Efficient Algorithms for Integer Programming

Research Problem

Is there an O(m + s) algorithm for integer programming in fixed
dimension?

What is integer programming

v

Variables: x(1), ..., x(rn)

v

Linear constraints: aj x(1) +--- + ajpx(n) < b(i), fori=1,...,m

v

Linear objective function: c(1)x(1) + - - - + c(n)x(n)

v

Task: Find integer assignment to x(1),..., x(n) such that all
constraints are satisfied and objective function is maximized.

Geometric interpretation
» Given a (bounded) Polyhedron P={xe R" | Ax< b}

» Find vertex of the integer hull P; of P which maximizes

objective function ¢’ x

Geometric interpretation
» Given a (bounded) Polyhedron P={xe R" | Ax< b}

» Find vertex of the integer hull P; of P which maximizes

objective function ¢’ x

Geometric interpretation
» Given a (bounded) Polyhedron P={xe R" | Ax< b}

» Find vertex of the integer hull P; of P which maximizes

objective function ¢’ x

A first simple result in fixed dimension

How many extreme points (vertices) can P; have?

A first simple result in fixed dimension

How many extreme points (vertices) can P; have?
Consider a Knapsack Polyhedron defined by integral data

al)x()+---+amx(n)<pf, x=0
And two different vertices of P;
(x(1),...,x(m)) and (y(1),...,y(n)

and suppose that [log(x(7))] = [log(y(d))] fori=1,...,n.

A first simple result in fixed dimension
How many extreme points (vertices) can P; have?
Consider a Knapsack Polyhedron defined by integral data
al)x(1)+---+amx(n)<p, x=0
And two different vertices of P;
(x(1),...,x(m)) and (¥1),...,y(n)

and suppose that [log(x(7))] = [log(y(d))] fori=1,...,n.
Then

» 2-x—y=0and2-y—x=0
»a (2 x-p+2-y-n)=alx+y) <2-
W.l.o.g. one can assume that al2-x— y)<p.
But then 1/2(2-x—y) +1/2-y = x which contradicts that x is a vertex.

The number of extreme points is polynomial

» Consider simplex with vertex 0
S={xeR"|Bx=0,a’x< B}

with Be 7™ " invertible.
» S={xeR"|Bx=0, (B 'a)’(Bx) < B}
» x€ Z"isvertex of S;if and only if Bx is vertex of conv(K n A(B))
with
K={xeR"|x=0, B 'a)Tx<p}

Exercise

Show that the number of vertices of conv(K n A(B)) is polynomial in
fixed dimension.

The number of extreme points is polynomial

By triangulation of P:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let Ax < b be an integral system of inequalities, where Ae Z™" and
be Z™ and n is fixed. The integer hull P; of P={x e R" | Ax< b} has a
polynomial number of extreme points.

polynomial in binary encoding length of Aand b

The number of extreme points is polynomial

By triangulation of P:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let Ax < b be an integral system of inequalities, where Ae Z™" and
be Z™ and n is fixed. The integer hull P; of P={x e R" | Ax< b} has a
polynomial number of extreme points. O(m' - s™)

polynomial in binary encoding length of Aand b

Tight bounds for simplices: Bardny, Howe & Lovasz 1992

Cook, Hartmann, Kannan & McDiarmid 1992

Polynomial algorithms for IP in fixed dimension

GCDs and IP

Theorem
gcd(a, b) =minf{xa+yb|x,ye Z, xa+yb= 1}

minimize xa+yb
condition xa+ybz1
X, yeZ.

GCDs and IP

Theorem
gcd(a, b) =minf{xa+yb|x,ye Z, xa+yb= 1}

minimize xa+yb
condition xa+ybz1
X, yeZ.

Integer Programming: Combinatorics & Number Theory

Complexity of IP

Complexity measure:
» Arithmetic model: Count number of arithmetic operations

» Size of numbers: Encoding length of numbers in course of
algorithm remains small

m: Number of constraints
s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed
dimension.

Complexity of IP

Complexity measure:
» Arithmetic model: Count number of arithmetic operations

» Size of numbers: Encoding length of numbers in course of
algorithm remains small

m: Number of constraints
s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed
dimension.

