
Efficient Algorithms for Integer Programming



Research Problem

Is there an O(m+ s) algorithm for integer programming in fixed

dimension?



What is integer programming

Ï Variables: x(1), ...,x(n)

Ï Linear constraints: ai1x(1)+·· · +ainx(n) É b(i), for i = 1, . . . ,m

Ï Linear objective function: c(1)x(1)+·· · +c(n)x(n)

Ï Task: Find integer assignment to x(1), . . . ,x(n) such that all

constraints are satisfied and objective function is maximized.



Geometric interpretation

Ï Given a (bounded) Polyhedron P = {x ∈Rn | Ax É b}

Ï Find vertex of the integer hull PI of P which maximizes

objective function cT x
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A first simple result in fixed dimension

How many extreme points (vertices) can PI have?

Consider a Knapsack Polyhedron defined by integral data

a(1)x(1)+·· · +a(n)x(n) Éβ, x Ê 0

And two different vertices of PI

(x(1), . . . ,x(n)) and (y(1), . . . ,y(n))

and suppose that ⌊log(x(i))⌋ = ⌊log(y(i))⌋ for i = 1, . . . ,n.

Then

Ï 2 ·x−y Ê 0 and 2 ·y−x Ê 0

Ï aT
(

(2 ·x−y)+ (2 ·y−x)
)

= aT (x+y) É 2 ·β
W.l.o.g. one can assume that aT (2 ·x−y) Éβ.

But then 1/2(2 ·x−y)+1/2 ·y = x which contradicts that x is a vertex.



The number of extreme points is polynomial

Ï Consider simplex with vertex 0

S = {x ∈Rn | Bx Ê 0, aT x Éβ}

with B ∈Zn×n invertible.

Ï S = {x ∈Rn |Bx Ê 0, (B−1 a)T (Bx) Éβ}

Ï x ∈Zn is vertex of SI if and only if Bx is vertex of conv(K ∩Λ(B))

with

K = {x ∈Rn | x Ê 0, (B−1 a)T x Éβ}

Exercise

Show that the number of vertices of conv(K ∩Λ(B)) is polynomial in

fixed dimension.



The number of extreme points is polynomial

By triangulation of P:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let Ax É b be an integral system of inequalities, where A ∈Zm×n and

b ∈Zm and n is fixed. The integer hull PI of P = {x ∈Rn | Ax É b} has a

polynomial number of extreme points.

polynomial in binary encoding length of A and b



The number of extreme points is polynomial

By triangulation of P:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let Ax É b be an integral system of inequalities, where A ∈Zm×n and

b ∈Zm and n is fixed. The integer hull PI of P = {x ∈Rn | Ax É b} has a

polynomial number of extreme points. O(mn · sn)

polynomial in binary encoding length of A and b

Tight bounds for simplices: Bárány, Howe & Lovász 1992

Cook, Hartmann, Kannan & McDiarmid 1992



Polynomial algorithms for IP in fixed dimension



GCDs and IP

Theorem

gcd(a,b) = min{x a+y b | x,y ∈Z, x a+y b Ê 1}

minimize x a+y b

condition x a+y b Ê 1

x,y ∈Z.



GCDs and IP

Theorem

gcd(a,b) = min{x a+y b | x,y ∈Z, x a+y b Ê 1}

minimize x a+y b

condition x a+y b Ê 1

x,y ∈Z.

Integer Programming: Combinatorics & Number Theory



Complexity of IP

Complexity measure:

Ï Arithmetic model: Count number of arithmetic operations

Ï Size of numbers: Encoding length of numbers in course of

algorithm remains small

m: Number of constraints

s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed

dimension.



Complexity of IP

Complexity measure:

Ï Arithmetic model: Count number of arithmetic operations

Ï Size of numbers: Encoding length of numbers in course of

algorithm remains small

m: Number of constraints

s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed

dimension.

