
NHC Autumn School Low-Distortion Embeddings of Metric Spaces
Exercises Yoshio Okamoto

Most of the exercises are taken from J. Matoušek’s “Lectures on Discrete Geometry,” Springer 2002.
Legend: (∗) highly recommended; (−) easy

Exercise 1 (−) This exercise is provided for those who are not familiar with metric spaces and normed
spaces. Given a normed space (X, ‖ · ‖), we define µ : X × X → R+ as µ(x, y) = ‖x − y‖. Show that (X,µ)
is a metric space.

Exercise 2 (−) Show that every finite metric space is a shortest-path metric on a graph.

Exercise 3 Prove that every n-point metric space can be embedded into `n−1
∞ with distortion 1. Note: In

the lecture we have shown that every n-point metric space can be embedded into `n
∞ with distortion 1. The

goal of this exercise is to improve the dimension by one.

Exercise 4 (∗−) Complete the proof of O(log n)-embeddability of any n-point metric space (X, µ) into `2
by showing that the embedding f : X → `2

n

2 constructed in the lecture satisfies ‖f(x)− f(y)‖2 ≤ µ(x, y) for
every x, y ∈ X.

Exercise 5 (−) Let Qd be a d-dimensional Hamming cube. Prove that the number of vertices of Qd is 2d

and the number of edges of Qd is d2d−1.

Exercise 6 (−) For any four points x1, x2, x3, x4 ∈ Rd it holds that ‖x1−x3‖2
2 + ‖x2−x4‖2

2 ≤ ‖x1−x2‖2
2 +

‖x2−x3‖2
2 + ‖x3−x4‖2

2 + ‖x4−x1‖2
2. Prove it.

Exercise 7 (∗) Prove that a d-dimensional Hamming cube (with unit edge-weight) can be embedded into
`2 with distortion

√
d. Hint: You may want to be natural, I believe.

Exercise 8 The diameter of a graph G = (V, E) is the maximum length of a shortest path between two
vertices, and is denoted by diam(G). Prove that every graph G (with unit edge-weight) can be embedded
into `2 with distortion diam(G). Hint: You may like the triviality, I believe.

Exercise 9 (∗) The Laplacian matrix LG of a graph G is an n × n matrix (where n = |V (G)|), with both
rows and columns indexed by the vertices of G, defined as

(LG)uv =





deg(u) if u = v,

−1 if u 6= v, and {u, v} ∈ E(G),
0 otherwise.

Remember that deg(u) represents the degree of u, namely the number of edges incident to u. Notice that
LG is symmetric and positive semidefinite. Namely, LG has n non-negative real eigenvalues 0 ≤ µ1 ≤ µ2 ≤
· · · ≤ µn. The goal of this exercise is to show that if G is r-regular (the degree of each vertex is exactly r)
and µ2 ≥ β for some constants r and β, then every D-embedding of the shortest-path metric on G (with
unit edge-weight) into `2 must satisfy D ≥ c log n for some constant c > 0 which only depends on r and β,
not on n. The result is due to Linial, London, and Rabinovich (1995).

1. Show that µ1 = 0 and µ2 = min{x>LGx : x ∈ Rn, ‖x‖2 = 1,
∑

v∈V xv = 0}. Note that the coordinates
of x ∈ Rn are indexed by the vertices of G. This requires some linear algebra, of course. For the
latter, you may need to use a fact that a symmetric real matrix has real eigenvalues only and the
corresponding eigenvectors form an orthogonal basis.

2. Let f : V → `k
2 be a D-embedding. As in the lecture, let µ be the shortest-path metric on G with unit

edge-weight, and ν the metric on V defined as ν(x, y) = ‖f(x) − f(y)‖2. Further, let E = E(G) and
F =

(
V (G)

2

)
. Prove that ave2(µ,E) = 1 and ave2(µ, F ) = Ω(log n). Here, the constant hidden in the

order notation may depend on r (and β). This implies that RE,F (µ) = Ω(log n).



3. In the same set-up as above, prove that RE,F (ν) = O(1) (again the constant hidden in the order nota-
tion may depend on r and β). You may first observe that it suffices to show that

∑
{u,v}∈F ν(u, v)2 =

O(n
∑

{u,v}∈E ν(u, v)2). Then, use the first part of this exercise at some point.

Summing up, we obtain D ≥ RE,F (µ)/RE,F (ν) = Ω(log n). Note: A series of r-regular graphs with a
lower-bounded second eigenvalue exist, and they are called constant-degree expanders.

Exercise 10 (∗) Let G0, G1, . . . be the graphs below.

G0 G1 G2 G3

In general, Gi+1 is constructed from Gi by replacing each edge by a square with two new vertices. Prove
that any embedding of the shortest-path metric on Gk (with unit edge-weight) into `2 has distortion at least√

k + 1. Hint: As a proof from the lecture find suitable E and F , and use the short diagonals lemma. Note:
This shows that the distortion of an embedding of a planar-graph metric into `2 can be Ω(

√
log n). The

result is due to Newman and Rabinovich (2003).

Exercise 11 (∗) Prove that every n-point metric space can be embedded into `p with distortion O(log n)
where p ≥ 1 is arbitrary. Hint: Modify the embedding used for `2 in the lecture. You may use the following
Hölder’s inequality: for every p, q with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1/p + 1/q = 1 and for all x, y ∈ Rd it holds
that ‖x‖p‖y‖q ≥

∑d
i=1 |xiyi|.

Exercise 12 (∗) Prove that every tree metric can be isometrically embedded into `1.

Exercise 13 Give an example of a finite metric space that is not a planar-graph metric. Warning: A
shortest-path metric on a non-planar graph can be a planar-graph metric. You have to prove your metric
space is not a planar-graph metric.

Exercise 14 Let G = (V, E) be a complete binary tree of height h. The goal of this exercise is to give
an O(

√
log h)-embedding of G (with unit edge-weight) into `2, which is due to Bourgain (1986). Note that

h = O(log n). We construct an embedding f : V → `n−1
2 as follows. First, we consider the coordinates of

`n−1
2 are indexed by the vertices of G except for the root. For each non-root vertex u ∈ V we define

f(v)u =

{√
depth(v) − depth(u) + 1 if u is an ancestor of v,

0 otherwise.

Note that depth(v) is the distance from the root to v. Prove that the distortion of f is O(
√

log h).

Exercise 15 The diameter of a finite set X in a normed space (Rd, ‖·‖) is defined as max{‖x−y‖ : x, y ∈ X}.
Show that the diameter of an n-point set in `d

∞ can be computed in O(dn) time. Remark: This shows that
the space `d

∞ is “nice” in terms of the diameter computation.
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