Efficient Algorithms for Integer Programming

Research Problem

Is there an O(m + s) algorithm for integer programming in fixed dimension?

What is integer programming

- ► Variables: *x*(1), ..., *x*(*n*)
- ► Linear constraints: $a_{i1}x(1) + \cdots + a_{in}x(n) \le b(i)$, for $i = 1, \dots, m$
- Linear objective function: $c(1)x(1) + \cdots + c(n)x(n)$
- Task: Find integer assignment to x(1),..., x(n) such that all constraints are satisfied and objective function is maximized.

Geometric interpretation

- Given a (bounded) Polyhedron $P = \{x \in \mathbb{R}^n | Ax \le b\}$
- ► Find vertex of the integer hull *P*_{*I*} of *P* which maximizes objective function *c*^{*T*}*x*

Geometric interpretation

- Given a (bounded) Polyhedron $P = \{x \in \mathbb{R}^n | Ax \le b\}$
- ► Find vertex of the integer hull *P*_{*I*} of *P* which maximizes objective function *c*^{*T*}*x*

Geometric interpretation

- Given a (bounded) Polyhedron $P = \{x \in \mathbb{R}^n | Ax \le b\}$
- ► Find vertex of the integer hull *P*_{*I*} of *P* which maximizes objective function *c*^{*T*}*x*

A first simple result in fixed dimension

How many extreme points (vertices) can P_I have?

A first simple result in fixed dimension

How many extreme points (vertices) can *P*_I have? Consider a Knapsack Polyhedron defined by integral data

```
a(1)x(1) + \dots + a(n)x(n) \le \beta, \quad x \ge 0
```

And two different vertices of P_I

(x(1),...,x(n)) and (y(1),...,y(n))

and suppose that $\lfloor \log(x(i)) \rfloor = \lfloor \log(y(i)) \rfloor$ for i = 1, ..., n.

A first simple result in fixed dimension

How many extreme points (vertices) can *P*_I have? Consider a Knapsack Polyhedron defined by integral data

```
a(1)x(1) + \dots + a(n)x(n) \le \beta, \quad x \ge 0
```

And two different vertices of P_I

```
(x(1),...,x(n)) and (y(1),...,y(n))
```

and suppose that $\lfloor \log(x(i)) \rfloor = \lfloor \log(y(i)) \rfloor$ for i = 1, ..., n. Then

•
$$2 \cdot x - y \ge 0$$
 and $2 \cdot y - x \ge 0$

•
$$a^T ((2 \cdot x - y) + (2 \cdot y - x)) = a^T (x + y) \le 2 \cdot \beta$$

W.l.o.g. one can assume that $a^T(2 \cdot x - y) \le \beta$. But then $1/2(2 \cdot x - y) + 1/2 \cdot y = x$ which contradicts that *x* is a vertex.

The number of extreme points is polynomial

Consider simplex with vertex 0

$$S = \{x \in \mathbb{R}^n \mid Bx \ge 0, a^T x \le \beta\}$$

with $B \in \mathbb{Z}^{n \times n}$ invertible.

- $S = \{x \in \mathbb{R}^n \mid Bx \ge 0, (B^{-1}a)^T (Bx) \le \beta\}$
- ► $x \in \mathbb{Z}^n$ is vertex of S_I if and only if Bx is vertex of $conv(K \cap \Lambda(B))$ with

$$K = \{x \in \mathbb{R}^n \mid x \ge 0, (B^{-1}a)^T x \le \beta\}$$

Exercise

Show that the number of vertices of $\operatorname{conv}(K \cap \Lambda(B))$ is polynomial in fixed dimension.