Ï O(m+ s) for feasibility

Ï O(s · (m+ s)) for optimization



Flatness theorem

Width of P along c, wc(P): max{cT x | x ∈ P}−min{cT x | x ∈ P}

Theorem (Khinchine’s flatness theorem)

If PI =;, then there exists integral c 6= 0 such that width of P along c

is É constant fn

P
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Lenstra’s IP algorithm
Ï Lenstra’s algorithm is an

algorithm for IP feasibility

Ï Computes width of polyhedron

Ï If width is to large, then return

feasible

Ï Otherwise, recursively search

for integer point on one of the

constant number of hyperplanes

(lower dimension)
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Width of a triangle
Ï W.l.o.g. 0 is a vertex

Ï Width along c is

max{cT u, cT v, 0}−min{cT u, cT v, 0}

Ï |a−b| É |a|+ |b| =⇒ width along c

É 2max{|cT u|, |cT v|}= 2‖
(

uT

vT

)

c‖∞
Ï Ê max{|cT u|, |cT v|} =‖

(

uT

vT

)

c‖∞
Ï Width of triangle ≈ length of shortest

vector w.r.t. ℓ∞ of lattice

Λ= {
(

uT

vT

)

x | x ∈Z2}.

tl

0

c

v

u



Shortest vectors in dimension 2

A fraction x/y with y Ê 1 is a best approximation of α ∈R if

|y ·α−x| É |y′ ·α−x′| for each fraction x′/y′ with 1 É y′ É y.

Exercise

Consider the latticeΛ=
{(

a b
0 c

)(x
y

)

|
(x

y

)

∈Z2
}

. Prove the following

statement.

A shortest vector of Λ is either
(

a
0

)

,
(

b
c

)

or is of the form
(−x·a+y·b

y·c
)

,

where x/y is a best approximation of α= b/a.

Notice: The best approximations of a rational number can be

computed in linear time with the Euclidean Algorithm



Deciding IP feasibility of triangles
Ï Given triangle T = conv{u,v,w}

u

v

w

Exercise

How can we efficiently decide, whether a line-segment contains an

integer point? Hint: Consider the line on which the segment lies and

apply a unimodular transformation with the help of the extended

Euclidean algorithm.
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Deciding IP feasibility of triangles
Ï Given triangle T = conv{u,v,w}

Ï Compute shortest vector A ·c, c ∈Z2,

where A =
(

v−u
w−u

)

Ï If max{cT x | x ∈ T }−min{cT x | x ∈ T }>
f (2), then T feasible

u

v

w

Exercise

How can we efficiently decide, whether a line-segment contains an

integer point? Hint: Consider the line on which the segment lies and

apply a unimodular transformation with the help of the extended

Euclidean algorithm.



Deciding IP feasibility of triangles
Ï Given triangle T = conv{u,v,w}

Ï Compute shortest vector A ·c, c ∈Z2,

where A =
(

v−u
w−u

)

Ï If max{cT x | x ∈ T }−min{cT x | x ∈ T }>
f (2), then T feasible

Ï Else decide feasibility of line segments

T ∩ (cT x = δ), δ ∈Z

u

v

w

Exercise

How can we efficiently decide, whether a line-segment contains an

integer point? Hint: Consider the line on which the segment lies and

apply a unimodular transformation with the help of the extended

Euclidean algorithm.



Complexity

Ï Shortest vector computation in linear time

Ï Line segments can be checked in linear time

Ï IP feasibility of triangle decidable in linear time

Ï Integer feasibility of polygons can be decided in polynomial

time via triangulation O(m · s)



Effient algorithms for IP-optimization in the
plane



IP in the plane: History

m: Number of constraints

s: largest binary encoding length of coefficient

Method Complexity

Kannan 1980, Scharf 1981 polynomial

Lenstra 1983 O(ms+ s2)

Feit 1984 O(m logm+ms)

Zamanskij and Cherkasskij 1984 O(m logm+ms)

Kanamaru, Nishizeki and Asano 1994 O(m log m+ s)

E. and Rote 2000 O(m+ (log m)s)

E. 2003 O(m+ (log m)s)

E. & Laue 2004 O(m+ s)

Feasibility test + Euclidean algorithm O(m+ s)

any fixed dimension



Prune & Search: Dealing with the combinatorics



Megiddo’s Algorithm for LP in the plane
Ï Partition constraints

into “down” and “up”

constraints
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Megiddo’s Algorithm for LP in the plane

Ï Each round at least 1/4-th of the constraints pruned

Ï Each round costs linear time

Ï Overall cost is linear

Theorem (Megiddo 1983)

A linear program in the plane with m constraints can be solved in

O(m).



