Fast matrix multiplication
and graph algorithms

Uri Zwick
Tel Aviv University

NHC Autumn School on Discrete Algorithms
Sunparea Seto, Seto, Aichi Nov. 15-17, 2006

AR DO ERR

Overview

Short introduction to fast matrix multiplication
Transitive closure

Shortest paths 1in undirected graphs

Shortest paths 1n directed graphs

Perfect matchings

Short introduction to
Fast matrix multiplication

Algebraic Matrix Multiplication

J

i |
ij

= (bij)

n
Cij = E Qb
k=1

€=(c;)

Can be computed naively in O(#?) time.

Matrix multiplication algorithms

Complexity Authors
n3 (by definition)
n2-8l Strassen (1969)
n2-3 3 Coppersmith, Winograd (1990)

Conjecture/Open problem: 722701 299

Multiplying 2x2 matrices

(Ci1 Cio) _ (A1 Aps) (Bi1 Bio)
Co1 Coao Ao1 Ago Bo1 Bao

Ci1 = AunBi1+ AoBog

Ci2 = A11Bio+ A12B2; 8 multiplications
Co1 = A21B11+ AxpBog 4 additions
Coo = ApiBio+ AxBoo

T(n) = 8 T(n/2) + O(n?)
T(ﬂ) — O(n10g8/10g2)20(n3)

Strassen’s 2x2 algorithm

Ci = 4,8, + 4,8,

C, =48, + 4,8,
Cy =4, B, + 4,8,
Cyp = A4y By, + 4, B,

)

M, =(Subtraction!
Mz — (21 11

M, =4,(B,-B),)
M, =A4,(8, —B,)
M =(4,+4,)B,,
My = (4, —4,)(B, +B,,)

M7 — (A12 - Azz)(Bm + Bzz)

7 multiplications

18 additions/subtractions

Strassen’s nxn algorithm

View each n xn matrix as a 2 x2 matrix
whose elements are /2 x n/2 matrices.

Apply the 2x2 algorithm recursively.

T(n) =7 T(n/2) + O(n?)
T(n) — O(nlog7/log2):O(n2.81)

Matrix multiplication algorithms

The O(n*®") bound of Strassen was
improved by Pan, Bini-Capovani-Lotti-
Romani, Schonhage and finally by
Coppersmith and Winograd to O(n?3%).

The algorithms are much more complicated...

We let 2 < < 2.38 be the
exponent of matrix multiplication.

(Gaussian elimination

The title of Strassen’s 1969 paper 1s:
“Gaussian elimination 1s not optimal”

Other matrix operations that can
be performed 1n O(n%) time:

* Computing determinants: detA .

« Computing inverses: A~!

* Computing characteristic polynomials

Rectangular Matrix multiplication
p n

n

n A X D B

"
>

C

p
Cij = g @bk
k=1

Coppersmith (1997):

Complexity < n1.85p0. 54 _|_n2+o(1)

For p <n’??, complexity = n’ o0 !

TRANSIVE CLOSURE

Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) 1s the graph 1n
which (u,v)e E* iff there 1s a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed 1n O(n?) time.

Boolean Matrix Multiplication

J

i gy
ij

— (bij)

€=(c;)

n
Cij = \/ Qi N Ok
k=1

Can be computed naively in O(#°)

time.

Algebraic Boolean

Product Product
Cij = Zaikbkj Cij = \/aik/\bkj
k k

O(n2.38) ?
algebraic
operations

Algebraic Boolean

Product Product
Cij = Zaikbkj Cij = \/aik N b
k k
2.38
O(n) or (V)
algebraic has no inverse!

operations

Algebraic Boolean

Product Product
Cij = Zaikbkj Cij = \/aik N b
k k
2.38
O(n) But, we can work

algebraic over the |

operations

Algebraic
Product

C = AB

— Zaikbkj

k

Cij

O(n2.38)

algebraic
operations

Boolean
Product

C = A-B

Cij = \/aik A b
k

O(n2.38)
operations on
O(log n) bit words

» Can you use Strassen’s algorithm or the
Coppersmith-Winograd algorithm to
compute Boolean matrix multiplications?