The number of extreme points is polynomial

By triangulation of *P*:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let $Ax \leq b$ be an integral system of inequalities, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ and n is fixed. The integer hull P_I of $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ has a polynomial number of extreme points.

polynomial in binary encoding length of A and b

The number of extreme points is polynomial

By triangulation of *P*:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let $Ax \le b$ be an integral system of inequalities, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ and n is fixed. The integer hull P_I of $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ has a polynomial number of extreme points. $O(m^n \cdot s^n)$

polynomial in binary encoding length of A and b

Tight bounds for simplices:

Bárány, Howe & Lovász 1992

Cook, Hartmann, Kannan & McDiarmid 1992

Polynomial algorithms for IP in fixed dimension

GCDs and IP

Theorem $gcd(a, b) = min\{xa + yb \mid x, y \in \mathbb{Z}, xa + yb \ge 1\}$

$$\begin{array}{ll} minimize & xa+yb\\ condition & xa+yb \ge 1\\ & x,y \in \mathbb{Z}. \end{array}$$

GCDs and IP

Theorem $gcd(a, b) = min\{xa + yb \mid x, y \in \mathbb{Z}, xa + yb \ge 1\}$

$$\begin{array}{ll} minimize & xa+yb\\ condition & xa+yb \ge 1\\ & x,y \in \mathbb{Z}. \end{array}$$

Integer Programming: Combinatorics & Number Theory

Complexity of IP

Complexity measure:

- Arithmetic model: Count number of arithmetic operations
- Size of numbers: Encoding length of numbers in course of algorithm remains small
- m: Number of constraints
- s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed dimension.

Complexity of IP

Complexity measure:

- Arithmetic model: Count number of arithmetic operations
- Size of numbers: Encoding length of numbers in course of algorithm remains small
- m: Number of constraints
- s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed dimension.

- O(m+s) for feasibility
- $O(s \cdot (m+s))$ for optimization

Flatness theorem

Width of *P* along *c*, $w_c(P)$: max{ $c^T x | x \in P$ } – min{ $c^T x | x \in P$ }

Theorem (Khinchine's flatness theorem)

If $P_I = \emptyset$, then there exists integral $c \neq 0$ such that width of P along c is $\leq \text{ constant } f_n$

Flatness theorem

Width of *P* along *c*, $w_c(P)$: max{ $c^T x | x \in P$ } – min{ $c^T x | x \in P$ }

Theorem (Khinchine's flatness theorem)

If $P_I = \emptyset$, then there exists integral $c \neq 0$ such that width of P along c is $\leq \text{ constant } f_n$

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

• W.l.o.g. 0 is a vertex

- W.l.o.g. 0 is a vertex
- Width along c is max{ $c^T u, c^T v, 0$ } – min{ $c^T u, c^T v, 0$ }

- W.l.o.g. 0 is a vertex
- ► Width along *c* is max{*c^Tu*, *c^Tv*, 0} − min{*c^Tu*, *c^Tv*, 0}
- ► $|a-b| \le |a|+|b| \Longrightarrow$ width along $c \le 2 \max\{|c^T u|, |c^T v|\} = 2 \| {u^T \choose v^T} c \|_{\infty}$

- W.l.o.g. 0 is a vertex
- Width along c is max{ $c^T u, c^T v, 0$ } – min{ $c^T u, c^T v, 0$ }
- ► $|a-b| \le |a|+|b| \Longrightarrow$ width along $c \le 2 \max\{|c^T u|, |c^T v|\} = 2 \| {\binom{u^T}{v^T}} c \|_{\infty}$

$$\triangleright \geq \max\{|c^T u|, |c^T v|\} = \| \begin{pmatrix} u^T \\ v^T \end{pmatrix} c \|_{\infty}$$

- W.l.o.g. 0 is a vertex
- Width along c is $\max\{c^T u, c^T v, 0\} - \min\{c^T u, c^T v, 0\}$
- ► $|a-b| \le |a|+|b| \Longrightarrow$ width along $c \le 2 \max\{|c^T u|, |c^T v|\} = 2 \| {\binom{u^T}{v^T}} c \|_{\infty}$
- $\triangleright \geq \max\{|c^T u|, |c^T v|\} = \| \begin{pmatrix} u^T \\ v^T \end{pmatrix} c \|_{\infty}$
- Width of triangle ≈ length of shortest vector w.r.t. ℓ_∞ of lattice

$$\Lambda = \{ \begin{pmatrix} u^T \\ v^T \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}.$$

Shortest vectors in dimension 2

A fraction x/y with $y \ge 1$ is a best approximation of $\alpha \in \mathbb{R}$ if $|y \cdot \alpha - x| \le |y' \cdot \alpha - x'|$ for each fraction x'/y' with $1 \le y' \le y$.

