$$\mu(x,y) + \mu(y,z) \ge \mu(x,z)$$
 for all $x, y, z \in X$.

Def.: finite metric space

A finite metric space is a metric space (X, μ) with X finite.

• Note: This is *different* from a discrete metric space.

Representing a finite metric space

By a matrix

	<i>x</i> ₁	<i>x</i> ₂	X3	<i>X</i> 4	<i>X</i> 5
<i>x</i> ₁	0	2	3	4	3
<i>x</i> ₂	2	0	4	2	1
<i>x</i> 3	3	4	0	2	5
<i>X</i> 4	4	2	2	0	3
<i>X</i> 5	3	1	5	3	0

The *i*, *j*-component represents $\mu(x_i, x_j)$.

Def.: normed spaces

A pair $(X, \|\cdot\|)$ of a vector space X on \mathbb{R} and a map $x \in X \mapsto \|x\| \in \mathbb{R}_+$ is called a normed space if

•
$$||x|| = 0 \Leftrightarrow x = 0$$
,

- $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$, $x \in X$,
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

Def.: normed spaces

A pair $(X, \|\cdot\|)$ of a vector space X on \mathbb{R} and a map $x \in X \mapsto \|x\| \in \mathbb{R}_+$ is called a normed space if

•
$$||x|| = 0 \Leftrightarrow x = 0$$
,

- $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$, $x \in X$,
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

Observation (or Exercise)

Given a normed space $(X, \|\cdot\|)$, we define $\mu \colon X \times X \to \mathbb{R}_+$ as

$$\mu(\mathbf{x},\mathbf{y}) = \|\mathbf{x}-\mathbf{y}\|.$$

Then, (X, μ) is a metric space.

 \therefore we may think of normed spaces as metric spaces.

Typical Norms: ℓ_p -Norms

Def.: ℓ_p -norms

Define $||x||_{p} \in \mathbb{R}_{+}$ for every $x \in \mathbb{R}^{d}$ as

$$||x||_{p} = \left(\sum_{i=1}^{d} |x_{i}|^{p}\right)^{1/p}$$

Then $(\mathbb{R}^d, \|\cdot\|_p)$ is a normed space, denoted by ℓ_p^d . This norm is called the ℓ_p -norm.

Def.: ℓ_p -norms

Define $||x||_{p} \in \mathbb{R}_{+}$ for every $x \in \mathbb{R}^{d}$ as

$$||x||_{p} = \left(\sum_{i=1}^{d} |x_{i}|^{p}\right)^{1/p}$$

Then $(\mathbb{R}^d, \|\cdot\|_p)$ is a normed space, denoted by ℓ_p^d . This norm is called the ℓ_p -norm.

FANs (frequently asked norms)

•
$$p = 1$$
: $\sum_{i=1}^{n} |x_i|$ (the Manhattan norm)
• $p = 2$: $\sqrt{\sum_{i=1}^{n} |x_i|^2}$ (the Euclidean norm)
• $p = \infty$: $\max_{i=1}^{n} |x_i|$ (the maximum norm)

Definition: Metrics on Graphs

G = (V, E) a finite undirected graph, connected $w \colon E \to \mathbb{R}_+$ an edge-weight function

Def.: shortest-path metrics

A pair (V, μ) is a shortest-path metric on G if $\mu(u, v)$ is the shortest-path distance between u & v on G w.r.t w.

Definition: Metrics on Graphs

G = (V, E) a finite undirected graph, connected $w \colon E \to \mathbb{R}_+$ an edge-weight function

Def.: shortest-path metrics

A pair (V, μ) is a shortest-path metric on G if $\mu(u, v)$ is the shortest-path distance between u & v on G w.r.t w.

Remark (or Exercise)

Every finite metric space is a shortest-path metric on a graph.

Definitions: Embedding and Distortion

$$(X,\mu)$$
, (Y,ν) two metric spaces

Def.: embeddings

An embedding of (X, μ) into (Y, ν) is a map $f: X \to Y$.

$$(X,\mu)$$
, $(Y,
u)$ two metric spaces, $D\geq 1$

Def.: D-embeddings

A *D*-embedding is an embedding $f: X \rightarrow Y$ s.t. $\exists r > 0, \forall x, y \in X$

$$r \cdot \mu(x,y) \leq \nu(f(x),f(y)) \leq D \cdot r \cdot \mu(x,y).$$

< ∃⇒

э

$$(X,\mu)$$
, $(Y,
u)$ two metric spaces, $D\geq 1$

Def.: D-embeddings

A *D*-embedding is an embedding $f: X \rightarrow Y$ s.t. $\exists r > 0, \forall x, y \in X$

$$r \cdot \mu(x,y) \leq \nu(f(x),f(y)) \leq D \cdot r \cdot \mu(x,y).$$

Def.: distortion

The distortion of an embedding f is $\inf\{D: f \text{ is a } D\text{-embedding}\}$.

< ∃ >

$$(X,\mu)$$
, $(Y,
u)$ two metric spaces, $D\geq 1$

Def.: *D*-embeddings

A *D*-embedding is an embedding $f: X \rightarrow Y$ s.t. $\exists r > 0, \forall x, y \in X$

$$r \cdot \mu(x, y) \leq \nu(f(x), f(y)) \leq D \cdot r \cdot \mu(x, y).$$

Def.: distortion

The distortion of an embedding f is $\inf\{D: f \text{ is a } D\text{-embedding}\}$.

Def.: isometry

An embedding is an isometry if its distortion is 1.

Def.: embedding into ℓ_p

An embedding into ℓ_p of a metric space (X, μ) is an embedding $(X, \mu) \rightarrow \ell_p^d$ for some finite d.

Note:

 We may also define the normed space ℓ_p, but it will be a bit subtle. We need to work around the infinity and convergence issues. Thus, we use ℓ_p just as a notational convenience. We are going to look at the following.

● Every n-point metric space can be isometrically embedded into l_∞. We are going to look at the following.

- Every n-point metric space can be isometrically embedded into l_∞.
- Every *n*-point metric space can be embedded into l₂ with distortion O(log n).

We are going to look at the following.

- Severy n-point metric space can be isometrically embedded into ℓ_∞.
- Every *n*-point metric space can be embedded into l₂ with distortion O(log n).
- There exists an *n*-point metric space that requires the distortion of Ω(log *n*) when embedded into ℓ₂.

Contents

- Introduction
- \bullet Embedding into ℓ_∞
- \bullet Embedding into ℓ_2
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

$$(X, \mu)$$
 a finite metric space

Theorem

 (X,μ) can be embedded into ℓ_∞ with distortion 1.

э

$$(X, \mu)$$
 a finite metric space

Theorem

 (X,μ) can be embedded into ℓ_∞ with distortion 1.

Proof Outline:

- Explicitly construct a particular embedding
- Prove that it is an isometry

Construction of an isometric embedding

$$(X, \mu)$$
 an *n*-point metric space; $X = \{x_1, \ldots, x_n\}$

Construction

Define a map $f: X \to \ell_{\infty}^n$ as

$$f(x)_i = \mu(x, x_i)$$

for every $x \in X$ and $i \in \{1, \ldots, n\}$

$$\begin{array}{ll} f(x_1) &= (0,2,3,4) \\ f(x_2) &= (2,0,4,2) \\ f(x_3) &= (3,4,0,2) \\ f(x_4) &= (4,2,2,0) \end{array}$$

< ∃ > <

The constructed f is an isometry.

Proof:

э

Proof of the isometry of f

Claim

The constructed f is an isometry.

Proof:

Proof of the isometry of f

Claim

The constructed f is an isometry.

Proof:

$$\|f(x_i) - f(x_j)\|_{\infty} = \max\{|f(x_i)_k - f(x_j)_k|: k \in \{1, \dots, n\}\}$$

Proof of the isometry of f

Claim

The constructed f is an isometry.

Proof:

$$\begin{aligned} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{|f(x_i)_k - f(x_j)_k| \colon k \in \{1, \dots, n\}\} \\ &\geq |f(x_i)_j - f(x_j)_j| \end{aligned}$$

The constructed f is an isometry.