Combining Prune&Search with feasibility
algorithm



Partitioning the Polygon
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Upper right kind

Ï Consider P∩x(1) Ê ℓ

Ï Width of triangle is about

width of P∩x(1) Ê ℓ

Ï Determine position ℓ, for

which width of triangle is

f2 +ε

Ï Reduce problem to a

constant number of

problems on the line
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Prune & Search

lleft lright

Ï Principle: Improve lleft and

lright

Ï Pair constraints arbitrarily

Ï Compute median of

intersections

Ï Compute width of triangle

defined by median

Ï Update bounds

Ï Prune 1/4-th of constraints



Analysis

Ï Each round 1/4-th of constraints pruned



Analysis

Ï Each round 1/4-th of constraints pruned

Ï Computing median is linear



Analysis

Ï Each round 1/4-th of constraints pruned

Ï Computing median is linear

Ï Running time without width checking: O(m)



Analysis

Ï Each round 1/4-th of constraints pruned

Ï Computing median is linear

Ï Running time without width checking: O(m)

Ï Number of checked triangles: O(log m)



Analysis

Ï Each round 1/4-th of constraints pruned

Ï Computing median is linear

Ï Running time without width checking: O(m)

Ï Number of checked triangles: O(log m)

Ï Cost for width checking: O(s)



Analysis

Ï Each round 1/4-th of constraints pruned

Ï Computing median is linear

Ï Running time without width checking: O(m)

Ï Number of checked triangles: O(log m)

Ï Cost for width checking: O(s)

Ï Total cost O(m+ s log m)



The checked triangles

Ï Let
(

uT

vT

)

be the matrix of

one prototype triangle
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The checked triangles

φ

Ï Let
(

uT

vT

)

be the matrix of

one prototype triangle

Ï Query: Given α ∈Q, β ∈Q

compute shortest vector

of lattice

Λ= {α
(

uT

βvT

)

x | x ∈Z2}

Ï α can be neglected

QUERY:

Given β ∈Q, compute shortest vector of lattice

Λ= {
(

uT

βvT

)

x | x ∈Z2}



Batching the width checks

Theorem

Shortest vector ofΛ= {
(

a b
0 βc

)

x | x ∈Z2} is
(−x a+y b

yβc

)

, where x/y

convergent of b/a.

Ï Preprocessing: Compute list of convergents

x(1)/y(1), . . . ,x(k)/y(k) of b/a

Ï Complexity: O(s)
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)
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Ï Search convergent x(j)/y(j) with minimal

max{|−x(j)a+y(j)b|, |βy(j)c|}
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Batching the width checks

Incoming query: Λ= {
(

a b
0 βc

)

x | x ∈Z2}

Ï Search convergent x(j)/y(j) with minimal

max{|−x(j)a+y(j)b|, |βy(j)c|}
Ï Sequence |−x(j)a+y(j)b| is decreasing

Ï Sequence |βy(j)c| is increasing

Ï Binary search: One query costs O(log(s))

Ï Preprocessing and O(log m) queries: O(s+ log m · log s)

Ï With prune & search O(m+ s)



Total complexity

Theorem (E. & Laue )

IP in the plane can be solved in O(m+ s).



Linear Programming



Quiz

Ï H = {1, . . . ,n}, r ∈ H , R ∈
(

H
r

)

drawn uniformly at random

Ï VR =min{i ∈ R}−1

Ï What is E[VR] ?
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Quiz

Ï H = {1, . . . ,n}, r ∈ H , R ∈
(

H
r

)

drawn uniformly at random

Ï VR =min{i ∈ R}−1

Ï What is E[VR] ?

Answer: (n− r)/(r +1)



Proof

Ï For Q ⊆ H and j ∈ H define χ(Q, j) =
{

1 if j < min{i ∈ Q},

0 otherwise.

Ï E[VR] =
(

∑

R∈
(

H
r

)

∑

j∈H\Rχ(R, j)

)

/
(

n
r

)

Ï One has
(

n
r

)

· (n− r) =
(

n
r+1

)

· (r +1)

Ï Thus

(

n
r

)

·E[VR] =
∑

Q∈
(

H
r+1

)

∑

j∈Q

χ(Q− {j}, j})

=
(

n
r+1

)

.