Exercise

Consider the lattice $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} | \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{Z}^2 \}$. Prove the following statement. A shortest vector of Λ is either $\begin{pmatrix} a \\ 0 \end{pmatrix}$, $\begin{pmatrix} b \\ c \end{pmatrix}$ or is of the form $\begin{pmatrix} -x \cdot a + y \cdot b \\ y \cdot c \end{pmatrix}$, where x/y is a best approximation of $\alpha = b/a$.

Notice: The best approximations of a rational number can be computed in linear time with the Euclidean Algorithm

• Given triangle $T = \operatorname{conv}\{u, v, w\}$

Exercise

- Given triangle $T = \operatorname{conv}\{u, v, w\}$
- ► Compute shortest vector $A \cdot c$, $c \in \mathbb{Z}^2$, where $A = \begin{pmatrix} v - u \\ w - u \end{pmatrix}$

Exercise

- Given triangle $T = \operatorname{conv}\{u, v, w\}$
- ► Compute shortest vector $A \cdot c$, $c \in \mathbb{Z}^2$, where $A = \begin{pmatrix} v - u \\ w - u \end{pmatrix}$
- If $\max\{c^T x \mid x \in T\} \min\{c^T x \mid x \in T\} > f(2)$, then *T* feasible

Exercise

- Given triangle $T = \operatorname{conv}\{u, v, w\}$
- ► Compute shortest vector $A \cdot c$, $c \in \mathbb{Z}^2$, where $A = \begin{pmatrix} v - u \\ w - u \end{pmatrix}$
- If $\max\{c^T x \mid x \in T\} \min\{c^T x \mid x \in T\} > f(2)$, then *T* feasible
- Else decide feasibility of line segments

$$T \cap (c^T x = \delta), \ \delta \in \mathbb{Z}$$

Exercise

Complexity

- Shortest vector computation in linear time
- Line segments can be checked in linear time
- ► IP feasibility of triangle decidable in linear time
- ► Integer feasibility of polygons can be decided in polynomial time via triangulation *O*(*m* · *s*)

Effient algorithms for IP-optimization in the plane
IP in the plane: History

m: Number of constraints

s: largest binary encoding length of coefficient

Method	Complexity
Kannan 1980, Scharf 1981	polynomial
Lenstra 1983	$O(ms+s^2)$
Feit 1984	$O(m\log m + ms)$
Zamanskij and Cherkasskij 1984	$O(m\log m + ms)$
Kanamaru, Nishizeki and Asano 1994	$O(m\log m + s)$
E. and Rote 2000	$O(m + (\log m) s)$
E. 2003	$O(m + (\log m) s)$
E. & Laue 2004	O(m+s)
Feasibility test + Euclidean algorithm	O(m+s)

any fixed dimension

Prune & Search: Dealing with the combinatorics

 Partition constraints into "down" and "up" constraints

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily
- Compute median of intersections

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily
- Compute median of intersections
- Decide whether optimum is left or right

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily
- Compute median of intersections
- Decide whether optimum is left or right
- Prune 1/4-th of constraints

- Each round at least 1/4-th of the constraints pruned
- Each round costs linear time
- Overall cost is linear

Theorem (Megiddo 1983)

A linear program in the plane with m constraints can be solved in O(m).

Combining Prune&Search with feasibility algorithm

Partitioning the Polygon

Partitioning the Polygon

Partitioning the Polygon

• Consider $P \cap x(1) \ge \ell$

- Consider $P \cap x(1) \ge \ell$
- ► Width of triangle is about width of $P \cap x(1) \ge \ell$

- Consider $P \cap x(1) \ge \ell$
- ► Width of triangle is about width of $P \cap x(1) \ge \ell$
- Determine position ℓ , for which width of triangle is $f_2 + \varepsilon$

- Consider $P \cap x(1) \ge \ell$
- ► Width of triangle is about width of $P \cap x(1) \ge \ell$
- Determine position ℓ , for which width of triangle is $f_2 + \varepsilon$
- Reduce problem to a constant number of problems on the line

Principle: Improve *l_{left}* and *l_{right}*

- Principle: Improve *l_{left}* and *l_{right}*
- Pair constraints arbitrarily

- Principle: Improve *l_{left}* and *l_{right}*
- Pair constraints arbitrarily
- Compute median of intersections