Proof:

$$\begin{split} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{|f(x_i)_k - f(x_j)_k| \colon k \in \{1, \dots, n\}\}\\ &\geq |f(x_i)_j - f(x_j)_j|\\ &= |\mu(x_i, x_j) - \mu(x_j, x_j)| \end{split}$$

The constructed f is an isometry.

Proof:

$$\begin{aligned} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{\|f(x_i)_k - f(x_j)_k\| \colon k \in \{1, \dots, n\}\} \\ &\geq \|f(x_i)_j - f(x_j)_j\| \\ &= \|\mu(x_i, x_j) - \mu(x_j, x_j)\| \\ &= \mu(x_i, x_j). \end{aligned}$$

The constructed f is an isometry.

Proof:

No contraction

$$\begin{aligned} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{\|f(x_i)_k - f(x_j)_k\| \colon k \in \{1, \dots, n\}\} \\ &\geq \|f(x_i)_j - f(x_j)_j\| \\ &= \|\mu(x_i, x_j) - \mu(x_j, x_j)\| \\ &= \mu(x_i, x_j). \end{aligned}$$

No expansion

The constructed f is an isometry.

Proof:

No contraction

$$\begin{aligned} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{|f(x_i)_k - f(x_j)_k| \colon k \in \{1, \dots, n\}\} \\ &\geq |f(x_i)_j - f(x_j)_j| \\ &= |\mu(x_i, x_j) - \mu(x_j, x_j)| \\ &= \mu(x_i, x_j). \end{aligned}$$

• No expansion

$$\|f(x_i) - f(x_j)\|_{\infty} = |f(x_i)_k - f(x_j)_k|$$
 (for some k)

The constructed f is an isometry.

Proof:

No contraction

$$\begin{aligned} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{|f(x_i)_k - f(x_j)_k| \colon k \in \{1, \dots, n\}\} \\ &\geq |f(x_i)_j - f(x_j)_j| \\ &= |\mu(x_i, x_j) - \mu(x_j, x_j)| \\ &= \mu(x_i, x_j). \end{aligned}$$

• No expansion

$$\|f(x_i) - f(x_j)\|_{\infty} = |f(x_i)_k - f(x_j)_k|$$
 (for some k)
= $|\mu(x_i, x_k) - \mu(x_j, x_k)|$
Claim

The constructed f is an isometry.

Proof:

No contraction

$$\begin{aligned} \|f(x_i) - f(x_j)\|_{\infty} &= \max\{\|f(x_i)_k - f(x_j)_k\| \colon k \in \{1, \dots, n\}\} \\ &\geq \|f(x_i)_j - f(x_j)_j\| \\ &= \|\mu(x_i, x_j) - \mu(x_j, x_j)\| \\ &= \mu(x_i, x_j). \end{aligned}$$

No expansion

$$\|f(x_i) - f(x_j)\|_{\infty} = \|f(x_i)_k - f(x_j)_k\|$$
 (for some k)
= $\|\mu(x_i, x_k) - \mu(x_j, x_k)\|$
 $\leq \mu(x_i, x_j).$

Contents

- Introduction
- \bullet Embedding into ℓ_∞
- Embedding into ℓ_2
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

$O(\log n)$ -embeddability into ℓ_2

 (X, μ) an *n*-point metric space

Theorem (Bourgain '85)

 (X, μ) can be embedded into ℓ_2 with distortion $O(\log n)$.

★ ∃ ▶

$O(\log n)$ -embeddability into ℓ_2

 (X,μ) an *n*-point metric space

Theorem (Bourgain '85)

 (X, μ) can be embedded into ℓ_2 with distortion $O(\log n)$.

Proof Outline:

- Explicitly construct a particular embedding Some probability involved
- Prove that the distortion is $O(\log n)$

Construction of a low-distortion embedding

$$(X,\mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

Construction

• Construct $A \subseteq X$ at random as follows:

э

$$(X,\mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

- Construct $A \subseteq X$ at random as follows:
 - For each $j \in \{1, ..., q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$

$$(X,\mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

- Construct $A \subseteq X$ at random as follows:
 - For each j ∈ {1,..., q} construct A_j ⊆ X by sampling every point of X independently with prob. 1/2^j
 - Choose $j \in \{1, \dots, q\}$ uniformly at random

$$(X,\mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

- Construct $A \subseteq X$ at random as follows:
 - For each $j \in \{1, \ldots, q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$
 - Choose $j \in \{1, \dots, q\}$ uniformly at random

• Set
$$A = A_j$$

$$(X,\mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

- Construct $A \subseteq X$ at random as follows:
 - For each $j \in \{1, ..., q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$
 - Choose $j \in \{1, \dots, q\}$ uniformly at random

• Set
$$A = A_j$$

• Define a map
$$f: X o \ell_2^{2^n}$$
 as

$$f(x)_{S} = \sqrt{\Pr[S = A]} \ \mu(x, S)$$

for every $x \in X$ and $S \subseteq X$

$$(X, \mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

• Construct $A \subseteq X$ at random as follows:

- For each j ∈ {1,...,q} construct A_j ⊆ X by sampling every point of X independently with prob. 1/2^j
- Choose $j \in \{1, \dots, q\}$ uniformly at random

• Set
$$A = A_j$$

• Define a map
$$f \colon X o \ell_2^{2^n}$$
 as

$$f(x)_S = \sqrt{\Pr[S=A]} \ \mu(x,S)$$

for every $x \in X$ and $S \subseteq X$

Notation

$$\mu(x,S) = \min\{\mu(x,y) \colon y \in S\}$$

▲□ ► < □ ► </p>

No expansion of the constructed embedding

$$(X, \mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

Claim 1

The constructed f satisfies

$$\|f(x)-f(y)\|_2 \leq \mu(x,y)$$

for every $x, y \in X$

Proof: exercise

-

Logarithmically bounded contraction of the constructed embedding

$$(X, \mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

Claim 2

The constructed f satisfies

$$\mu(x, y) \leq 32q \|f(x) - f(y)\|_2$$

for every $x, y \in X$

Logarithmically bounded contraction of the constructed embedding

$$(X, \mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

Claim 2

The constructed f satisfies

$$\mu(x, y) \leq 32q \|f(x) - f(y)\|_2$$

for every $x, y \in X$

Note

The exact coefficient 32q is not important (it could be easily improved). It is only important that the coefficient is $O(\log n)$.

Logarithmically bounded contraction of the constructed embedding

$$(X,\mu)$$
 an *n*-point metric space; $q = \lfloor \log_2 n \rfloor + 1$

Claim 2

The constructed f satisfies

$$\mu(x, y) \leq 32q \|f(x) - f(y)\|_2$$

for every $x, y \in X$

Note

The exact coefficient 32q is not important (it could be easily improved). It is only important that the coefficient is $O(\log n)$.

Proof:

• Let's first look at some calculation

Notation

 $p_S = \Pr[S = A]$

$$\|f(x) - f(y)\|_2 = \sqrt{\sum_{S \subseteq X} |f(x)_S - f(y)_S|^2}$$

æ

《曰》 《圖》 《臣》 《臣》

Notation

 $p_S = \Pr[S = A]$

$$\|f(x) - f(y)\|_{2} = \sqrt{\sum_{S \subseteq X} |f(x)_{S} - f(y)_{S}|^{2}}$$
$$= \sqrt{\sum_{S \subseteq X} |\sqrt{p_{S}}\mu(x, S) - \sqrt{p_{S}}\mu(y, S)|^{2}}$$

æ

《曰》《聞》《臣》《臣》

Notation

 $p_S = \Pr[S = A]$

$$\begin{split} \|f(x) - f(y)\|_{2} &= \sqrt{\sum_{S \subseteq X} |f(x)_{S} - f(y)_{S}|^{2}} \\ &= \sqrt{\sum_{S \subseteq X} |\sqrt{p_{S}}\mu(x,S) - \sqrt{p_{S}}\mu(y,S)|^{2}} \\ &= \sqrt{\sum_{S \subseteq X} p_{S}|\mu(x,S) - \mu(y,S)|^{2}} \end{split}$$

