Efficient Algorithms for Integer Programming



Research Problem

Is there an O(m + s) algorithm for integer programming in fixed
dimension?




What is integer programming

v

Variables: x(1), ..., x(rn)

v

Linear constraints: aj x(1) +--- + ajpx(n) < b(i), fori=1,...,m

v

Linear objective function: c(1)x(1) + - - - + c(n)x(n)

v

Task: Find integer assignment to x(1),..., x(n) such that all
constraints are satisfied and objective function is maximized.



Geometric interpretation
» Given a (bounded) Polyhedron P={xe R" | Ax< b}

» Find vertex of the integer hull P; of P which maximizes

objective function ¢’ x



Geometric interpretation
» Given a (bounded) Polyhedron P={xe R" | Ax< b}

» Find vertex of the integer hull P; of P which maximizes

objective function ¢’ x




Geometric interpretation
» Given a (bounded) Polyhedron P={xe R" | Ax< b}

» Find vertex of the integer hull P; of P which maximizes

objective function ¢’ x




A first simple result in fixed dimension

How many extreme points (vertices) can P; have?



A first simple result in fixed dimension

How many extreme points (vertices) can P; have?
Consider a Knapsack Polyhedron defined by integral data

al)x()+---+amx(n)<pf, x=0
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A first simple result in fixed dimension
How many extreme points (vertices) can P; have?
Consider a Knapsack Polyhedron defined by integral data
al)x(1)+---+amx(n)<p, x=0
And two different vertices of P;
(x(1),...,x(m)) and (¥1),...,y(n)

and suppose that [log(x(7))] = [log(y(d))] fori=1,...,n.
Then

» 2-x—y=0and2-y—x=0
»a (2 x-p+2-y-n)=alx+y) <2-
W.l.o.g. one can assume that al2-x— y)<p.
But then 1/2(2-x—y) +1/2-y = x which contradicts that x is a vertex.



The number of extreme points is polynomial

» Consider simplex with vertex 0
S={xeR"|Bx=0,a’x< B}

with Be 7™ " invertible.
» S={xeR"|Bx=0, (B 'a)’(Bx) < B}
» x€ Z"isvertex of S;if and only if Bx is vertex of conv(K n A(B))
with
K={xeR"|x=0, B 'a)Tx<p}

Exercise

Show that the number of vertices of conv(K n A(B)) is polynomial in
fixed dimension.



The number of extreme points is polynomial

By triangulation of P:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let Ax < b be an integral system of inequalities, where Ae Z™" and
be Z™ and n is fixed. The integer hull P; of P={x e R" | Ax< b} has a
polynomial number of extreme points.

polynomial in binary encoding length of Aand b



The number of extreme points is polynomial

By triangulation of P:

Theorem (Hayes & Larman 1983, Schrijver 1986)

Let Ax < b be an integral system of inequalities, where Ae Z™" and
be Z™ and n is fixed. The integer hull P; of P={x e R" | Ax< b} has a
polynomial number of extreme points. O(m' - s™)

polynomial in binary encoding length of Aand b

Tight bounds for simplices: Bardny, Howe & Lovasz 1992

Cook, Hartmann, Kannan & McDiarmid 1992



Polynomial algorithms for IP in fixed dimension



GCDs and IP

Theorem
gcd(a, b) =minf{xa+yb|x,ye Z, xa+yb= 1}

minimize xa+yb
condition xa+ybz1
X, yeZ.



GCDs and IP

Theorem
gcd(a, b) =minf{xa+yb|x,ye Z, xa+yb= 1}

minimize xa+yb
condition xa+ybz1
X, yeZ.

Integer Programming: Combinatorics & Number Theory



Complexity of IP

Complexity measure:
» Arithmetic model: Count number of arithmetic operations

» Size of numbers: Encoding length of numbers in course of
algorithm remains small

m: Number of constraints
s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed
dimension.




Complexity of IP

Complexity measure:
» Arithmetic model: Count number of arithmetic operations

» Size of numbers: Encoding length of numbers in course of
algorithm remains small

m: Number of constraints
s: Largest binary encoding length of number in input

Theorem (Lenstra 1983)

The IP feasibility problem can be solved in polynomial time in fixed
dimension.

> O(m+ s) for feasibility

» O(s- (m+ 9)) for optimization



Flatness theorem

Width of P along ¢, w.(P): max{c x| xe P} —min{c x| xe P}

Theorem (Khinchine’s flatness theorem)

If P; = @, then there exists integral ¢ # 0 such that width of P along c
is < constant f
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If width is to large, then return
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Otherwise, recursively search
for integer point on one of the
constant number of hyperplanes
(lower dimension)
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Width of a triangle
» Wlo.g. 0is avertex

» Width along cis
max{cTu, CTU, 0} — min{cT u, CTU, 0}
> |la—b| <|al+|b| = width along ¢
T
< 2max{lc"ul, [T v} = 211( %) clloo
T
> >maxilc"ul, [T vl = (%) clloo

» Width of triangle = length of shortest
vector w.r.t. £, of lattice

A={(%4)xlxeZ?).