- Principle: Improve *l_{left}* and *l_{right}*
- Pair constraints arbitrarily
- Compute median of intersections
- Compute width of triangle defined by median

- Principle: Improve *l_{left}* and *l_{right}*
- Pair constraints arbitrarily
- Compute median of intersections
- Compute width of triangle defined by median
- Update bounds

- Principle: Improve *l_{left}* and *l_{right}*
- Pair constraints arbitrarily
- Compute median of intersections
- Compute width of triangle defined by median
- Update bounds
- Prune 1/4-th of constraints

• Each round 1/4-th of constraints pruned

- Each round 1/4-th of constraints pruned
- Computing median is linear

- Each round 1/4-th of constraints pruned
- Computing median is linear
- ► Running time without width checking: *O*(*m*)

- Each round 1/4-th of constraints pruned
- Computing median is linear
- ▶ Running time without width checking: *O*(*m*)
- ▶ Number of checked triangles: *O*(log *m*)

- Each round 1/4-th of constraints pruned
- Computing median is linear
- ▶ Running time without width checking: *O*(*m*)
- ▶ Number of checked triangles: *O*(log *m*)
- Cost for width checking: *O*(*s*)

- Each round 1/4-th of constraints pruned
- Computing median is linear
- ▶ Running time without width checking: *O*(*m*)
- ▶ Number of checked triangles: *O*(log *m*)
- Cost for width checking: *O*(*s*)
- Total cost $O(m + s \log m)$

• Let $\begin{pmatrix} u^T \\ v^T \end{pmatrix}$ be the matrix of one prototype triangle

- Let $\begin{pmatrix} u^T \\ v^T \end{pmatrix}$ be the matrix of one prototype triangle
- ► Query: Given $\alpha \in \mathbb{Q}$, $\beta \in \mathbb{Q}$ compute shortest vector of lattice

$$\Lambda = \{ \alpha \begin{pmatrix} u^T \\ \beta v^T \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$$

- Let (^{u^T}/_{v^T}) be the matrix of one prototype triangle
- ► Query: Given $\alpha \in \mathbb{Q}$, $\beta \in \mathbb{Q}$ compute shortest vector of lattice

$$\Lambda = \{ \alpha \begin{pmatrix} u^T \\ \beta v^T \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$$

• α can be neglected

- Let $\begin{pmatrix} u^T \\ v^T \end{pmatrix}$ be the matrix of one prototype triangle
- Query: Given $\alpha \in \mathbb{Q}$, $\beta \in \mathbb{Q}$ compute shortest vector of lattice $\Lambda = \{\alpha \begin{pmatrix} u^T \\ \beta v^T \end{pmatrix} x \mid x \in \mathbb{Z}^2\}$
- α can be neglected

QUERY: Given $\beta \in \mathbb{Q}$, compute shortest vector of lattice

$$\Lambda = \{ \begin{pmatrix} u^T \\ \beta v^T \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$$

Theorem

Shortest vector of $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta c \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$ is $\begin{pmatrix} -xa+yb \\ y\beta c \end{pmatrix}$, where x/y convergent of b/a.

- Preprocessing: Compute list of convergents $x(1)/y(1), \dots, x(k)/y(k)$ of b/a
- Complexity: O(s)

Incoming query: $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta & c \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$

Search convergent x(j)/y(j) with minimal $\max\{|-x(j) a + y(j) b|, |\beta y(j) c|\}$

Incoming query: $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta & c \end{pmatrix} | x \in \mathbb{Z}^2 \}$

- Search convergent x(j)/y(j) with minimal max{| - x(j) a + y(j) b|, |βy(j) c|}
- Sequence |-x(j)a + y(j)b| is decreasing

Incoming query: $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta & c \end{pmatrix} | x \in \mathbb{Z}^2 \}$

- Search convergent x(j)/y(j) with minimal $\max\{|-x(j) a + y(j) b|, |\beta y(j) c|\}$
- Sequence |-x(j)a + y(j)b| is decreasing
- Sequence $|\beta y(j) c|$ is increasing
Batching the width checks

Incoming query: $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta & c \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$