æ

《口》 《聞》 《臣》 《臣》

Notation

 $p_S = \Pr[S = A]$

$$\|f(x) - f(y)\|_{2} = \sqrt{\sum_{S \subseteq X} |f(x)_{S} - f(y)_{S}|^{2}} \\ = \sqrt{\sum_{S \subseteq X} |\sqrt{p_{S}}\mu(x,S) - \sqrt{p_{S}}\mu(y,S)|^{2}} \\ = \sqrt{\sum_{S \subseteq X} p_{S}|\mu(x,S) - \mu(y,S)|^{2}} \\ = \sqrt{\sum_{S \subseteq X} p_{S}|\mu(x,S) - \mu(y,S)|^{2}} \sqrt{\sum_{S \subseteq X} p_{S}} \\$$

æ

《曰》《聞》《臣》《臣》

Notation

 $p_S = \Pr[S = A]$

$$\begin{aligned} \|f(x) - f(y)\|_{2} &= \sqrt{\sum_{S \subseteq X} |f(x)_{S} - f(y)_{S}|^{2}} \\ &= \sqrt{\sum_{S \subseteq X} |\sqrt{p_{S}}\mu(x,S) - \sqrt{p_{S}}\mu(y,S)|^{2}} \\ &= \sqrt{\sum_{S \subseteq X} p_{S}|\mu(x,S) - \mu(y,S)|^{2}} \\ &= \sqrt{\sum_{S \subseteq X} p_{S}|\mu(x,S) - \mu(y,S)|^{2}} \sqrt{\sum_{S \subseteq X} p_{S}} \\ &\ge \sum_{S \subseteq X} p_{S}|\mu(x,S) - \mu(y,S)| \end{aligned}$$

Claim modified

Claim 2'

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \ge \frac{\mu(x,y)}{32q}$$

Proof idea:

 Try to show for "many" sets S ⊆ X there exists r_S s.t. μ(x, S) ≥ r_S + μ(x, y) and μ(y, S) ≤ r_S

Suppose..

$\forall \ S \subseteq X \ \exists \ r_S > 0 \ \text{s.t.} \ \mu(x,S) \ge r_S + \mu(x,y) \ \text{and} \ \mu(y,S) \le r_S$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Suppose.

$$\forall \ S \subseteq X \ \exists \ r_S > 0 \ \text{s.t.} \ \mu(x,S) \ge r_S + \mu(x,y) \ \text{and} \ \mu(y,S) \le r_S$$

Then,

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \geq \sum_{S\subseteq X} p_S((r_S + \mu(x,y)) - r_S)$$

<ロ> <同> <同> < 回> < 回>

Suppose.

$$\forall \ S \subseteq X \ \exists \ r_S > 0 \ \text{s.t.} \ \mu(x,S) \ge r_S + \mu(x,y) \ \text{and} \ \mu(y,S) \le r_S$$

Then,

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \geq \sum_{S\subseteq X} p_S((r_S + \mu(x,y)) - r_S)$$
$$= \sum_{S\subseteq X} p_S \mu(x,y) = \mu(x,y)$$

<ロ> <同> <同> < 回> < 回>

Suppose..

$$\forall \ S \subseteq X \ \exists \ r_S > 0 \ \text{s.t.} \ \mu(x,S) \ge r_S + \mu(x,y) \ \text{and} \ \mu(y,S) \le r_S$$

Then,

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \geq \sum_{S\subseteq X} p_S((r_S + \mu(x,y)) - r_S)$$
$$= \sum_{S\subseteq X} p_S \mu(x,y) = \mu(x,y)$$

Thus, we have no expansion!!

Suppose..

$$\forall \ S \subseteq X \ \exists \ r_S > 0 \ \text{s.t.} \ \mu(x,S) \geq r_S + \mu(x,y) \ \text{and} \ \mu(y,S) \leq r_S$$

Then,

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \geq \sum_{S\subseteq X} p_S((r_S + \mu(x,y)) - r_S)$$
$$= \sum_{S\subseteq X} p_S \mu(x,y) = \mu(x,y)$$

Thus, we have no expansion !! But, ...

- Not all S satisfy this assumption
- However, if "many" sets satisfy the assumption, the result holds!

Claim modified

Claim 2'

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \geq \frac{\mu(x,y)}{32q}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Claim modified

Claim 2'

$$\sum_{S\subseteq X} p_S |\mu(x,S) - \mu(y,S)| \ge \frac{\mu(x,y)}{32q}$$

Proof idea:

 Try to show for "many" sets S ⊆ X there exists r_S s.t. μ(x, S) ≥ r_S + μ(x, y) and μ(y, S) ≤ r_S

To this end

- Instead of counting, we look at probabilities...
- Quantize $|\mu(x, S) \mu(y, S)|$ with j
- Throw out some sets *S* from the summation
- Bound *p_S*

Definition (a ball of radius r centered at c)

$$\begin{aligned} B(c,r) &= \{z \in X \colon \mu(c,z) \leq r\} \text{ (closed)} \\ B^{\circ}(c,r) &= \{z \in X \colon \mu(c,z) < r\} \text{ (open)} \end{aligned}$$

æ

- 4 同 6 4 日 6 4 日 6

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

- ∢ ≣ →

A.

æ

=

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

- < 臣 > < 臣 >

A.

3

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

< E

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

-

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

-

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

 $\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$

A (1) > A (2) > A

글 🖒 🛛 글
Quantize $|\mu(x,S) - \mu(y,S)|$ (2)

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

• Let *i* be an index satisfying

$$\tilde{r}_0 \leq \tilde{r}_1 \leq \cdots \leq \tilde{r}_{i-1} \leq \frac{1}{2}\mu(x,y) \leq \tilde{r}_i \leq \cdots \leq \tilde{r}_q$$

▲□ ► ▲ □ ► ▲

문 문문

Quantize $|\mu(x,S) - \mu(y,S)|$ (2)

Fix $x, y \in X$

Notation

• For every $j \in \{0, 1, \dots, q\}$

$$\widetilde{r}_j = \min\{r \colon |B(x,r)| \ge 2^j \text{ and } |B(y,r)| \ge 2^j\}$$

• Let *i* be an index satisfying

$$\tilde{r}_0 \leq \tilde{r}_1 \leq \cdots \leq \tilde{r}_{i-1} \leq \frac{1}{2}\mu(x,y) \leq \tilde{r}_i \leq \cdots \leq \tilde{r}_q$$

• For every $j \in \{0, 1, \dots, i\}$

$$r_{j} = \begin{cases} \tilde{r}_{j} & (j \in \{0, 1, \dots, i-1\}) \\ \frac{1}{2}\mu(x, y) & (j = i) \end{cases}$$

A (1) > A (1) > A

э

Quantize $|\mu(x,S) - \mu(y,S)|$ (3)

$$j \in \{1, \ldots, i\}$$
 fixed

Observations

• $|B^{\circ}(x,r_j)| < 2^j$ or $|B^{\circ}(y,r_j)| < 2^j$ (from the def of r_j)

Quantize $|\mu(x,S) - \mu(y,S)|$ (3)

$$j \in \{1, \ldots, i\}$$
 fixed

Observations

- $|B^{\circ}(x,r_j)| < 2^j$ or $|B^{\circ}(y,r_j)| < 2^j$ (from the def of r_j)
- WLOG $|B^{\circ}(x, r_j)| < 2^j$

Quantize $|\mu(x,S) - \mu(y,S)|$ (3)

$$j \in \{1, \ldots, i\}$$
 fixed

Observations

- $|B^{\circ}(x,r_j)| < 2^j$ or $|B^{\circ}(y,r_j)| < 2^j$ (from the def of r_j)
- WLOG $|B^{\circ}(x, r_j)| < 2^j$
- $|B(y, r_{j-1})| \ge 2^{j-1}$ (from the def of r_{j-1})

Quantize $|\mu(x,S) - \mu(y,S)|$ (4)

$$j \in \{1, \ldots, i\}$$
 fixed

Important observation

$$B^{\circ}(x, r_j) \cap S = \emptyset \text{ and } B(y, r_{j-1}) \cap S \neq \emptyset$$

$$\Rightarrow |\mu(x, S) - \mu(y, S)| \ge r_j - r_{j-1}$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

• = • < =</p>

____>

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

=
$$\sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \Pr[j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

• = • < =</p>

____>

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \Pr[j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \frac{1}{q} |\mu(x, S) - \mu(y, S)|$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \Pr[j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \frac{1}{q} |\mu(x, S) - \mu(y, S)|$$

$$= \frac{1}{q} \sum_{j=1}^{q} \sum_{S \subseteq X} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

æ

• = • < =</p>

A.