Ï Thus E[VR] =
(

n
r+1

)

/
(

n
r

)

= (n− r)/(r +1)



Linear Programming

Ï Given: Set H of m linear constraints in Rd and

H− = {x(i) É M | i = 1, . . . ,d} explicit upper bounds

Ï For G ⊆ H , x∗(G) is lex. max. point satisfying all h ∈ G∪H−

Ï Task: Compute x∗(H)

B ⊆ H is called Basis of G, if x∗(B) = x∗(H) and for each b ∈ B one has

x∗(B−h) > x∗(B).

Lemma

Let B be a basis of H and let G ⊆ H. One has x∗(G) > x∗(H) if and

only if there exists b ∈ B with x∗(G) violates b.



Quiz

Ï Choose R ∈
(

H
r

)

uniformly at random

Ï VR = {h ∈ H | x∗(R) violates h}

Ï What is E[|VR|] ?



Quiz

Ï Choose R ∈
(

H
r

)

uniformly at random

Ï VR = {h ∈ H | x∗(R) violates h}

Ï What is E[|VR|] ?

Answer: at most ((m− r)/(r +1)) ·d



Proof

Ï E[|VR|] =
(

∑

R∈(H
r ) |VR|

)

/
(m

r

)

Ï For Q ⊆ H and h ∈ H define χ(Q,h) =
{

1 if x∗(Q) violates h,

0 otherwise.

(

m

r

)

E(|VR|) =
∑

R∈(H
r )

∑

h∈H\R

χ(R,h)

=
∑

Q∈( H
r+1)

∑

h∈Q

χ(Q−h,h)

É
∑

Q∈( H
r+1)

d

=
(

m

r +1

)

·d.



Sampling Lemma

Lemma (Clarlskon 1995 see also Gärtner & Welzl 1996)

Let G and H (multi-)sets of constraints |H | = m and let 1É r É m.

Then for random R ∈
(H

r

)

:

E[|VR|] É d(m− r)/(r +1),

where VR = {h ∈ H | x∗(G∪R) violates h}.



Sampling Lemma

Lemma (Clarlskon 1995 see also Gärtner & Welzl 1996)

Let G and H (multi-)sets of constraints |H | = m and let 1É r É m.

Then for random R ∈
(H

r

)

:

E[|VR|] É d(m− r)/(r +1),

where VR = {h ∈ H | x∗(G∪R) violates h}.

Set r = ⌈d ·
p

m⌉ then

E[|VR|] É d · (m− r)/(r +1) É Dm/r É
p

m.
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2. r ← d ·
p

m
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Clarkson’s algorithm I

1. Input: H with |H | = m

2. r ← d ·
p

m Sample size
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Clarkson’s algorithm I

1. Input: H with |H | = m

2. r ← d ·
p

m Sample size

3. G ←; Contains optimal basis in the end

4. REPEAT

4.1 Choose random R ∈
(H

r

)

4.2 Compute x∗ = x∗(G∪R) with some other algorithm

4.3 VR ← {h ∈ H | x∗ violates h}

4.4 IF |VR| É 2
p

m With probability Ê 1/2 true

THEN G ← G∪VR, successful iteration

5. UNTIL VR =;

At most d successful iterations

Invariant: G contains at most 2 ·d ·
p

m constraints
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Analysis

In Step (4.c): E[|V |] É
p

m.

Let B be optimal basis.

Ï Each successful iteration, a new element of B enters G

Ï Thus at most d succ. it.

Ï P(|VR| > 2
p

m)É 1/2 Markow inequality

Ï Expected number of iterations is 2d

Clarkson 1 performs:

Ï Expected 2d calls to linear programming oracle with at most

3 ·d
p

m constraints

Ï Expected number of O(d2 ·m) arithmetic operations



Clarkson’s algorithm II

Ï Each h ∈ H is assigned a multiplicity µh.

Ï In the beginning µh = 1 for all h ∈ H .