- Search convergent x(j)/y(j) with minimal $\max\{|-x(j) a + y(j) b|, |\beta y(j) c|\}$
- Sequence |-x(j)a + y(j)b| is decreasing
- Sequence $|\beta y(j) c|$ is increasing
- Binary search: One query costs O(log(s))

Batching the width checks

Incoming query: $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta & c \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$

- Search convergent x(j)/y(j) with minimal $\max\{|-x(j) a + y(j) b|, |\beta y(j) c|\}$
- Sequence |-x(j)a + y(j)b| is decreasing
- Sequence $|\beta y(j) c|$ is increasing
- Binary search: One query costs O(log(s))
- Preprocessing and $O(\log m)$ queries: $O(s + \log m \cdot \log s)$

Batching the width checks

Incoming query: $\Lambda = \{ \begin{pmatrix} a & b \\ 0 & \beta & c \end{pmatrix} x \mid x \in \mathbb{Z}^2 \}$

- Search convergent x(j)/y(j) with minimal $\max\{|-x(j) a + y(j) b|, |\beta y(j) c|\}$
- Sequence |-x(j)a + y(j)b| is decreasing
- Sequence $|\beta y(j) c|$ is increasing
- Binary search: One query costs O(log(s))
- Preprocessing and $O(\log m)$ queries: $O(s + \log m \cdot \log s)$
- With prune & search O(m + s)

Total complexity

Theorem (E. & Laue)

IP in the plane can be solved in O(m+s).

Linear Programming

- ► $H = \{1, ..., n\}, r \in H, R \in {H \choose r}$ drawn uniformly at random
- ► $V_R = \min\{i \in R\} 1$
- What is $E[V_R]$?

- ► $H = \{1, ..., n\}, r \in H, R \in {H \choose r}$ drawn uniformly at random
- ► $V_R = \min\{i \in R\} 1$
- What is $E[V_R]$?

- ► $H = \{1, ..., n\}, r \in H, R \in {H \choose r}$ drawn uniformly at random
- ► $V_R = \min\{i \in R\} 1$
- What is $E[V_R]$?

Answer: (n - r)/(r + 1)

Proof

For
$$Q \subseteq H$$
 and $j \in H$ define $\chi(Q, j) = \begin{cases} 1 & \text{if } j < \min\{i \in Q\}, \\ 0 & \text{otherwise.} \end{cases}$

$$\blacktriangleright E[V_R] = \left(\sum_{R \in \binom{H}{r}} \sum_{j \in H \setminus R} \chi(R, j) \right) / \binom{n}{r}$$

• One has $\binom{n}{r} \cdot (n-r) = \binom{n}{r+1} \cdot (r+1)$

► Thus

$$\begin{pmatrix} n \\ r \end{pmatrix} \cdot E[V_R] = \sum_{Q \in \binom{H}{r+1}} \sum_{j \in Q} \chi(Q - \{j\}, j\})$$
$$= \binom{n}{r+1}.$$

• Thus $E[V_R] = \binom{n}{r+1} / \binom{n}{r} = (n-r)/(r+1)$

Linear Programming

► Given: Set *H* of *m* linear constraints in \mathbb{R}^d and $H^- = \{x(i) \le M \mid i = 1, ..., d\}$ explicit upper bounds

- ► For $G \subseteq H$, $x^*(G)$ is lex. max. point satisfying all $h \in G \cup H^-$
- ► Task: Compute *x*^{*}(*H*)

 $B \subseteq H$ is called Basis of *G*, if $x^*(B) = x^*(H)$ and for each $b \in B$ one has $x^*(B-h) > x^*(B)$.

Lemma

Let B be a basis of H and let $G \subseteq H$. One has $x^*(G) > x^*(H)$ if and only if there exists $b \in B$ with $x^*(G)$ violates b.

- Choose $R \in {H \choose r}$ uniformly at random
- $V_R = \{h \in H \mid x^*(R) \text{ violates } h\}$
- What is $E[|V_R|]$?

- Choose $R \in {H \choose r}$ uniformly at random
- $V_R = \{h \in H \mid x^*(R) \text{ violates } h\}$
- What is $E[|V_R|]$?