> O(m+ s) for feasibility

» O(s- (m+ 9)) for optimization

Flatness theorem

Width of P along ¢, w.(P): max{c x| xe P} —min{c x| xe P}

Theorem (Khinchine’s flatness theorem)

If P; = @, then there exists integral ¢ # 0 such that width of P along c
is < constant f

Flatness theorem

Width of P along ¢, w.(P): max{c x| xe P} —min{c x| xe P}

Theorem (Khinchine’s flatness theorem)

If P; = @, then there exists integral ¢ # 0 such that width of P along c
is < constant f

Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of the
constant number of hyperplanes
(lower dimension)

Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of the
constant number of hyperplanes
(lower dimension)

Lenstra’s IP algorithm

f
’
N\
) —

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of the
constant number of hyperplanes
(lower dimension)

Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of the
constant number of hyperplanes
(lower dimension)

Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of the
constant number of hyperplanes
(lower dimension)

Width of a triangle

» Wlo.g. 0is avertex

Width of a triangle
» Wlo.g. 0is avertex

» Width along cis
max{cTu, CTU, 0} — min{cT u, CTU, 0}

Width of a triangle
» Wlo.g. 0is avertex
» Width along cis
max{cTu, CTU, 0} — min{cT u, CTU, 0}

> |la—b| <|al+|b| = width along ¢
T
< 2max{lc"ul, [T v} = 211(%) clloo

Width of a triangle
» Wlo.g. 0is avertex
» Width along cis
max{cTu, CTU, 0} — min{cT u, CTU, 0}
> |la—b| <|al+|b| = width along ¢
<2max{|clul, [cTv]} =2 II(‘;?)CIIOO

T
> >maxilc"ul, [T vl = (%) clloo

Width of a triangle
» Wlo.g. 0is avertex

» Width along cis
max{cTu, CTU, 0} — min{cT u, CTU, 0}
> |la—b| <|al+|b| = width along ¢
T
< 2max{lc"ul, [T v} = 211(%) clloo
T
> >maxilc"ul, [T vl = (%) clloo

» Width of triangle = length of shortest
vector w.r.t. £, of lattice

A={(%4)xlxeZ?).

Shortest vectors in dimension 2

A fraction x/y with y = 1 is a best approximation of a € R if
ly-a—x| <y -a—x/| for each fraction x'/y with1 <y <y.

Exercise

Consider the lattice A = {(§2)(7)I(7) € Z?}. Prove the following
statement.

A shortest vector of A is either (§), (2) or is of the form (_x';f;y b),

where x/y is a best approximation of a = b/ a.

Notice: The best approximations of a rational number can be
computed in linear time with the Euclidean Algorithm

Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.

Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

» Compute shortest vector A-c, c€ Z2, v
where A= (§-%)

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.

Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

» Compute shortest vector A-c, c€ Z2, v
where A= (§-%)

» Ifmax{c’x|xe T} —min{cl x| xe T} >
f(2), then T feasible

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.

Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

» Compute shortest vector A-c, c€ Z2, v
where A= (§-%)

» Ifmax{c’x|xe T} —min{cl x| xe T} >
f(2), then T feasible

» Else decide feasibility of line segments "

Tnc'x=6),6€z

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.

Complexity

v

Shortest vector computation in linear time

v

Line segments can be checked in linear time

v

IP feasibility of triangle decidable in linear time

v

Integer feasibility of polygons can be decided in polynomial
time via triangulation O(m- s)

Effient algorithms for IP-optimization in the
plane

IP in the plane: History

m: Number of constraints

s: largest binary encoding length of coefficient

Method

‘ Complexity
Kannan 1980, Scharf 1981 polynomial
Lenstra 1983 O(ms+s%)

Feit 1984

O(mlogm+ ms)

Zamanskij and Cherkasskij 1984

O(mlogm+ ms)

Kanamaru, Nishizeki and Asano 1994

O(mlogm+ys)

E. and Rote 2000 O(m+ (logm) s)

E. 2003 O(m+ (logm) s)
E. & Laue 2004 O(m+5s)

Feasibility test + Euclidean algorithm ‘

O(m+ys)

any fixed dimension

Prune & Search: Dealing with the combinatorics

Megiddo’s Algorithm for LP in the plane

» Partition constraints
into “down” and “up”

K constraints
~

e
Siéx/

Megiddo’s Algorithm for LP in the plane

» Partition constraints
into “down” and “up”