Shortest vectors in dimension 2

A fraction x/y with y = 1 is a best approximation of a € R if
ly-a—x| <y -a—x/| for each fraction x'/y with1 <y <y.

Exercise

Consider the lattice A = {(§2)(7)I(7) € Z?}. Prove the following
statement.

A shortest vector of A is either (§), (2) or is of the form (_x';f;y b ),

where x/y is a best approximation of a = b/ a.

Notice: The best approximations of a rational number can be
computed in linear time with the Euclidean Algorithm



Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.



Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

» Compute shortest vector A-c, c€ Z2, v
where A= (§-%)

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.



Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

» Compute shortest vector A-c, c€ Z2, v
where A= (§-%)

» Ifmax{c’x|xe T} —min{cl x| xe T} >
f(2), then T feasible

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.



Deciding IP feasibility of triangles

» Given triangle T = conv{u, v, w}

» Compute shortest vector A-c, c€ Z2, v
where A= (§-%)

» Ifmax{c’x|xe T} —min{cl x| xe T} >
f(2), then T feasible

» Else decide feasibility of line segments "

Tnc'x=6),6€z

Exercise

How can we efficiently decide, whether a line-segment contains an
integer point? Hint: Consider the line on which the segment lies and
apply a unimodular transformation with the help of the extended
Euclidean algorithm.



Complexity

v

Shortest vector computation in linear time

v

Line segments can be checked in linear time

v

IP feasibility of triangle decidable in linear time

v

Integer feasibility of polygons can be decided in polynomial
time via triangulation O(m- s)



Effient algorithms for IP-optimization in the
plane



IP in the plane: History

m: Number of constraints

s: largest binary encoding length of coefficient

Method

‘ Complexity
Kannan 1980, Scharf 1981 polynomial
Lenstra 1983 O(ms+s%)

Feit 1984

O(mlogm+ ms)

Zamanskij and Cherkasskij 1984

O(mlogm+ ms)

Kanamaru, Nishizeki and Asano 1994

O(mlogm+ys)

E. and Rote 2000 O(m+ (logm) s)

E. 2003 O(m+ (logm) s)
E. & Laue 2004 O(m+5s)

Feasibility test + Euclidean algorithm ‘

O(m+ys)

any fixed dimension



Prune & Search: Dealing with the combinatorics



Megiddo’s Algorithm for LP in the plane

» Partition constraints
into “down” and “up”

K constraints
~

e
Siéx/
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Megiddo’s Algorithm for LP in the plane

» Partition constraints

into “down” and “up
f » Pair “up-constraints”

arbitrarily

» Compute median of
intersections

» Decide whether
optimum is left or right

» Prune 1/4-th of
constraints




Megiddo’s Algorithm for LP in the plane

» Each round at least 1/4-th of the constraints pruned
» Each round costs linear time

» Overall cost is linear

Theorem (Megiddo 1983)

A linear program in the plane with m constraints can be solved in
O(m).




Combining Prune&Search with feasibility
algorithm



Partitioning the Polygon

x(1)
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Partitioning the Polygon

x(1)
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» Consider Pnx(1) = ¢
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Upper right kind

» Consider Pnx(1) =/¢

» Width of triangle is about
width of Pnx(1) = ¢

» Determine position ¢, for
which width of triangle is
h+e

» Reduce problem to a
constant number of
problems on the line

//)
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lright
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lmedian

lright
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Prune & Search

-

T

/

>

Liefr

lright

Principle: Improve [, and
lright
Pair constraints arbitrarily

Compute median of
intersections

Compute width of triangle
defined by median

Update bounds

Prune 1/4-th of constraints
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Analysis

v

Each round 1/4-th of constraints pruned

v

Computing median is linear

v

Running time without width checking: O(m)

v

Number of checked triangles: O(log m)
Cost for width checking: O(s)

Total cost O(m + slogm)

v

v
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The checked triangles

» Let (;‘; ) be the matrix of

¢ one prototype triangle
» Query: Givena €@, €@
compute shortest vector
of lattice .
A={a(g,r)xlxeZ?

» a can be neglected

QUERY:
Given £ € Q, compute shortest vector of lattice

A={(pr)xlxe 7%




Batching the width checks

Theorem
Shortest vector of A ={({ .)x| xe Z%} is (_);“Ecyb), where x/y
convergent of bl a.

