Most of the exercises are taken from J. Matoušek's "Lectures on Discrete Geometry," Springer 2002. Legend: (*) highly recommended; (-) easy

Exercise 1 (-) This exercise is provided for those who are not familiar with metric spaces and normed spaces. Given a normed space $(X, \|\cdot\|)$, we define $\mu: X \times X \to \mathbb{R}_+$ as $\mu(x, y) = \|x - y\|$. Show that (X, μ) is a metric space.

Exercise 2 (-) Show that every finite metric space is a shortest-path metric on a graph.

Exercise 3 Prove that every *n*-point metric space can be embedded into ℓ_{∞}^{n-1} with distortion 1. Note: In the lecture we have shown that every *n*-point metric space can be embedded into ℓ_{∞}^{n} with distortion 1. The goal of this exercise is to improve the dimension by one.

Exercise 4 (*-) Complete the proof of $O(\log n)$ -embeddability of any *n*-point metric space (X, μ) into ℓ_2 by showing that the embedding $f: X \to \ell_2^{2^n}$ constructed in the lecture satisfies $||f(x) - f(y)||_2 \le \mu(x, y)$ for every $x, y \in X$.

Exercise 5 (-) Let Q_d be a *d*-dimensional Hamming cube. Prove that the number of vertices of Q_d is 2^d and the number of edges of Q_d is $d2^{d-1}$.

Exercise 6 (-) For any four points $x_1, x_2, x_3, x_4 \in \mathbb{R}^d$ it holds that $||x_1 - x_3||_2^2 + ||x_2 - x_4||_2^2 \leq ||x_1 - x_2||_2^2 + ||x_2 - x_3||_2^2 + ||x_3 - x_4||_2^2 + ||x_4 - x_1||_2^2$. Prove it.

Exercise 7 (*) Prove that a *d*-dimensional Hamming cube (with unit edge-weight) can be embedded into ℓ_2 with distortion \sqrt{d} . Hint: You may want to be natural, I believe.

Exercise 8 The diameter of a graph G = (V, E) is the maximum length of a shortest path between two vertices, and is denoted by diam(G). Prove that every graph G (with unit edge-weight) can be embedded into ℓ_2 with distortion diam(G). Hint: You may like the triviality, I believe.

Exercise 9 (*) The Laplacian matrix L_G of a graph G is an $n \times n$ matrix (where n = |V(G)|), with both rows and columns indexed by the vertices of G, defined as

$$(L_G)_{uv} = \begin{cases} \deg(u) & \text{if } u = v, \\ -1 & \text{if } u \neq v, \text{ and } \{u, v\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

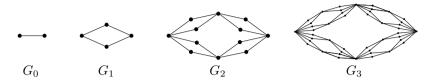
Remember that deg(u) represents the degree of u, namely the number of edges incident to u. Notice that L_G is symmetric and positive semidefinite. Namely, L_G has n non-negative real eigenvalues $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_n$. The goal of this exercise is to show that if G is r-regular (the degree of each vertex is exactly r) and $\mu_2 \ge \beta$ for some constants r and β , then every D-embedding of the shortest-path metric on G (with unit edge-weight) into ℓ_2 must satisfy $D \ge c \log n$ for some constant c > 0 which only depends on r and β , not on n. The result is due to Linial, London, and Rabinovich (1995).

- 1. Show that $\mu_1 = 0$ and $\mu_2 = \min\{x^\top L_G x \colon x \in \mathbb{R}^n, \|x\|_2 = 1, \sum_{v \in V} x_v = 0\}$. Note that the coordinates of $x \in \mathbb{R}^n$ are indexed by the vertices of G. This requires some linear algebra, of course. For the latter, you may need to use a fact that a symmetric real matrix has real eigenvalues only and the corresponding eigenvectors form an orthogonal basis.
- 2. Let $f: V \to \ell_2^k$ be a *D*-embedding. As in the lecture, let μ be the shortest-path metric on *G* with unit edge-weight, and ν the metric on *V* defined as $\nu(x, y) = ||f(x) f(y)||_2$. Further, let E = E(G) and $F = \binom{V(G)}{2}$. Prove that $\operatorname{ave}_2(\mu, E) = 1$ and $\operatorname{ave}_2(\mu, F) = \Omega(\log n)$. Here, the constant hidden in the order notation may depend on r (and β). This implies that $R_{E,F}(\mu) = \Omega(\log n)$.

3. In the same set-up as above, prove that $R_{E,F}(\nu) = O(1)$ (again the constant hidden in the order notation may depend on r and β). You may first observe that it suffices to show that $\sum_{\{u,v\}\in F} \nu(u,v)^2 = O(n\sum_{\{u,v\}\in E} \nu(u,v)^2)$. Then, use the first part of this exercise at some point.

Summing up, we obtain $D \ge R_{E,F}(\mu)/R_{E,F}(\nu) = \Omega(\log n)$. Note: A series of r-regular graphs with a lower-bounded second eigenvalue exist, and they are called constant-degree expanders.

Exercise 10 (*) Let G_0, G_1, \ldots be the graphs below.



In general, G_{i+1} is constructed from G_i by replacing each edge by a square with two new vertices. Prove that any embedding of the shortest-path metric on G_k (with unit edge-weight) into ℓ_2 has distortion at least $\sqrt{k+1}$. Hint: As a proof from the lecture find suitable E and F, and use the short diagonals lemma. Note: This shows that the distortion of an embedding of a planar-graph metric into ℓ_2 can be $\Omega(\sqrt{\log n})$. The result is due to Newman and Rabinovich (2003).

Exercise 11 (*) Prove that every *n*-point metric space can be embedded into ℓ_p with distortion $O(\log n)$ where $p \ge 1$ is arbitrary. Hint: Modify the embedding used for ℓ_2 in the lecture. You may use the following *Hölder's inequality:* for every p, q with $1 \le p \le \infty$, $1 \le q \le \infty$, 1/p + 1/q = 1 and for all $x, y \in \mathbb{R}^d$ it holds that $\|x\|_p \|y\|_q \ge \sum_{i=1}^d |x_i y_i|$.

Exercise 12 (*) Prove that every tree metric can be isometrically embedded into ℓ_1 .

Exercise 13 Give an example of a finite metric space that is not a planar-graph metric. Warning: A shortest-path metric on a non-planar graph can be a planar-graph metric. You have to *prove* your metric space is not a planar-graph metric.

Exercise 14 Let G = (V, E) be a complete binary tree of height h. The goal of this exercise is to give an $O(\sqrt{\log h})$ -embedding of G (with unit edge-weight) into ℓ_2 , which is due to Bourgain (1986). Note that $h = O(\log n)$. We construct an embedding $f: V \to \ell_2^{n-1}$ as follows. First, we consider the coordinates of ℓ_2^{n-1} are indexed by the vertices of G except for the root. For each non-root vertex $u \in V$ we define

$$f(v)_u = \begin{cases} \sqrt{\operatorname{depth}(v) - \operatorname{depth}(u) + 1} & \text{if } u \text{ is an ancestor of } v, \\ 0 & \text{otherwise.} \end{cases}$$

Note that depth(v) is the distance from the root to v. Prove that the distortion of f is $O(\sqrt{\log h})$.

Exercise 15 The diameter of a finite set X in a normed space $(\mathbb{R}^d, \|\cdot\|)$ is defined as $\max\{\|x-y\|: x, y \in X\}$. Show that the diameter of an *n*-point set in ℓ_{∞}^d can be computed in O(dn) time. Remark: This shows that the space ℓ_{∞}^d is "nice" in terms of the diameter computation.