>< constraints

» Pair “up-constraints”
arbitrarily

Megiddo’s Algorithm for LP in the plane

» Partition constraints

into “down” and “up”
T>< constraints

» Pair “up-constraints”
arbitrarily

» Compute median of
intersections

Megiddo’s Algorithm for LP in the plane

» Partition constraints

into “down” and “up”
f>< constraints

» Pair “up-constraints”
arbitrarily

» Compute median of
intersections

» Decide whether
optimum is left or right

Megiddo’s Algorithm for LP in the plane

» Partition constraints

into “down” and “up
f » Pair “up-constraints”

arbitrarily

» Compute median of
intersections

» Decide whether
optimum is left or right

» Prune 1/4-th of
constraints

Megiddo’s Algorithm for LP in the plane

» Each round at least 1/4-th of the constraints pruned
» Each round costs linear time

» Overall cost is linear

Theorem (Megiddo 1983)

A linear program in the plane with m constraints can be solved in
O(m).

Combining Prune&Search with feasibility
algorithm

Partitioning the Polygon

x(1)

Partitioning the Polygon

x(1)

Partitioning the Polygon

x(1)

Upper right kind

Upper right kind

» Consider Pnx(1) = ¢

Upper right kind

» Consider Pnx(1) = ¢

» Width of triangle is about
width of Pnx(1) = ¢

Upper right kind

» Consider Pnx(1) =/¢

» Width of triangle is about
width of Pnx(1) = ¢

» Determine position ¢, for
which width of triangle is
L+e

Upper right kind

» Consider Pnx(1) =/¢

» Width of triangle is about
width of Pnx(1) = ¢

» Determine position ¢, for
which width of triangle is
h+e

» Reduce problem to a
constant number of
problems on the line

//)

Prune & Search

» Principle: Improve [, and

lright

T

/>

Liefr Lright

Prune & Search

—~ x » Principle: Improve [, and

lright

Liefr Lright

» Pair constraints arbitrarily

Prune & Search

—~—

e

Liefr

/

Ny

» Principle: Improve /5 and
lright
» Pair constraints arbitrarily

» Compute median of

> intersections

lmedian

lright

Prune & Search

—~—

i

Liefr

\
/

Ny

=

lmedian

lright

Principle: Improve [, and
lright

Pair constraints arbitrarily
Compute median of
intersections

Compute width of triangle
defined by median

Prune & Search

N

T

/

>

Liefr

lright

Principle: Improve [, and
lright
Pair constraints arbitrarily

Compute median of
intersections

Compute width of triangle
defined by median

Update bounds

Prune & Search

-

T

/

>

Liefr

lright

Principle: Improve [, and
lright
Pair constraints arbitrarily

Compute median of
intersections

Compute width of triangle
defined by median

Update bounds

Prune 1/4-th of constraints

Analysis

» Each round 1/4-th of constraints pruned

Analysis

» Each round 1/4-th of constraints pruned

» Computing median is linear

Analysis

» Each round 1/4-th of constraints pruned
» Computing median is linear

» Running time without width checking: O(m)

Analysis

v

Each round 1/4-th of constraints pruned

v

Computing median is linear

v

Running time without width checking: O(m)

v

Number of checked triangles: O(log m)

Analysis

v

Each round 1/4-th of constraints pruned

v

Computing median is linear

v

Running time without width checking: O(m)

v

Number of checked triangles: O(log m)
Cost for width checking: O(s)

v

Analysis

v

Each round 1/4-th of constraints pruned

v

Computing median is linear

v

Running time without width checking: O(m)

v

Number of checked triangles: O(log m)
Cost for width checking: O(s)

Total cost O(m + slogm)

v

v

The checked triangles

» Let (;‘;) be the matrix of
® one prototype triangle

The checked triangles

» Let (Z;) be the matrix of
¢ one prototype triangle
» Query: Givena €@, €@
compute shortest vector

of lattice .
A={a(g,r)xlxeZ?

The checked triangles

» Let (Z;) be the matrix of

¢ one prototype triangle
» Query: Givena €@, €@
compute shortest vector
of lattice .
A={a(g,r)xlxeZ?

» a can be neglected

The checked triangles

» Let (;‘;) be the matrix of

¢ one prototype triangle
» Query: Givena €@, €@
compute shortest vector
of lattice .
A={a(g,r)xlxeZ?