Answer: at most $((m-r)/(r+1)) \cdot d$

Proof

►
$$E[|V_R|] = \left(\sum_{R \in \binom{H}{r}} |V_R|\right) / \binom{m}{r}$$

► For $Q \subseteq H$ and $h \in H$ define $\chi(Q, h) = \begin{cases} 1 & \text{if } x^*(Q) \text{ violates } h, \\ 0 & \text{otherwise.} \end{cases}$

$$\binom{m}{r} E(|V_R|) = \sum_{R \in \binom{H}{r}} \sum_{h \in H \setminus R} \chi(R, h)$$

$$= \sum_{Q \in \binom{H}{r+1}} \sum_{h \in Q} \chi(Q - h, h)$$

$$\leq \sum_{Q \in \binom{H}{r+1}} d$$

$$= \binom{m}{r+1} \cdot d.$$

Sampling Lemma

Lemma (Clarlskon 1995 see also Gärtner & Welzl 1996) Let G and H (multi-)sets of constraints |H| = m and let $1 \le r \le m$. Then for random $R \in {H \choose r}$:

 $E[|V_R|] \leq d(m-r)/(r+1),$

where $V_R = \{h \in H \mid x^* (G \cup R) \text{ violates } h\}.$

Sampling Lemma

Lemma (Clarlskon 1995 see also Gärtner & Welzl 1996) Let G and H (multi-)sets of constraints |H| = m and let $1 \le r \le m$. Then for random $R \in {H \choose r}$:

 $E[|V_R|] \leq d(m-r)/(r+1),$

where $V_R = \{h \in H \mid x^* (G \cup R) \text{ violates } h\}.$

Set $r = [d \cdot \sqrt{m}]$ then

 $E[|V_R|] \le d \cdot (m-r)/(r+1) \le Dm/r \le \sqrt{m}.$

1. Input: H with |H| = m

2. $r \leftarrow d \cdot \sqrt{m}$

- 1. Input: *H* with |H| = m
- 2. $r \leftarrow d \cdot \sqrt{m}$
- 3. $G \leftarrow \emptyset$

Sample size

- 1. Input: H with |H| = m
- 2. $r \leftarrow d \cdot \sqrt{m}$
- 3. $G \leftarrow \emptyset$

Sample size Contains optimal basis in the end

- 4. REPEAT
 - 4.1 Choose random $R \in {H \choose r}$
 - 4.2 Compute $x^* = x^* (G \cup R)$

- 1. Input: H with |H| = m
- 2. $r \leftarrow d \cdot \sqrt{m}$
- **3**. *G* ← Ø
- 4. REPEAT
 - 4.1 Choose random $R \in {H \choose r}$
 - 4.2 Compute $x^* = x^* (G \cup R)$
 - 4.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$
 - 4.4 IF $|V_R| \leq 2\sqrt{m}$

Sample size Contains optimal basis in the end

with some other algorithm

- 1. Input: H with |H| = m
- 2. $r \leftarrow d \cdot \sqrt{m}$
- **3**. *G* ← Ø
- 4. REPEAT
 - 4.1 Choose random $R \in \binom{H}{r}$ 4.2 Compute $x^* = x^* (G \cup R)$ 4.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$ 4.4 IF $|V_R| \le 2\sqrt{m}$

THEN $G \leftarrow G \cup V_R$,

Sample size Contains optimal basis in the end

with some other algorithm

With probability $\ge 1/2$ true

- 1. Input: H with |H| = m
- 2. $r \leftarrow d \cdot \sqrt{m}$
- **3**. *G* ← Ø
- 4. REPEAT
 - 4.1 Choose random $R \in {H \choose r}$ 4.2 Compute $x^* = x^* (G \cup R)$ 4.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$ 4.4 IF $|V_R| \le 2\sqrt{m}$ THEN $G \leftarrow G \cup V_R$,

5. UNTIL $V_R = \emptyset$

Sample size Contains optimal basis in the end

with some other algorithm

With probability ≥ 1/2 true successful iteration

- 1. Input: H with |H| = m
- 2. $r \leftarrow d \cdot \sqrt{m}$
- **3.** *G* ← Ø
- 4. REPEAT
 - 4.1 Choose random $R \in {H \choose r}$ 4.2 Compute $x^* = x^* (G \cup R)$ 4.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$ 4.4 IF $|V_R| \le 2\sqrt{m}$ THEN $G \leftarrow G \cup V_R$,

```
Sample size
Contains optimal basis in the end
```

with some other algorithm

With probability ≥ 1/2 true successful iteration

```
5. UNTIL V_R = \emptyset
```

At most *d* successful iterations Invariant: *G* contains at most $2 \cdot d \cdot \sqrt{m}$ constraints

Example

R, *G*, *B*

Example

R, *G*, *B*

Analysis

In Step (4.c): $E[|V|] \leq \sqrt{m}$. Let *B* be optimal basis.