* No, as these algebraic algorithms use
subtractions and the Boolean-or (V)
operation has no nverse!

 Still, we can run the algebraic algorithms
over the integers and convert any non-zero
result to 1.

Adjacency matrix

of a directed graph
1 4 /001110\
1 00 1 10
0100 1 1
6 000001
00000 0
: 5 \0 00010/

Exercise 0: If 4 1s the adjacency matrix of a graph,
then (4%),=1 iff there is a path of length & from i to ;.

Transitive Closure
using matrix multiplication

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) 1s the graph in
which (u,v)e E* iff there 1s a path from u to v.

If A 1s the adjacency matrix of G,
then (AvI)"! is the adjacency matrix of G'*.

The matrix (AvI)"~! can be computed by log n
squaring operations 1n O(n®log n) time.

It can also be computed 1n O(n®) time.

v D
C | D
E | F (AvBD*C)* EBD*
Y = _
G | H D*CE D*/GBD*

TC(n) <2 TC(n/2) + 6 BMM(n/2) + O(n?)

Exercise 1: Give O(n®) algorithms for
findning, 1n a directed graph,

a) atriangle

b) asimple quadrangle

c) asimple cycle of length £.

Hints:
1. Inan graph all paths are simple.

2. In ¢) running time may be exponential 1n £.

3. Randomization makes solution much easier.

SHORTEST PATHS

APSP — All-Pairs Shortest Paths
SSSP — Single-Source Shortest Paths

An 1nteresting special case
of the APSP problem

A B

C = AxB

Cij — Hlkiﬂ{&ik —|—ka}

Min-Plus product

Min-Plus Products

(-6 -3 —10)
2 5 =2

-1 -7 -5,

C = AxB

Cij — min{aik —|—ka}

k

-3

2

7)

+ o0

(8
-3

_5)

L d

+oo —4)
0 -7
-2 1

Solving APSP by repeated squaring

If //71s an » by 7 matrix containing the edge weights
of a graph. Then /7 1s the distance matrix.

By induction, /" gives the distances realized
by paths that use at most /= edges.

D« W
fori <1 to rlogzn_‘
do D < D*D

Thus: APSP(n) < MPP(n) log n
Actually: APSP(n) = O(MPP(n))

v D
C | D
E | F (AvBD*C)* EBD*
Y = _
G | H D*CE D*/GBD*

APSP(n) <2 APSP(n/2) + 6 MPP(n/2) + O(n?)

Algebraic
Product

C=A4-B
C; =Zaikb,g.
k

O(n2.38)

Min-Plus
Product

C=A4A*B

C; = mkin{aik b, }

min oddration
has no inverse!

UNWEIGHTED
UNDIRECTED

SHORTEST PATHS

Directed versus undirected graphs

Y Y
X X
Z Z
0(x,2) < 0(x,y) to(y,z) 0O(x,2) < 0(x,y) + 0(y.2)
Triangle inequality o(x,y) < 0(x,z) + o(z,p)

0(x,2) = 0(x,y) — 0(y»2)

Inverse triangle inequality

Distances in G and its square G?

Let G=(V,E). Then G*=(V,E?), where
(u,v)e E* if and only if (u,v) e E or there
exists we V such that (u,w),(w,v)el

Let 0 (u,v) be the distance from # to v in G.
Let 6°(u,v) be the distance from u to v in G°.

N R,

o(u,v)=5 0%(u,v)=3

Distances in G and its square G- (cont.)

. N, —

5%(u,v) <| 8(u,v)/2 |

N S

o(u,v) < 26%(u,v)

Lemma: 6%(u,v)= |_8(u,v)/2_‘ , for every u,veV.

Thus: 6(u,v) = 26*(u,v) or
o(u,v) = 20%(u,v) —1

Distances in G and its square G* (cont.)

Lemma: If 6(1,v)=26(u,v) then for every
neighbor w of v we have 6%(u,w) > &(u,v).