» Preprocessing: Compute list of convergents
x(1)/yQ1),...,x(k)/y(k) of b/ a

» Complexity: O(s)
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» Search convergent x(j)/y(j) with minimal
max{| — x(j) a+y(j) bl, 1B y(j) cl}
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Batching the width checks

Incoming query: A = {(§ ﬁbc)x | xe 7%}

» Search convergent x(j)/y(j) with minimal
max{| - x(j) a+y(j) bl, | By(j) cl}
» Sequence | — x(j) a+ y(j) b| is decreasing
» Sequence |By(j) c| is increasing
» Binary search: One query costs O(log(s))
» Preprocessing and O(log m) queries: O(s+logm-logs)

» With prune & search O(m + s)



Total complexity

Theorem (E. & Laue)
IP in the plane can be solved in O(m+ s).




Linear Programming
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Quiz

» H={l,...,n}, re H, Re (!!) drawn uniformly at random
» Vep=min{ie R} -1
» Whatis E[Vg] 2

Answer: (n—n/(r+1)



Proof
1 ifj<min{ie Q},

v

For Q< H and j€ H define y(Q,)) = .
0 otherwise.

v

E[Vg] = ZRE(I;I) ZjEH\RX(R’j))/(’;)

Onehas (¥)-(n—-n=(,}1) - r+1)
Thus

v

v

(7)-ELVRl = 3 2 x(Q-{hb

o]
m
—
<
Ry
~—
~.
i

v

Thus E[Vgl = (,/1)/(})=(n-nIr+1)



Linear Programming
» Given: Set H of m linear constraints in R and
H ={x() <M|i=1,...,d} explicit upper bounds
» For GS H, x*(G) is lex. max. point satisfying all he GU H™
» Task: Compute x* (H)

Bc His called Basis of G, if x*(B) = x* (H) and for each b € Bone has
x*(B—h) > x*(B).

Lemma

Let B be a basis of H and let GS H. One has x* (G) > x* (H) ifand
only if there exists b € B with x*(G) violates b.




Quiz
» Choose Re () uniformly at random
» Vr=1{he H|x*(R) violates h}
» Whatis E[|Vg|] 2



Quiz
» Choose Re () uniformly at random
» Vr=1{he H|x*(R) violates h}
» Whatis E[|Vg|] 2

Answer: at most (m—nr)/(r+1))-d



Proof
> EOVill = (£ ey Vi) /()

1 if x*(Q) violates h,

» For Q< H and h e H define y(Q, h) = .
0 otherwise.

i

E(|VRI)

> Y xRh

Re (Irf) he H\R

Z Z 1(Q—h,h)

Qe(,f) heQ

Y d

Qe(,1)

7):

n



Sampling Lemma

Lemma (Clarlskon 1995 see also Gartner & Welzl 1996)

Let G and H (multi-)sets of constraints |H| = mand let1 <r < m.
Then for random Re (*):

E[|VRll <dm—-n/(r+1),

where Vg ={he H| x*(GU R) violates h}.




Sampling Lemma

Lemma (Clarlskon 1995 see also Gartner & Welzl 1996)

Let G and H (multi-)sets of constraints |H| = mand let1 <r < m.
Then for random Re (*):

E[|VRll <dm—-n/(r+1),

where Vg ={he H| x*(GU R) violates h}.

Set r=[d-\/m] then

EllVgll<sd-(m—=1/(r+1) <Dmi/r<vm.
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1. Input: Hwith |[H|=m
2. r—d-\v/m
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A e

Input: Hwith |[H|=m

r—d-vm Sample size
G—9 Contains optimal basis in the end
REPEAT

4.1 Choose random Re (")

4.2 Compute x* =x*(GUR) with some other algorithm

4.3 Vg« {he H|x* violates h}

4.4 IF|Vgl<2vVm With probability = 1/2 true

THEN G« GU Vg,
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4.1 Choose random Re (")

4.2 Compute x* =x*(GUR) with some other algorithm

4.3 Vg« {he H|x* violates h}

4.4 IF|Vgl<2vVm With probability = 1/2 true

THEN G<— GuU Vg, successful iteration
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Clarkson’s algorithm I

1. Input: Hwith |[H|=m
2. r—d-vm Sample size
3. G—9 Contains optimal basis in the end
4. REPEAT
4.1 Choose random Re (")
4.2 Compute x* =x*(GUR) with some other algorithm
4.3 Vg« {he H|x* violates h}
4.4 IF|Vgl<2vVm With probability = 1/2 true
THEN G<— GuU Vg, successful iteration