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \Pr[j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \frac{1}{q} |\mu(x, S) - \mu(y, S)|$$

$$= \frac{1}{q} \sum_{j=1}^{q} \sum_{S \subseteq X} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{S \subseteq X} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

æ

글 🕨 🔺 글

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \Pr[j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$= \sum_{S \subseteq X} \sum_{j=1}^{q} \Pr[S = A | j \text{ chosen}] \frac{1}{q} |\mu(x, S) - \mu(y, S)|$$

$$= \frac{1}{q} \sum_{j=1}^{q} \sum_{S \subseteq X} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{S \subseteq X} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{\substack{S \subseteq X \\ S \subseteq X, \\ B^{\circ}(x, r_{j}) \cap S = \emptyset, \\ B(y, r_{j-1}) \cap S \neq \emptyset} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{\substack{S \subseteq X, \\ B^{\circ}(x, r_j) \cap S = \emptyset, \\ B(y, r_{j-1}) \cap S \neq \emptyset}} \Pr[S = A \mid j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

• = • < =</p>

A.

$$\sum_{S \subseteq X} \Pr[S = A] |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{\substack{S \subseteq X, \\ B(y, r_j) \cap S = \emptyset, \\ B(y, r_j-1) \cap S \neq \emptyset}} \Pr[S = A | j \text{ chosen}] |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{\substack{S \subseteq X, \\ B^{\circ}(x, r_j) \cap S = \emptyset, \\ B(y, r_j-1) \cap S \neq \emptyset}} \Pr[S = A | j \text{ chosen}] (r_j - r_{j-1})$$

• = • < =</p>

A.

$$\sum_{S \subseteq X} \Pr[S = A] | \mu(x, S) - \mu(y, S) |$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{\substack{S \subseteq X, \\ B^{\circ}(x, r_{j}) \cap S = \emptyset, \\ B(y, r_{j-1}) \cap S \neq \emptyset}} \Pr[S = A | j \text{ chosen}] | \mu(x, S) - \mu(y, S) |$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} \sum_{\substack{S \subseteq X, \\ B^{\circ}(x, r_{j}) \cap S = \emptyset, \\ B(y, r_{j-1}) \cap S \neq \emptyset}} \Pr[S = A | j \text{ chosen}] (r_{j} - r_{j-1})$$

$$\equiv \frac{1}{q} \sum_{j=1}^{i} (r_{j} - r_{j-1}) \sum_{\substack{S \subseteq X, \\ B^{\circ}(x, r_{j}) \cap S = \emptyset, \\ B(y, r_{j-1}) \cap S \neq \emptyset}} \Pr[S = A | j \text{ chosen}]$$
need to bound

Bound the probability (1)

$$\sum_{\substack{S \subseteq X, \\ B^{\circ}(x,r_j) \cap S = \emptyset, \\ B(y,r_{j-1}) \cap S \neq \emptyset}} \underbrace{\Pr[S = A \mid j \text{ chosen}]}_{=\Pr[S = A_j]}$$

æ

э

@ ▶ ∢ ≣

Bound the probability (1)

$$\sum_{\substack{S \subseteq X, \\ B^{\circ}(x,r_j) \cap S = \emptyset, \\ B(y,r_{j-1}) \cap S \neq \emptyset \\ = \Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset \text{ and } B(y,r_{j-1}) \cap A_j \neq \emptyset]}$$

æ

э

P.

$$\sum_{\substack{S \subseteq X, \\ B^{\circ}(x,r_j) \cap S = \emptyset, \\ B(y,r_{j-1}) \cap S \neq \emptyset \\ = \Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset \text{ and } B(y,r_{j-1}) \cap A_j \neq \emptyset \\ = \Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset] \cdot \Pr[B(y,r_{j-1}) \cap A_j \neq \emptyset]$$

æ

э

P.

$$\sum_{\substack{S \subseteq X, \\ B^{\circ}(x,r_j) \cap S = \emptyset, \\ B(y,r_{j-1}) \cap S \neq \emptyset \\ = \Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset \text{ and } B(y,r_{j-1}) \cap A_j \neq \emptyset] \\ = \Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset] \cdot \Pr[B(y,r_{j-1}) \cap A_j \neq \emptyset]$$

Note

 $j \leq i$ implies $B^{\circ}(x, r_j) \cap B(y, r_{j-1}) = \emptyset$, \therefore the events $B^{\circ}(x, r_j) \cap S = \emptyset$ and $B(y, r_{j-1}) \cap S \neq \emptyset$ independent.

Bound the probability (2)

$$\Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset]$$

æ

P.

 $\Pr[B^{\circ}(x, r_j) \cap A_j = \emptyset] = \Pr[z \notin A_j \text{ for all } z \in B^{\circ}(x, r_j)]$

個 と く ヨ と く ヨ と …

3

$$\Pr[B^{\circ}(x, r_j) \cap A_j = \emptyset] = \Pr[z \notin A_j \text{ for all } z \in B^{\circ}(x, r_j)]$$
$$= \left(1 - \frac{1}{2^j}\right)^{|B^{\circ}(x, r_j)|}$$

For each $j \in \{1, \ldots, q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$

$$\begin{aligned} \mathsf{Pr}[B^{\circ}(x,r_j) \cap A_j = \emptyset] &= \mathsf{Pr}[z \notin A_j \text{ for all } z \in B^{\circ}(x,r_j)] \\ &= \left(1 - \frac{1}{2^j}\right)^{|B^{\circ}(x,r_j)|} > \left(1 - \frac{1}{2^j}\right)^{2^j} \end{aligned}$$

For each $j \in \{1, \ldots, q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$

Reminder (assumptions and a fact)

$$|B^{\circ}(x,r_j)|<2^j,$$

$$\begin{aligned} \mathsf{Pr}[B^{\circ}(x,r_{j}) \cap A_{j} = \emptyset] &= \mathsf{Pr}[z \notin A_{j} \text{ for all } z \in B^{\circ}(x,r_{j})] \\ &= \left(1 - \frac{1}{2^{j}}\right)^{|B^{\circ}(x,r_{j})|} > \left(1 - \frac{1}{2^{j}}\right)^{2^{j}} \\ &\geq \left(1 - \frac{1}{2^{1}}\right)^{2^{1}} \end{aligned}$$

For each $j \in \{1, \ldots, q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$

Reminder (assumptions and a fact)

 $|B^{\circ}(x,r_j)| < 2^j, \quad j \geq 1$ and $(1-1/2^j)^{2^j}$ monotonically increasing

$$Pr[B^{\circ}(x,r_j) \cap A_j = \emptyset] = Pr[z \notin A_j \text{ for all } z \in B^{\circ}(x,r_j)]$$
$$= \left(1 - \frac{1}{2^j}\right)^{|B^{\circ}(x,r_j)|} > \left(1 - \frac{1}{2^j}\right)^{2^j}$$
$$\geq \left(1 - \frac{1}{2^1}\right)^{2^1} = \frac{1}{4}$$

For each $j \in \{1, \ldots, q\}$ construct $A_j \subseteq X$ by sampling every point of X independently with prob. $1/2^j$

Reminder (assumptions and a fact)

 $|B^{\circ}(x,r_j)| < 2^j, \quad j \geq 1$ and $(1-1/2^j)^{2^j}$ monotonically increasing

Bound the probability (3)

$\Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset]$

<> ≥ > < ≥</p>

A.