» a can be neglected

QUERY:
Given £ € Q, compute shortest vector of lattice

A={(pr)xlxe 7%

Batching the width checks

Theorem
Shortest vector of A ={({ .)x| xe Z%} is (_);“Ecyb), where x/y
convergent of bl a.

» Preprocessing: Compute list of convergents
x(1)/yQ1),...,x(k)/y(k) of b/ a

» Complexity: O(s)

Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| — x(j) a+y(j) bl, 1B y(j) cl}

Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| - x(j) a+y(j) bl, |By()) cl}
» Sequence | — x(j) a+ y(j) b| is decreasing

Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| - x(j) a+y(j) bl, |By()) cl}
» Sequence | — x(j) a+ y(j) b| is decreasing

» Sequence |By(j) c| is increasing

Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| — x(j) a+y() bl, |By()) cl}

» Sequence | — x(j) a+ y(j) b| is decreasing

» Sequence |By(j) c| is increasing

» Binary search: One query costs O(log(s))

Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| — x(j) a+y() bl, |By()) cl}

» Sequence | — x(j) a+ y(j) b| is decreasing

» Sequence |By(j) c| is increasing

» Binary search: One query costs O(log(s))

» Preprocessing and O(log m) queries: O(s+logm-logs)

Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| - x(j) a+y(j) bl, | By(j) cl}
» Sequence | — x(j) a+ y(j) b| is decreasing
» Sequence |By(j) c| is increasing
» Binary search: One query costs O(log(s))
» Preprocessing and O(log m) queries: O(s+logm-logs)

» With prune & search O(m + s)

Total complexity

Theorem (E. & Laue)
IP in the plane can be solved in O(m+ s).

Linear Programming

Quiz

» H={l,...,n}, re H, Re (!!) drawn uniformly at random
» Vep=min{ie R} -1
» Whatis E[VEg] ?

Quiz

» H={l,...,n}, re H, Re (!!) drawn uniformly at random
» Vep=min{ie R} -1
» Whatis E[Vg] 2

Quiz

» H={l,...,n}, re H, Re (!!) drawn uniformly at random
» Vep=min{ie R} -1
» Whatis E[Vg] 2

Answer: (n—n/(r+1)

Proof
1 ifj<min{ie Q},

v

For Q< H and j€ H define y(Q,)) = .
0 otherwise.

v

E[Vg] = ZRE(I;I) ZjEH\RX(R’j))/(’;)

Onehas (¥)-(n—-n=(,}1) - r+1)
Thus

v

v

(7)-ELVRl = 3 2 x(Q-{hb

o]
m
—
<
Ry
~—
~.
i

v

Thus E[Vgl = (,/1)/(})=(n-nIr+1)

Linear Programming
» Given: Set H of m linear constraints in R and
H ={x() <M|i=1,...,d} explicit upper bounds
» For GS H, x*(G) is lex. max. point satisfying all he GU H™
» Task: Compute x* (H)

Bc His called Basis of G, if x*(B) = x* (H) and for each b € Bone has
x*(B—h) > x*(B).

Lemma

Let B be a basis of H and let GS H. One has x* (G) > x* (H) ifand
only if there exists b € B with x*(G) violates b.

Quiz
» Choose Re () uniformly at random
» Vr=1{he H|x*(R) violates h}
» Whatis E[|Vg|] 2

Quiz
» Choose Re () uniformly at random
» Vr=1{he H|x*(R) violates h}
» Whatis E[|Vg|] 2

Answer: at most (m—nr)/(r+1))-d

Proof
> EOVill = (£ ey Vi) /()

1 if x*(Q) violates h,

» For Q< H and h e H define y(Q, h) = .
0 otherwise.

i

E(|VRI)

> Y xRh

Re (Irf) he H\R

Z Z 1(Q—h,h)

Qe(,f) heQ

Y d

Qe(,1)

7):

n

Sampling Lemma

Lemma (Clarlskon 1995 see also Gartner & Welzl 1996)

Let G and H (multi-)sets of constraints |H| = mand let1 <r < m.
Then for random Re (*):

E[|VRll <dm—-n/(r+1),

where Vg ={he H| x*(GU R) violates h}.