- ► Each successful iteration, a new element of *B* enters *G*
- ▶ Thus at most *d* succ. it.
- $P(|V_R| > 2\sqrt{m}) \le 1/2$ Markow inequality
- Expected number of iterations is 2*d*

Clarkson 1 performs:

- Expected 2 *d* calls to linear programming oracle with at most $3 \cdot d\sqrt{m}$ constraints
- Expected number of $O(d^2 \cdot m)$ arithmetic operations

- Each $h \in H$ is assigned a multiplicity μ_h .
- In the beginning $\mu_h = 1$ for all $h \in H$.
- Sample size *r* is small
- ► Idea: If *x*^{*}(*R*) violates *h*, then multiplicity/probability is doubled
- Constraints of optimum basis become much more likely to be drawn next time
- We stop if *R* contains optimum basis

Example

R, *B*

Example

R, *B*

- 1. INPUT: H, |H| = m
- 2. $r \leftarrow 6 \cdot d^2$

1. INPUT: H, |H| = m

2.
$$r \leftarrow 6 \cdot d^2$$

3. REPEAT:

3.1 Choose random $R \in {H \choose r}$

sample size

- 1. INPUT: H, |H| = m
- 2. $r \leftarrow 6 \cdot d^2$
- 3. REPEAT:
 - 3.1 Choose random $R \in {H \choose r}$
 - 3.2 Compute $x^* = x^*(R)$,

sample size

will contain optimum basis

- 1. INPUT: H, |H| = m
- 2. $r \leftarrow 6 \cdot d^2$
- 3. REPEAT:
 - 3.1 Choose random $R \in \binom{H}{r}$
 - 3.2 Compute $x^* = x^*(R)$,
 - 3.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$
 - 3.4 IF $\mu(V_R) \le 1/(3d)\mu(H)$

```
sample size
```

will contain optimum basis with some other algorithm

1. INPUT: H, |H| = m

2.
$$r \leftarrow 6 \cdot d^2$$

- 3. REPEAT:
 - 3.1 Choose random $R \in {H \choose r}$
 - 3.2 Compute $x^* = x^*(R)$,
 - 3.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$
 - 3.4 IF $\mu(V_R) \le 1/(3d)\mu(H)$ THEN for all $h \in V$ do $\mu_h \leftarrow 2\mu_h$

sample size

will contain optimum basis with some other algorithm

probability $\ge 1/2$

1. INPUT: H, |H| = m

2.
$$r \leftarrow 6 \cdot d^2$$

- 3. REPEAT:
 - 3.1 Choose random $R \in {H \choose r}$ 3.2 Compute $x^* = x^*(R)$, 3.3 $V_R \leftarrow \{h \in H \mid x^* \text{ violates } h\}$ 3.4 IF $\mu(V_R) \le 1/(3d)\mu(H)$ THEN for all $h \in V$ do $\mu_h \leftarrow 2\mu_h$

sample size

will contain optimum basis with some other algorithm

probability ≥ 1/2 re-weighting

4. UNTIL $V_R = \emptyset$

Lemma

B optimal basis, after kd successful iterations (entering re-weighting step):

$$2^k \le \mu(B) \le m e^{k/3}$$
, for basis B of H.