$\Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset] = 1 - \Pr[B(y, r_{j-1}) \cap A_j = \emptyset]$

□ ► < E ► < E ► ...</p>

3

Bound the probability (3)

$$\begin{aligned} \mathsf{Pr}[B(y, r_{j-1}) \cap A_j \neq \emptyset] &= 1 - \mathsf{Pr}[B(y, r_{j-1}) \cap A_j = \emptyset] \\ &= 1 - \left(1 - \frac{1}{2^j}\right)^{|B(y, r_{j-1})|} \end{aligned}$$

æ

P.

$$\begin{aligned} \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset] &= 1 - \Pr[B(y, r_{j-1}) \cap A_j = \emptyset] \\ &= 1 - \left(1 - \frac{1}{2^j}\right)^{|B(y, r_{j-1})|} \\ &\geq 1 - \left(1 - \frac{1}{2^j}\right)^{2^{j-1}} \end{aligned}$$

Reminder (assumption and a well-known fact) $|B(y, r_{j-1})| \ge 2^{j-1},$

Yoshio Okamoto Low-Distortion Embeddings

$$\begin{aligned} \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset] &= 1 - \Pr[B(y, r_{j-1}) \cap A_j = \emptyset] \\ &= 1 - \left(1 - \frac{1}{2^j}\right)^{|B(y, r_{j-1})|} \\ &\geq 1 - \left(1 - \frac{1}{2^j}\right)^{2^{j-1}} \\ &\geq 1 - \exp\left(\frac{1}{2^j}2^{j-1}\right) \end{aligned}$$

$$\begin{aligned} \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset] &= 1 - \Pr[B(y, r_{j-1}) \cap A_j = \emptyset] \\ &= 1 - \left(1 - \frac{1}{2^j}\right)^{|B(y, r_{j-1})|} \\ &\geq 1 - \left(1 - \frac{1}{2^j}\right)^{2^{j-1}} \\ &\geq 1 - \exp\left(\frac{1}{2^j}2^{j-1}\right) \\ &= 1 - \frac{1}{\sqrt{e}} \end{aligned}$$

$$\begin{aligned} \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset] &= 1 - \Pr[B(y, r_{j-1}) \cap A_j = \emptyset] \\ &= 1 - \left(1 - \frac{1}{2^j}\right)^{|B(y, r_{j-1})|} \\ &\geq 1 - \left(1 - \frac{1}{2^j}\right)^{2^{j-1}} \\ &\geq 1 - \exp\left(\frac{1}{2^j}2^{j-1}\right) \\ &= 1 - \frac{1}{\sqrt{e}} \geq \frac{1}{4} \end{aligned}$$

$$\sum_{S \subseteq X} p_S |\mu(x,S) - \mu(y,S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \Pr[B^\circ(x,r_j) \cap A_j = \emptyset] \cdot \Pr[B(y,r_{j-1}) \cap A_j \neq \emptyset]$$

・ロト ・回ト ・ヨト ・ヨト

$$\sum_{S \subseteq X} p_S |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \Pr[B^\circ(x, r_j) \cap A_j = \emptyset] \cdot \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset]$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \cdot \frac{1}{4} \cdot \frac{1}{4}$$

<ロ> <同> <同> < 回> < 回>

$$\sum_{S \subseteq X} p_{S} |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} (r_{j} - r_{j-1}) \Pr[B^{\circ}(x, r_{j}) \cap A_{j} = \emptyset] \cdot \Pr[B(y, r_{j-1}) \cap A_{j} \neq \emptyset]$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} (r_{j} - r_{j-1}) \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$= \frac{1}{16q} \sum_{j=1}^{i} (r_{j} - r_{j-1})$$

<ロ> <同> <同> < 回> < 回>

$$\sum_{S \subseteq X} p_S |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \Pr[B^\circ(x, r_j) \cap A_j = \emptyset] \cdot \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset]$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$= \frac{1}{16q} \sum_{j=1}^i (r_j - r_{j-1})$$

$$= \frac{1}{16q} (r_i - r_0) \quad \text{(telescopic sum)}$$

<ロ> <同> <同> < 回> < 回>
Summing up...

$$\sum_{S \subseteq X} p_S |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \Pr[B^\circ(x, r_j) \cap A_j = \emptyset] \cdot \Pr[B(y, r_{j-1}) \cap A_j \neq \emptyset]$$

$$\geq \frac{1}{q} \sum_{j=1}^i (r_j - r_{j-1}) \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$= \frac{1}{16q} \sum_{j=1}^i (r_j - r_{j-1})$$

$$= \frac{1}{16q} (r_i - r_0) \quad \text{(telescopic sum)}$$

$$\geq \frac{1}{16q} \left(\frac{1}{2} \mu(x, y) - 0\right)$$

<ロ> <同> <同> < 回> < 回>

æ

Summing up...

$$\sum_{S \subseteq X} p_{S} |\mu(x, S) - \mu(y, S)|$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} (r_{j} - r_{j-1}) \Pr[B^{\circ}(x, r_{j}) \cap A_{j} = \emptyset] \cdot \Pr[B(y, r_{j-1}) \cap A_{j} \neq \emptyset]$$

$$\geq \frac{1}{q} \sum_{j=1}^{i} (r_{j} - r_{j-1}) \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$= \frac{1}{16q} \sum_{j=1}^{i} (r_{j} - r_{j-1})$$

$$= \frac{1}{16q} (r_{i} - r_{0}) \quad \text{(telescopic sum)}$$

$$\geq \frac{1}{16q} \left(\frac{1}{2}\mu(x, y) - 0\right)$$

$$= \frac{1}{32q}\mu(x, y)$$

Contents

- Introduction
- \bullet Embedding into ℓ_∞
- $\bullet \ \ Embedding \ \ into \ \ \ell_2$
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

Theorem (Linial, London, and Rabinovich '95)

An embedding of a shortest-path metric on an *n*-vertex constant-degree expander (with unit weight) into ℓ_2 needs $\Omega(\log n)$ distortion.

Theorem (Linial, London, and Rabinovich '95)

An embedding of a shortest-path metric on an *n*-vertex constant-degree expander (with unit weight) into ℓ_2 needs $\Omega(\log n)$ distortion.

<u>Proof</u>: exercise (with guides)

Theorem (Linial, London, and Rabinovich '95)

An embedding of a shortest-path metric on an *n*-vertex constant-degree expander (with unit weight) into ℓ_2 needs $\Omega(\log n)$ distortion.

<u>Proof</u>: exercise (with guides)

Instead, we now prove the following

Theorem (Enflo '69)

An embedding of a shortest-path metric on an *n*-vertex Hamming cube (with unit weight) into ℓ_2 needs $\Omega(\sqrt{\log n})$ distortion.

A proof (below) should be a hint to the exercise above.

Hamming cubes

d a positive integer

Definition

A *d*-dimensional Hamming cube Q_d is a graph defined as Vertex set $V(Q_d) = \{0, 1\}^d$ Edge set $E(Q_d) = \{\{u, v\}: u \& v \text{ differ at exactly one coord.}\}$

Lower bound for Hamming cubes

See Q_d itself as a shortest-path metric space on Q_d w/ unit weight

Theorem

 $d \geq 2$ a natural number $f: V(Q_d)
ightarrow \ell_2$ a D-embedding $\Rightarrow D \geq \sqrt{d}$

See Q_d itself as a shortest-path metric space on Q_d w/ unit weight

Theorem

 $d \ge 2$ a natural number

$$f:\,V(Q_d)
ightarrow\ell_2$$
 a $D ext{-embedding}\Rightarrow D\geq\sqrt{d}$

Note:
$$n = |V(Q_d)| = 2^d$$
, $\therefore \sqrt{d} = \sqrt{\log_2 n}$

Theorem (in words)

There exists an *n*-point metric space that cannot be embedded into ℓ_2 with distortion better than $\sqrt{\log_2 n}$

Proof: Notation

Set-up

- (X, μ) , (X, ν) two metric spaces
- $E, F \subseteq {\binom{X}{2}}$ non-empty sets of 2-element subsets of X

Proof: Notation

Set-up

- (X, μ) , (X, ν) two metric spaces
- $E, F \subseteq {X \choose 2}$ non-empty sets of 2-element subsets of X

Notation

•
$$\operatorname{ave}_2(\mu, E) = \sqrt{\frac{1}{|E|} \sum_{\{x,y\} \in E} \mu(x, y)^2}$$
 (root mean square)

伺 と く ヨ と く ヨ と

Proof: Notation

Set-up

- (X, μ) , (X, ν) two metric spaces
- $E, F \subseteq {X \choose 2}$ non-empty sets of 2-element subsets of X