Sampling Lemma

Lemma (Clarlskon 1995 see also Gartner & Welzl 1996)

Let G and H (multi-)sets of constraints |H| = mand let1 <r < m.
Then for random Re (*):

E[|VRll <dm—-n/(r+1),

where Vg ={he H| x*(GU R) violates h}.

Set r=[d-\/m] then

EllVgll<sd-(m—=1/(r+1) <Dmi/r<vm.

Clarkson’s algorithm I

1. Input: Hwith |[H|=m
2. r—d-\v/m

Clarkson’s algorithm I
1. Input: Hwith |[H|=m
2. r—d-vm Sample size
3. G—¢

Clarkson’s algorithm I

1. Input: Hwith |[H|=m

2. r—d-vm Sample size
3. G—9 Contains optimal basis in the end
4. REPEAT

4.1 Choose random Re (")
4.2 Compute x* =x*(GUR)

Clarkson’s algorithm I

1. Input: Hwith |[H|=m

2. r—d-vm Sample size
3. G—9 Contains optimal basis in the end
4. REPEAT

4.1 Choose random Re (")
4.2 Compute x* =x*(GUR)
4.3 Vg« {he H|x* violates h}
4.4 IF|Vgl<2ym

with some other algorithm

Clarkson’s algorithm I

A e

Input: Hwith |[H|=m

r—d-vm Sample size
G—9 Contains optimal basis in the end
REPEAT

4.1 Choose random Re (")

4.2 Compute x* =x*(GUR) with some other algorithm

4.3 Vg« {he H|x* violates h}

4.4 IF|Vgl<2vVm With probability = 1/2 true

THEN G« GU Vg,

Clarkson’s algorithm I

A e

Input: Hwith |[H|=m

r—d-vm Sample size
G—9 Contains optimal basis in the end
REPEAT

4.1 Choose random Re (")

4.2 Compute x* =x*(GUR) with some other algorithm

4.3 Vg« {he H|x* violates h}

4.4 IF|Vgl<2vVm With probability = 1/2 true

THEN G<— GuU Vg, successful iteration

. UNTIL Vg= @

Clarkson’s algorithm I

1. Input: Hwith |[H|=m
2. r—d-vm Sample size
3. G—9 Contains optimal basis in the end
4. REPEAT
4.1 Choose random Re (")
4.2 Compute x* =x*(GUR) with some other algorithm
4.3 Vg« {he H|x* violates h}
4.4 IF|Vgl<2vVm With probability = 1/2 true
THEN G<— GuU Vg, successful iteration

5. UNTIL V=9

At most d successful iterations
Invariant: G contains at most 2 - d-y/m constraints

Example
R G,B

~

Example
R G,B

~

Analysis
In Step (4.c): E[|V]] < vm.
Let Bbe optimal basis.
» Each successful iteration, a new element of B enters G
» Thus at most d succ. it.
P(|Vg| > 2y/m) < 1/2 Markow inequality

Expected number of iterations is 2d

v

v

Clarkson 1 performs:

» Expected 2d calls to linear programming oracle with at most
3-d+/m constraints

» Expected number of O(d? - m) arithmetic operations

Clarkson’s algorithm II

»

»

»

Each h e H is assigned a multiplicity py,.
In the beginning pj, =1 forall he H.
Sample size ris small

Idea: If x* (R) violates h, then multiplicity/probability is
doubled

Constraints of optimum basis become much more likely to be
drawn next time

We stop if R contains optimum basis

Example
RB

~

Example
RB

~

Clarkson 2

1. INPUT: H, |H|=m
2. r—6-d?

Clarkson 2
1. INPUT: H, |H|=m

2. r—6-d? sample size
3. REPEAT:
3.1 Choose random Re (*)

Clarkson 2

1. INPUT: H, |H|=m
2. r—6-d?
3. REPEAT:

3.1 Choose random Re (*)
3.2 Compute x* = x*(R),

sample size

will contain optimum basis

Clarkson 2

1. INPUT: H, |H|=m

2. r—6-d? sample size
3. REPEAT:
3.1 Choose random Re (*) will contain optimum basis
3.2 Compute x* = x*(R), with some other algorithm

3.3 Vg {he H| x* violates h}
3.4 IF u(Vg) <1/(Bd)u(H)

Clarkson 2

1. INPUT: H, |H|=m

2. r—6-d?