5. UNTIL V=9

At most d successful iterations
Invariant: G contains at most 2 - d-y/m constraints



Example
R G,B
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Analysis
In Step (4.c): E[|V]] < vm.
Let Bbe optimal basis.
» Each successful iteration, a new element of B enters G
» Thus at most d succ. it.
P(|Vg| > 2y/m) < 1/2 Markow inequality

Expected number of iterations is 2d

v

v

Clarkson 1 performs:

» Expected 2d calls to linear programming oracle with at most
3-d+/m constraints

» Expected number of O(d? - m) arithmetic operations



Clarkson’s algorithm II

»

»

»

Each h e H is assigned a multiplicity py,.
In the beginning pj, =1 forall he H.
Sample size ris small

Idea: If x* (R) violates h, then multiplicity/probability is
doubled

Constraints of optimum basis become much more likely to be
drawn next time

We stop if R contains optimum basis



Example
RB

~




Example
RB

~




Clarkson 2

1. INPUT: H, |H|=m
2. r—6-d?
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Clarkson 2

1. INPUT: H, |H|=m
2. r—6-d?
3. REPEAT:

3.1 Choose random Re (*)
3.2 Compute x* = x*(R),
3.3 Vg {he H| x* violates h}
3.4 IF p(VR) < 1/(3d)u(H)
THEN for all he Vdo uy —2pup

4. UNTIL Vp=¢

sample size

will contain optimum basis
with some other algorithm

probability = 1/2
re-weighting



Lemma
B optimal basis, after kd successful iterations (entering re-weighting
step):

2k < U(B) < mer’3, for basis B of H.

Proof:
> After k- d iterations: u(B) = 2*
» Also u(B) < pu(H) and
» After re-weighting:
u(H) < poig(H) +1/8d) - p(H) = 1+ 1/ @B d) oa(H)
> Initially u(H) = m
» Thus u(H) < m-(1+1/3d)*4<m- 3



Complexity Clarkson 2

» 2k < me*’3 implies k€ O(log m)

» Expected number of O(d-log m) iterations

Clarkson 2 requires
» expected number of O(d? mlogm) arithmetic operations

» expected 6d In m base cases with 6- d? constraints



Combining Clarkson 1 and 2

» O(d? - m) arithmetic operations
» 2-d calls to Clarkson 2 on O(d\/m) constraints

» O(d?+/mlog m) arithmetic operations
» O(dlogm) calls to LP-oracle with 6 - d? constraints

Linear program can be solved
» with expected O(d® - m) arithmetic operations

» and O(d? -log m) oracle calls to solve an LP with 6 - d?
constraints

» in linear time if d is fixed

(Clarkson 1995)



Integer Programming
» Given set H of m integral constraints in dimension d and
H™ ={x() <M|i=1,...,d} explicit bound constraints.
» For G< H, x*(G) is lex. max. integer point satisfying Gand H™.
» Task: Compute x* (H).



A theorem of Bell and Scarf

Theorem

Let H be a set of rational linear constraints in R%. If there does not
exist an integer point which satisfies all constraints, then there exists
a subset BS H with |B| < 29 such that there does not exist an integer
point which satisfies all constraints in B.



Proof

» Let H be minimal such that H
has no feasible integer point,
m=|H|> 24

> Assume constraints are al.Tx < B

i=1,..,m, where q; and f3; are
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Proof

» Let H be minimal such that H
has no feasible integer point,
m=|H|> 24

> Assume constraints are al.Tx < B
i=1,..,m, where q; and f3; are
integers

» For each aiTx < f;, there exists
integer solution y; which
satisfies all but the i-th
constraint.

» Z=conv({y,...,ymtnZ"



Proof

Letyy,...,ym€Zs.t. Bi<y;,
system al.sz Yii=1,...,mhas
no solutionin Zand y; +---+ 7y,
is maximal

For each i there exists a z; € Z s.t.
ajzi=yi+1anda; z <y;for
each j#1i

Since m > 2" there exist i # j with
zi=zj (mod 2) =

1/2(z; + zj) € Z and satisfies all
constraints which is a
contradiction



Exercise
Prove the following theorem

Theorem

Let H be a set of linear constraints. If x* (H) exists then there exists a
subset B of H with |B| < 2% — 1 with x* (H) = x* (B).

» This Bis called a basis of H.

» D=2"-1is combinatorial dimension



Complexity of IP

v

Apply Clarkson’s algorithm

v

IP with m constraints in fixed dimension can be solved with
O(m) arithmetic operations and O(log m) oracle calls to solve
IP with fixed number of constraints.

v

IP with fixed number of constraints can be solved in time O(s)

v

Total running time: Expected O(m+logm + s)