Notation

•
$$\operatorname{ave}_2(\mu, E) = \sqrt{\frac{1}{|E|} \sum_{\{x, y\} \in E} \mu(x, y)^2}$$
 (root mean square)
• $R_{E,F}(\mu) = \frac{\operatorname{ave}_2(\mu, F)}{\operatorname{ave}_2(\mu, E)}$

э

For a *D*-embedding $f: X \to \ell_2^k$, let $\nu(x, y) = \|f(x) - f(y)\|_2$

□ ► < E ► < E ► ...</p>

æ

Proof: Observation

For a *D*-embedding
$$f: X \to \ell_2^k$$
, let $\nu(x, y) = \|f(x) - f(y)\|_2$

Observation

With the notation above, it holds that

 $R_{E,F}(\mu) \leq D \cdot R_{E,F}(\nu)$

э

3

Proof: Observation

For a *D*-embedding
$$f: X \to \ell_2^k$$
, let $\nu(x, y) = \|f(x) - f(y)\|_2$

Observation

With the notation above, it holds that

 $R_{E,F}(\mu) \leq D \cdot R_{E,F}(\nu)$

Proof:

B> B

For a
$$D$$
-embedding $f:X
ightarrow\ell_2^k$, let $u(x,y)=\|f(x)-f(y)\|_2$

With the notation above, it holds that

 $R_{E,F}(\mu) \leq D \cdot R_{E,F}(\nu)$

Proof:

Since f a D-embedding, by the def of D-embeddings,
 ∃ r: r · μ(x, y) ≤ ν(x, y) ≤ D · r · μ(x, y)

< ∃ > <

For a
$$D$$
-embedding $f:X
ightarrow\ell_2^k$, let $u(x,y)=\|f(x)-f(y)\|_2$

With the notation above, it holds that

 $R_{E,F}(\mu) \leq D \cdot R_{E,F}(\nu)$

Proof:

 Since f a D-embedding, by the def of D-embeddings, ∃ r: r · μ(x, y) ≤ ν(x, y) ≤ D · r · μ(x, y)
 ∴ ave₂(μ, F) ≤ ¹/_r ave₂(ν, F)

For a
$$D$$
-embedding $f:X
ightarrow\ell_2^k$, let $u(x,y)=\|f(x)-f(y)\|_2$

With the notation above, it holds that

 $R_{E,F}(\mu) \leq D \cdot R_{E,F}(\nu)$

Proof:

Since f a D-embedding, by the def of D-embeddings, ∃ r: r · μ(x, y) ≤ ν(x, y) ≤ D · r · μ(x, y)
∴ ave₂(μ, F) ≤ ¹/_r ave₂(ν, F) and ave₂(μ, E) ≥ ¹/_{Dr} ave₂(ν, E)

For a
$$D$$
-embedding $f \colon X o \ell_2^k$, let $u(x,y) = \|f(x) - f(y)\|_2$

With the notation above, it holds that

$$R_{E,F}(\mu) \leq D \cdot R_{E,F}(\nu)$$

Proof:

• Since f a D-embedding, by the def of D-embeddings,

$$\exists r: r \cdot \mu(x, y) \le \nu(x, y) \le D \cdot r \cdot \mu(x, y)$$
• $\therefore \operatorname{ave}_2(\mu, F) \le \frac{1}{r} \operatorname{ave}_2(\nu, F)$ and $\operatorname{ave}_2(\mu, E) \ge \frac{1}{Dr} \operatorname{ave}_2(\nu, E)$
• $\therefore \frac{\operatorname{ave}_2(\mu, F)}{\operatorname{ave}_2(\mu, E)} \le \frac{\frac{1}{r} \operatorname{ave}_2(\nu, F)}{\frac{1}{Dr} \operatorname{ave}_2(\nu, E)} = D \frac{\operatorname{ave}_2(\nu, F)}{\operatorname{ave}_2(\nu, E)}$

æ

э

- ∢ ≣ ▶

____>

To prove the theorem it is enough to show the following

Claim $\frac{R_{E,F}(\mu)}{R_{E,F}(\nu)} \ge \sqrt{d} \text{ for some } E, I$

for some
$$E, F \subseteq \binom{V(Q_d)}{2}$$

æ

《口》 《聞》 《臣》 《臣》

To prove the theorem it is enough to show the following

Claim

$$\frac{R_{E,F}(\mu)}{R_{E,F}(\nu)} \geq \sqrt{d} \text{ for some } E, F \subseteq \binom{V(Q_d)}{2}$$

Proof outline:

• Let $E = E(Q_d)$ and F = the set of pairs w/ dist. d in Q_d

To prove the theorem it is enough to show the following

Claim

$$\frac{R_{E,F}(\mu)}{R_{E,F}(\nu)} \geq \sqrt{d} \text{ for some } E, F \subseteq \binom{V(Q_d)}{2}$$

Proof outline:

• Let $E = E(Q_d)$ and F = the set of pairs w/ dist. d in Q_d More formally

 $F = \{\{v, \overline{v}\} \colon v \in V(Q_d)\}$ where \overline{v} is the comp-wise flip of v

To prove the theorem it is enough to show the following

Claim

$$\frac{R_{E,F}(\mu)}{R_{E,F}(\nu)} \geq \sqrt{d} \text{ for some } E, F \subseteq \binom{V(Q_d)}{2}$$

Proof outline:

 Let E = E(Q_d) and F = the set of pairs w/ dist. d in Q_d More formally F = {{v, v̄}: v ∈ V(Q_d)} where v̄ is the comp-wise flip of v

• Show
$$R_{E,F}(\mu) = d$$

To prove the theorem it is enough to show the following

Claim

$$\frac{R_{E,F}(\mu)}{R_{E,F}(\nu)} \geq \sqrt{d} \text{ for some } E, F \subseteq \binom{V(Q_d)}{2}$$

Proof outline:

 Let E = E(Q_d) and F = the set of pairs w/ dist. d in Q_d More formally F = {{v, v̄}: v ∈ V(Q_d)} where v̄ is the comp-wise flip of v

• Show
$$R_{E,F}(\mu) = d$$

• Show $R_{E,F}(\nu) \leq \sqrt{d}$

$$E = E(Q_d)$$
 and $F = \{\{v, \overline{v}\} \colon v \in V(Q_d)\}$

• $\mu(x,y) = 1$ for every $\{x,y\} \in E$

$$E = E(Q_d)$$
 and $F = \{\{v, \overline{v}\} \colon v \in V(Q_d)\}$

個 と くき とくきと

æ

$$E = E(Q_d)$$
 and $F = \{\{v, \overline{v}\} \colon v \in V(Q_d)\}$

•
$$\mu(x,y)=1$$
 for every $\{x,y\}\in E$

•
$$\mu(x,y) = d$$
 for every $\{x,y\} \in F$

$$E = E(Q_d)$$
 and $F = \{\{v, \overline{v}\} \colon v \in V(Q_d)\}$

•
$$\mu(x,y) = 1$$
 for every $\{x,y\} \in E$

•
$$\therefore$$
 ave₂ $(\mu, E) = 1$

•
$$\mu(x,y) = d$$
 for every $\{x,y\} \in F$

•
$$\therefore$$
 ave₂ $(\mu, F) = d$

$$E = E(Q_d)$$
 and $F = \{\{v, \overline{v}\} \colon v \in V(Q_d)\}$

•
$$\mu(x, y) = 1$$
 for every $\{x, y\} \in E$
• \therefore $\operatorname{ave}_2(\mu, E) = 1$
• $\mu(x, y) = d$ for every $\{x, y\} \in F$
• \therefore $\operatorname{ave}_2(\mu, F) = d$
• $\therefore R_{E,F}(\mu) = \frac{\operatorname{ave}_2(\mu, F)}{\operatorname{ave}_2(\mu, E)} = d$

$$R_{E,F}(\nu) = \frac{\operatorname{ave}_2(\nu, F)}{\operatorname{ave}_2(\nu, E)}$$