Ï Sample size r is small

Ï Idea: If x∗(R) violates h, then multiplicity/probability is

doubled

Ï Constraints of optimum basis become much more likely to be

drawn next time

Ï We stop if R contains optimum basis
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2. r ← 6 ·d2 sample size

3. REPEAT:

3.1 Choose random R ∈
(H

r

)

will contain optimum basis

3.2 Compute x∗ = x∗(R), with some other algorithm
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2. r ← 6 ·d2 sample size

3. REPEAT:
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will contain optimum basis

3.2 Compute x∗ = x∗(R), with some other algorithm

3.3 VR ← {h ∈ H | x∗ violates h}

3.4 IF µ(VR) É 1/(3d)µ(H) probability Ê 1/2

THEN for all h ∈ V do µh ← 2µh



Clarkson 2

1. INPUT: H , |H | =m

2. r ← 6 ·d2 sample size

3. REPEAT:

3.1 Choose random R ∈
(H

r

)

will contain optimum basis

3.2 Compute x∗ = x∗(R), with some other algorithm

3.3 VR ← {h ∈ H | x∗ violates h}

3.4 IF µ(VR) É 1/(3d)µ(H) probability Ê 1/2

THEN for all h ∈ V do µh ← 2µh re-weighting

4. UNTIL VR =;



Lemma

B optimal basis, after kd successful iterations (entering re-weighting

step):

2k Éµ(B) É mek/3, for basis B of H .

Proof:

Ï After k ·d iterations: µ(B) Ê 2k

Ï Also µ(B) Éµ(H) and

Ï After re-weighting:

µ(H) Éµold(H)+1/(3d) ·µ(H) = (1+1/(3d))µold(H)
Ï Initially µ(H) = m
Ï Thus µ(H) É m · (1+1/(3d))k·d É m ·ek/3



Complexity Clarkson 2

Ï 2k É mek/3 implies k ∈ O(log m)

Ï Expected number of O(d · log m) iterations

Clarkson 2 requires

Ï expected number of O(d2m log m) arithmetic operations

Ï expected 6d lnm base cases with 6 ·d2 constraints



Combining Clarkson 1 and 2

Ï O(d2 ·m) arithmetic operations

Ï 2 ·d calls to Clarkson 2 on O(d
p

m) constraints

Ï O(d2pm logm) arithmetic operations
Ï O(d logm) calls to LP-oracle with 6 ·d2 constraints

Linear program can be solved

Ï with expected O(d3 ·m) arithmetic operations

Ï and O(d2 · log m) oracle calls to solve an LP with 6 ·d2

constraints

Ï in linear time if d is fixed

(Clarkson 1995)



Integer Programming

Ï Given set H of m integral constraints in dimension d and

H− = {x(i) É M | i = 1, . . . ,d} explicit bound constraints.

Ï For G ⊆ H , x∗(G) is lex. max. integer point satisfying G and H−.

Ï Task: Compute x∗(H).



A theorem of Bell and Scarf

Theorem

Let H be a set of rational linear constraints in Rd . If there does not

exist an integer point which satisfies all constraints, then there exists

a subset B ⊆H with |B| É 2d such that there does not exist an integer

point which satisfies all constraints in B.



Proof
Ï Let H be minimal such that H

has no feasible integer point,

m = |H | > 2d

Ï Assume constraints are aT
i

x Éβi

i = 1, ..,m, where ai and βi are

integers
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Proof
Ï Let H be minimal such that H

has no feasible integer point,

m = |H | > 2d

Ï Assume constraints are aT
i

x Éβi

i = 1, ..,m, where ai and βi are

integers

Ï For each aT
i

x Éβi, there exists

integer solution yi which

satisfies all but the i-th

constraint.

Ï Z = conv({y1, . . . ,ym}∩Zn)



Proof
Ï Let γ1, . . . ,γm ∈Z s.t. βi Éγi,

system aT
i

x É γi, i = 1, . . . ,m has

no solution in Z and γ1 +·· ·+γm

is maximal

Ï For each i there exists a zi ∈ Z s.t.

aT
i

zi = γi +1 and aT
j

zi É γj for

each j 6= i

Ï Since m> 2n there exist i 6= j with

zi ≡ zj (mod 2) =⇒
1/2(zi +zj) ∈ Z and satisfies all

constraints which is a

contradiction



Exercise

Prove the following theorem

Theorem

Let H be a set of linear constraints. If x∗(H) exists then there exists a

subset B of H with |B| É 2d −1 with x∗(H) = x∗(B).

Ï This B is called a basis of H .

Ï D = 2n −1 is combinatorial dimension



Complexity of IP

Ï Apply Clarkson’s algorithm

Ï IP with m constraints in fixed dimension can be solved with

O(m) arithmetic operations and O(log m) oracle calls to solve

IP with fixed number of constraints.

Ï IP with fixed number of constraints can be solved in time O(s)

Ï Total running time: Expected O(m+ log m+ s)