Proof:

- After $k \cdot d$ iterations: $\mu(B) \ge 2^k$
- Also $\mu(B) \leq \mu(H)$ and
 - After re-weighting: $\mu(H) \le \mu_{old}(H) + 1/(3d) \cdot \mu(H) = (1 + 1/(3d))\mu_{old}(H)$
 - Initially $\mu(H) = m$
 - Thus $\mu(H) \leq m \cdot (1 + 1/(3d))^{k \cdot d} \leq m \cdot e^{k/3}$

Complexity Clarkson 2

- ▶ $2^k \le me^{k/3}$ implies $k \in O(\log m)$
- Expected number of $O(d \cdot \log m)$ iterations

Clarkson 2 requires

- expected number of $O(d^2 m \log m)$ arithmetic operations
- expected $6d \ln m$ base cases with $6 \cdot d^2$ constraints
Combining Clarkson 1 and 2

- $O(d^2 \cdot m)$ arithmetic operations
- $2 \cdot d$ calls to Clarkson 2 on $O(d\sqrt{m})$ constraints
 - $O(d^2\sqrt{m}\log m)$ arithmetic operations
 - $O(d\log m)$ calls to LP-oracle with $6 \cdot d^2$ constraints

Linear program can be solved

- with expected $O(d^3 \cdot m)$ arithmetic operations
- and $O(d^2 \cdot \log m)$ oracle calls to solve an LP with $6 \cdot d^2$ constraints
- ► in linear time if *d* is fixed

(Clarkson 1995)

Integer Programming

- ► Given set *H* of *m* integral constraints in dimension *d* and $H^- = \{x(i) \le M \mid i = 1, ..., d\}$ explicit bound constraints.
- ▶ For $G \subseteq H$, $x^*(G)$ is lex. max. integer point satisfying *G* and H^- .
- Task: Compute $x^*(H)$.

A theorem of Bell and Scarf

Theorem

Let *H* be a set of rational linear constraints in \mathbb{R}^d . If there does not exist an integer point which satisfies all constraints, then there exists a subset $B \subseteq H$ with $|B| \leq 2^d$ such that there does not exist an integer point which satisfies all constraints in *B*.

- Let *H* be minimal such that *H* has no feasible integer point, $m = |H| > 2^d$
 - Assume constraints are $a_i^T x \le \beta_i$ i = 1, ..., m, where a_i and β_i are integers

- Let *H* be minimal such that *H* has no feasible integer point, $m = |H| > 2^d$
 - Assume constraints are $a_i^T x \le \beta_i$ i = 1, ..., m, where a_i and β_i are integers
 - For each $a_i^T x \le \beta_i$, there exists integer solution y_i which satisfies all but the *i*-th constraint.

- ► Let *H* be minimal such that *H* has no feasible integer point, $m = |H| > 2^d$
 - Assume constraints are $a_i^T x \le \beta_i$ i = 1, ..., m, where a_i and β_i are integers
 - For each $a_i^T x \le \beta_i$, there exists integer solution y_i which satisfies all but the *i*-th constraint.

$$Z = \operatorname{conv}(\{y_1, \dots, y_m\} \cap \mathbb{Z}^n)$$

- ► Let $\gamma_1, ..., \gamma_m \in \mathbb{Z}$ s.t. $\beta_i \leq \gamma_i$, system $a_i^T x \leq \gamma_i$, i = 1, ..., m has no solution in *Z* and $\gamma_1 + \dots + \gamma_m$ is maximal
 - For each *i* there exists a $z_i \in Z$ s.t. $a_i^T z_i = \gamma_i + 1$ and $a_j^T z_i \leq \gamma_j$ for each $j \neq i$
 - Since $m > 2^n$ there exist $i \neq j$ with $z_i \equiv z_j \pmod{2} \Longrightarrow$ $1/2(z_i + z_j) \in Z$ and satisfies all constraints which is a contradiction

Exercise

Prove the following theorem

Theorem

Let *H* be a set of linear constraints. If $x^*(H)$ exists then there exists a subset *B* of *H* with $|B| \le 2^d - 1$ with $x^*(H) = x^*(B)$.

- ► This *B* is called a basis of *H*.
- $D = 2^n 1$ is combinatorial dimension

Complexity of IP

- Apply Clarkson's algorithm
- ▶ IP with *m* constraints in fixed dimension can be solved with *O*(*m*) arithmetic operations and *O*(log *m*) oracle calls to solve IP with fixed number of constraints.
- ► IP with fixed number of constraints can be solved in time *O*(*s*)
- Total running time: Expected $O(m + \log m + s)$