æ

$$R_{E,F}(\nu) = \frac{\operatorname{ave}_{2}(\nu, F)}{\operatorname{ave}_{2}(\nu, E)}$$
$$= \frac{\sqrt{\frac{1}{|F|} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}}{\sqrt{\frac{1}{|E|} \sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

æ

- 《圖》 《문》 《문》

$$R_{E,F}(\nu) = \frac{\operatorname{ave}_{2}(\nu, F)}{\operatorname{ave}_{2}(\nu, E)}$$

$$= \frac{\sqrt{\frac{1}{|F|} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}}{\sqrt{\frac{1}{|E|} \sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

$$= \sqrt{\frac{\frac{1}{2^{d-1}} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}{\frac{1}{d2^{d-1}} \sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

æ

$$R_{E,F}(\nu) = \frac{\operatorname{ave}_{2}(\nu, F)}{\operatorname{ave}_{2}(\nu, E)}$$

$$= \frac{\sqrt{\frac{1}{|F|} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}}{\sqrt{\frac{1}{|E|} \sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

$$= \sqrt{\frac{\frac{1}{2^{d-1}} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}{\frac{1}{d2^{d-1}} \sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

$$= \sqrt{d\frac{\sum_{\{u,v\} \in F} \nu(u, v)^{2}}{\sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

For bounding $\overline{R_{E,F}(\nu)}$

$$R_{E,F}(\nu) = \frac{\operatorname{ave}_{2}(\nu, F)}{\operatorname{ave}_{2}(\nu, E)}$$

$$= \frac{\sqrt{\frac{1}{|F|} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}}{\sqrt{\frac{1}{|E|} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}}$$

$$= \sqrt{\frac{\frac{1}{2^{d-1}} \sum_{\{u,v\} \in F} \nu(u, v)^{2}}{\frac{1}{d2^{d-1}} \sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$

$$= \sqrt{d\frac{\sum_{\{u,v\} \in F} \nu(u, v)^{2}}{\sum_{\{u,v\} \in E} \nu(u, v)^{2}}}$$
to show $\sum_{v \in V} \nu(u, v)^{2} \leq \sum_{v \in V} \nu(u, v)^{2}}$

 $\therefore \text{ Enough to show } \sum_{\{u,v\}\in F}\nu(u,v)^2 \leq \sum_{\{u,v\}\in E, \forall o \in V, v \in$

Subclaim

Notation

$$u^{2}(E) = \sum_{\{u,v\}\in E} \nu(u,v)^{2}, \ \nu^{2}(F) = \sum_{\{u,v\}\in F} \nu(u,v)^{2}$$

Subclaim

 $\nu^2(F) \leq \nu^2(E)$

æ

《口》 《聞》 《臣》 《臣》

Notation

$$u^{2}(E) = \sum_{\{u,v\}\in E} \nu(u,v)^{2}, \ \nu^{2}(F) = \sum_{\{u,v\}\in F} \nu(u,v)^{2}$$

Subclaim

 $\nu^2(F) \leq \nu^2(E)$

Proof outline:

- Induction on d
- When d = 2, a direct calculation
- When d > 2, make use of a product structure of cubes

< ∃⇒

э
Proof of Subclaim: d = 2

To prove the case d = 2 we use the following

Lemma (short diagonals lemma)

For any four points x_1, x_2, x_3, x_4 in a Euclidean space

$$\|x_1 - x_3\|_2^2 + \|x_2 - x_4\|_2^2 \le \|x_1 - x_2\|_2^2 + \|x_2 - x_3\|_2^2 + \|x_3 - x_4\|_2^2 + \|x_4 - x_1\|_2^2$$

Proof: Exercise

Proof of Subclaim: d = 2

To prove the case d = 2 we use the following

Lemma (short diagonals lemma)

For any four points x_1, x_2, x_3, x_4 in a Euclidean space

$$\|x_1 - x_3\|_2^2 + \|x_2 - x_4\|_2^2 \le \|x_1 - x_2\|_2^2 + \|x_2 - x_3\|_2^2 + \|x_3 - x_4\|_2^2 + \|x_4 - x_1\|_2^2$$

Proof: Exercise

Proof of Subclaim when d = 2

- Set $x_i = f(v_i)$ and use the lemma above
- LHS = $\nu^2(F)$ and RHS = $\nu^2(E)$

•
$$V_0 = \{0,1\}^{d-1} \times \{0\} = \{(u,0): u \in \{0,1\}^{d-1}\}$$

•
$$V_0 = \{0,1\}^{d-1} \times \{0\} = \{(u,0): u \in \{0,1\}^{d-1}\}$$

• $V_1 = \{0,1\}^{d-1} \times \{1\} = \{(u,1): u \in \{0,1\}^{d-1}\}$

• Partition the vertex set $V = \{0,1\}^d$ into

•
$$V_0 = \{0,1\}^{d-1} \times \{0\} = \{(u,0): u \in \{0,1\}^{d-1}\}$$

• $V_1 = \{0,1\}^{d-1} \times \{1\} = \{(u,1): u \in \{0,1\}^{d-1}\}$

• V_i induces a (d-1)-dimensional Hamming cube in Q_d

•
$$V_0 = \{0,1\}^{d-1} \times \{0\} = \{(u,0): u \in \{0,1\}^{d-1}\}$$

• $V_1 = \{0,1\}^{d-1} \times \{1\} = \{(u,1): u \in \{0,1\}^{d-1}\}$

- V_i induces a (d-1)-dimensional Hamming cube in Q_d
- E_i = the edge set of the Hamming cube induced by V_i F_i = the set of pairs w/ dist. d-1 in the induced cube

•
$$V_0 = \{0,1\}^{d-1} \times \{0\} = \{(u,0): u \in \{0,1\}^{d-1}\}$$

• $V_1 = \{0,1\}^{d-1} \times \{1\} = \{(u,1): u \in \{0,1\}^{d-1}\}$

- V_i induces a (d-1)-dimensional Hamming cube in Q_d
- *E_i* = the edge set of the Hamming cube induced by *V_i F_i* = the set of pairs w/ dist. *d*−1 in the induced cube
- $\nu^2(F_i) \leq \nu^2(E_i)$ by induction hypothesis

•
$$V_0 = \{0,1\}^{d-1} \times \{0\} = \{(u,0): u \in \{0,1\}^{d-1}\}$$

• $V_1 = \{0,1\}^{d-1} \times \{1\} = \{(u,1): u \in \{0,1\}^{d-1}\}$

- V_i induces a (d-1)-dimensional Hamming cube in Q_d
- *E_i* = the edge set of the Hamming cube induced by *V_i F_i* = the set of pairs w/ dist. *d*−1 in the induced cube
- $\nu^2(F_i) \leq \nu^2(E_i)$ by induction hypothesis

•
$$E_{01} = E \setminus (E_0 \cup E_1)$$

• Each pair in F has a form $\{(u,0), (\overline{u},1)\}$

- Each pair in F has a form $\{(u,0), (\overline{u},1)\}$
- By the short diagonals lemma $\begin{array}{l}\nu(u0,\overline{u}1)^2 + \nu(u1,\overline{u}0)^2 \leq \\\nu(u0,\overline{u}0)^2 + \nu(\overline{u}0,\overline{u}1)^2 + \nu(\overline{u}1,u1)^2 + \nu(u1,u0)^2\end{array}$

- Each pair in F has a form $\{(u,0), (\overline{u},1)\}$
- By the short diagonals lemma $\begin{array}{l}\nu(u0,\overline{u}1)^2 + \nu(u1,\overline{u}0)^2 \leq \\\nu(u0,\overline{u}0)^2 + \nu(\overline{u}0,\overline{u}1)^2 + \nu(\overline{u}1,u1)^2 + \nu(u1,u0)^2\end{array}$
- By adding up the inequalities over all u $\nu^2(F) \le \nu^2(E_{01}) + \nu^2(F_0) + \nu^2(F_1)$

- Each pair in F has a form $\{(u,0), (\overline{u},1)\}$
- By the short diagonals lemma $\begin{array}{l}\nu(u0,\overline{u}1)^2 + \nu(u1,\overline{u}0)^2 \leq \\\nu(u0,\overline{u}0)^2 + \nu(\overline{u}0,\overline{u}1)^2 + \nu(\overline{u}1,u1)^2 + \nu(u1,u0)^2\end{array}$
- By adding up the inequalities over all u $\nu^2(F) \le \nu^2(E_{01}) + \nu^2(F_0) + \nu^2(F_1)$

•
$$\therefore \nu^2(F) \le \nu^2(E_{01}) + \nu^2(E_0) + \nu^2(E_1) = \nu^2(E)$$

Contents

- Introduction
- \bullet Embedding into ℓ_∞
- $\bullet \ \ Embedding \ \ into \ \ \ell_2$
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

Summary

Every *n*-point metric space can be embedded

- $\bullet\,$ into ℓ_∞ isometrically,
- into ℓ_2 with distortion $O(\log n)$ and this is tight.