3. REPEAT:
3.1 Choose random Re (*)
3.2 Compute x* = x*(R),
3.3 Vg {he H| x* violates h}

3.4 IF p(Vp) < 1/(3d)u(H)
THEN for all he Vdo uy —2pup

sample size

will contain optimum basis
with some other algorithm

probability = 1/2

Clarkson 2

1. INPUT: H, |H|=m
2. r—6-d?
3. REPEAT:

3.1 Choose random Re (*)
3.2 Compute x* = x*(R),
3.3 Vg {he H| x* violates h}
3.4 IF p(VR) < 1/(3d)u(H)
THEN for all he Vdo uy —2pup

4. UNTIL Vp=¢

sample size

will contain optimum basis
with some other algorithm

probability = 1/2
re-weighting

Lemma
B optimal basis, after kd successful iterations (entering re-weighting
step):

2k < U(B) < mer’3, for basis B of H.

Proof:
> After k- d iterations: u(B) = 2*
» Also u(B) < pu(H) and
» After re-weighting:
u(H) < poig(H) +1/8d) - p(H) = 1+ 1/ @B d) oa(H)
> Initially u(H) = m
» Thus u(H) < m-(1+1/3d)*4<m- 3

Complexity Clarkson 2

» 2k < me*’3 implies k€ O(log m)

» Expected number of O(d-log m) iterations

Clarkson 2 requires
» expected number of O(d? mlogm) arithmetic operations

» expected 6d In m base cases with 6- d? constraints

Combining Clarkson 1 and 2

» O(d? - m) arithmetic operations
» 2-d calls to Clarkson 2 on O(d\/m) constraints

» O(d?+/mlog m) arithmetic operations
» O(dlogm) calls to LP-oracle with 6 - d? constraints

Linear program can be solved
» with expected O(d® - m) arithmetic operations

» and O(d? -log m) oracle calls to solve an LP with 6 - d?
constraints

» in linear time if d is fixed

(Clarkson 1995)

Integer Programming
» Given set H of m integral constraints in dimension d and
H™ ={x() <M|i=1,...,d} explicit bound constraints.
» For G< H, x*(G) is lex. max. integer point satisfying Gand H™.
» Task: Compute x* (H).

A theorem of Bell and Scarf

Theorem

Let H be a set of rational linear constraints in R%. If there does not
exist an integer point which satisfies all constraints, then there exists
a subset BS H with |B| < 29 such that there does not exist an integer
point which satisfies all constraints in B.

Proof

» Let H be minimal such that H
has no feasible integer point,
m=|H|> 24

> Assume constraints are al.Tx < B

i=1,..,m, where q; and f3; are

integers

Proof

Let H be minimal such that H
has no feasible integer point,
m=|H|> 24

Assume constraints are al.Tx < B
i=1,..,m, where q; and f3; are
integers

For each aiTx < f;, there exists
integer solution y; which
satisfies all but the i-th
constraint.

Proof

» Let H be minimal such that H
has no feasible integer point,
m=|H|> 24

> Assume constraints are al.Tx < B
i=1,..,m, where q; and f3; are
integers

» For each aiTx < f;, there exists
integer solution y; which
satisfies all but the i-th
constraint.

» Z=conv({y,...,ymtnZ"

Proof

Letyy,...,ym€Zs.t. Bi<y;,
system al.sz Yii=1,...,mhas
no solutionin Zand y; +---+ 7y,
is maximal

For each i there exists a z; € Z s.t.
ajzi=yi+1anda; z <y;for
each j#1i

Since m > 2" there exist i # j with
zi=zj (mod 2) =

1/2(z; + zj) € Z and satisfies all
constraints which is a
contradiction

Exercise
Prove the following theorem

Theorem

Let H be a set of linear constraints. If x* (H) exists then there exists a
subset B of H with |B| < 2% — 1 with x* (H) = x* (B).

» This Bis called a basis of H.

» D=2"-1is combinatorial dimension

Complexity of IP

v

Apply Clarkson’s algorithm

v

IP with m constraints in fixed dimension can be solved with
O(m) arithmetic operations and O(log m) oracle calls to solve
IP with fixed number of constraints.

v

IP with fixed number of constraints can be solved in time O(s)

v

Total running time: Expected O(m+logm + s)