Summary

Every n-point metric space can be embedded

- $\bullet\,$ into ℓ_∞ isometrically,
- into ℓ_2 with distortion $O(\log n)$ and this is tight.

We may wonder about

- ℓ_1 and ℓ_p ?
- restricted classes of metric spaces?

For any fixed $p \in [1, \infty)$, every *n*-point metric space can be embedded into ℓ_p with distortion $O(\log n)$

→ Ξ →

For any fixed $p \in [1, \infty)$, every *n*-point metric space can be embedded into ℓ_p with distortion $O(\log n)$

Proof idea:

• Modify the proof for ℓ_2 (exercise)

For any fixed $p \in [1, \infty)$, every *n*-point metric space can be embedded into ℓ_p with distortion $O(\log n)$

Proof idea:

- Modify the proof for ℓ_2 (exercise)
- Use the following fact

Theorem (a consequence of Dvoretzky's thm)

Every n-point set in ℓ_2 can be isometrically embedded into ℓ_p for any $p\in [1,\infty)$

For any fixed $p \in [1, \infty)$, every *n*-point metric space can be embedded into ℓ_p with distortion $O(\log n)$

Proof idea:

- Modify the proof for ℓ_2 (exercise)
- Use the following fact

Theorem (a consequence of Dvoretzky's thm)

Every n-point set in ℓ_2 can be isometrically embedded into ℓ_p for any $p\in [1,\infty)$

Tightness?

For any fixed $p \in [1, \infty)$, every *n*-point metric space can be embedded into ℓ_p with distortion $O(\log n)$

Proof idea:

- Modify the proof for ℓ_2 (exercise)
- Use the following fact

Theorem (a consequence of Dvoretzky's thm)

Every n-point set in ℓ_2 can be isometrically embedded into ℓ_p for any $p\in [1,\infty)$

Tightness?

Theorem (Matoušek '97)

The distortion of $\Omega(\log n)$ is needed (again by expanders)

Def.: \mathcal{G} -metric

A finite metric space (X, μ) is a *G*-metric if \exists a graph $G \in \mathcal{G}$ and an edge-weight function w s.t. X can be

isometrically embedded into the shortest-path metric on ${\it G}$ with ${\it w}$

Def.: \mathcal{G} -metric

A finite metric space (X, μ) is a *G*-metric

if \exists a graph $G \in G$ and an edge-weight function w s.t. X can be isometrically embedded into the shortest-path metric on G with w

 $\bullet\,$ Tree metric: ${\cal G}$ the class of trees

Def.: \mathcal{G} -metric

A finite metric space (X, μ) is a *G*-metric

if \exists a graph $G \in G$ and an edge-weight function w s.t. X can be isometrically embedded into the shortest-path metric on G with w

- Tree metric: $\mathcal G$ the class of trees
- ullet Outerplanar-graph metric: ${\cal G}$ the class of outerplanar graphs

Def.: \mathcal{G} -metric

A finite metric space (X, μ) is a *G*-metric

if \exists a graph $G \in G$ and an edge-weight function w s.t. X can be isometrically embedded into the shortest-path metric on G with w

- Tree metric: $\mathcal G$ the class of trees
- ullet Outerplanar-graph metric: ${\cal G}$ the class of outerplanar graphs
- ullet Planar-graph metric: ${\mathcal G}$ the class of planar graphs

• ...

Tree metrics

Tree: a connected graph with no cycle

Theorem

Every *n*-point tree metric can be

• isometrically embedded into ℓ_1 (exercise)

Tree: a connected graph with no cycle

Theorem

Every *n*-point tree metric can be

- \bullet isometrically embedded into ℓ_1 (exercise)
- embedded into l_p with distortion O((log log n)^{min{1/2,1/p}}) (Matoušek '99)

Tree: a connected graph with no cycle

Theorem

Every n-point tree metric can be

- isometrically embedded into ℓ_1 (exercise)
- embedded into l_p with distortion O((log log n)^{min{1/2,1/p}}) (Matoušek '99)
 - this is tight (Bourgain '86)

A bad example is a complete binary tree with unit weight.

Outerplanar graph: a graph that can be drawn on the plane with no edge crossings and all edges incident to the outer face

Theorem

Every *n*-point outerplanar-graph metric can be

• isometrically embedded into ℓ_1 (Okamura and Seymour '81)

Outerplanar graph: a graph that can be drawn on the plane with no edge crossings and all edges incident to the outer face

Theorem

Every *n*-point outerplanar-graph metric can be

- isometrically embedded into ℓ_1 (Okamura and Seymour '81)
- embedded into ℓ_2 with distortion $O(\sqrt{\log n})$ (Rao '99)

As far as I surveyed, tightness for ℓ_2 doesn't seem to be known

Planar graph: a graph that can be drawn on the plane with no edge crossings

Theorem

Every *n*-point planar-graph metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log n})$ (Rao '99)

Planar graph: a graph that can be drawn on the plane with no edge crossings

Theorem

Every *n*-point planar-graph metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log n})$ (Rao '99)

• this is tight (Newman and Rabinovich '03)

Planar graph: a graph that can be drawn on the plane with no edge crossings

Theorem

Every *n*-point planar-graph metric can be embedded into ℓ_2 with distortion $O(\sqrt{\log n})$ (Rao '99)

• this is tight (Newman and Rabinovich '03)

Conjecture (Gupta, Newman, Rabinovich, and Sinclair '04)

A planar-graph metric can be embedded into ℓ_1 with constant distortion

- They proved it is the case for series-parallel graphs
- They further conjecture that the shortest-path metric on an H-minor-free graph (for H fixed) can be embedded into ℓ_1 with constant distortion

The girth of a graph: the length of a shortest cycle

Theorem (Linial, Magen, and Naor '02)

An embedding of the shortest-path metric on an r-regular graph $(r \ge 3)$ of girth g with unit weight into ℓ_2 requires the distortion $\Omega(\sqrt{g})$

The girth of a graph: the length of a shortest cycle

Theorem (Linial, Magen, and Naor '02)

An embedding of the shortest-path metric on an *r*-regular graph $(r \ge 3)$ of girth *g* with unit weight into ℓ_2 requires the distortion $\Omega(\sqrt{g})$

Conjecture (Linial, London, and Rabinovich '95)

The tight bound is $\Omega(g)$

Note: Upper bound O(g) is easy when r is constant

(a consequence of one exercise)

No time to mention ...

- Dimension into ℓ_2 , ℓ_∞ , ℓ_p and trade-offs
- Embeddings into probabilistic tree metrics
- Efficiency of the construction
- Other important special metrics (e.g., edit distance, Hausdorff distance)
- Dimension reduction (e.g., Johnson-Lindenstrauss Lemma)
- Algorithmic applications

• ...

One of the most developing subjects in discrete and computational geometry
Contents

- Introduction
- \bullet Embedding into ℓ_∞
- $\bullet \ \ Embedding \ \ into \ \ \ell_2$
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

Contents

- Introduction
- \bullet Embedding into ℓ_∞
- $\bullet \ \ Embedding \ \ into \ \ \ell_2$
- \bullet Lower bound for ℓ_2
- Remarks

(10 min) (10 min) (30 min) (30 min) (10 min)

[End of Lecture]

Contents

• Introduction(10 min)• Embedding into ℓ_{∞} (10 min)• Embedding into ℓ_2 (30 min)• Lower bound for ℓ_2 (30 min)• Remarks(10 min)• Exercises(?? min)

[End of Lecture]