Lemma: If 6(u,v)=26(u,v)—1 then for every
neighbor w of v we have 6*(u,w) < 6*(u,v) and
for at least one neighbor 62(u,w) < 6%(u,v).

Let 4 be the adjacency matrix of the G.
[et C be the distance matrix of G2

Z Cu,w :Z Cu,waw,v — (CA)u,v : deg(v) Cu,v

(v,w)eE

Even distances

Lemma: If 6(1,v)=26(u,v) then for every
neighbor w of v we have 6%(u,w) > &(u,v).

——_—_—_——_——-
- O .

4

Let 4 be the adjacency matrix of the G.
Let C be the distance matrix of G°

Z Coprpy = Z Cuwuwy = (CA), > deg(v)cyy

(v,w)EFE weV

Odd distances

Lemma: If 6(u,v)=26°(u,v)—1 then for every
neighbor w of v we have 6*(u,w) < 6*(u,v) and
for at least one neighbor 62(u,w) < 6%(u,v).

Exercise 2: Prove the lemma.

Let 4 be the adjacency matrix of the G.
Let C be the distance matrix of G?

Z Coprpy = Z CuwGuywy = (CA), < deg(v)cyy

(v,w)EFE weV

Seidel’s algorithm

. Find, recursively, the distances

If A 1s an all one matrix,
then all distances are 1.

Compute 42, the adjacency
matrix of the squared graph.

in the squared graph.

. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

- ™~
Assume that 4 has
1’s on the diagonal.

If A 1s an all one matrix,
then all distances are 1.

Compute 42, the adjacency
matrix of the squared graph.

Find, recursively, the distances
in the squared graph.

Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Boolean matrix
multiplicaion

™~

l

—

])
Integer matrix

multiplicaion

Seidel’s algorithm

. If A 1s an all one matrix,

then all distances are 1.

. Compute 42, the adjacency
matrix of the squared graph.

. Find, recursively, the distances

in the squared graph.

. Decide, using one integer

matrix multiplication, for every
two vertices u,v, whether their
distance 1s twice the distance in
the square, or twice minus 1.

Algorithm APD(A)

1f A=J then
return J—/

else
C—APD(A4?)
X—CA , deg—Ae—1
di«—2c¢,— [x,<c;deg]
return D

end

Complexity:
O(n®log n)

Exercise 3: (*) Obtain a version of
Seidel’s algorithm that uses only
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for
computing all distances.

How do we get a representation of
the shortest paths?

We need for the
Boolean matrix multiplication.

Witnesses for
Boolean Matrix Multiplication

A matrix W 1s a matrix of witnesses 1ff

It Cij =— 0 then W;; = 0
If ¢;; = 1 then w;; = k where a;;, = by; = 1

Can be computed naively in O(#°) time.
Can also be computed in O(n®log n) time.

a)

b)

Exercise 4:

Obtain a deterministic O(n®)-time
algorithm for finding unique witnesses.

Let 1<d<n be an integer. Obtain a
randomized O(n®)-time algorithm for
finding witnesses for all positions that
have between d and 2d witnesses.

Obtain an O(n®log n)-time algorithm for
finding all witnesses.

Hint: In b) use

All-Pairs Shortest Paths

in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,...M}

Running time Authors

Mn® [Shoshan-Zwick 99]

Improves results of
| Alon-Galil-Margalit *91] [Seidel "95]

DIRECTED
SHORTEST PATHS

Exercise 5: Obtain an O(n®log n) time
algorithm for computing the diameter
of an unweighted directed graph.

p
C

Using matrix multiplication

to compute min-plus products

Ciy

\

/all d,) /bu by,
dy Ay * 1 by by
\)\
min{a;x + by}
(ap app \ 4 by by,
X X X X
ar 25)) by by,
X X X X
)\
o /
c;j = first(c;;)

Using matrix multiplication
to compute min-plus products

polynomial
products

X

/ ary app

X X

ajy 25%)

operations per
polynomial
product

Assume: 0 < a;, byé M

\

Mn ©
operations per

max-plus
product

Trying to implement the
repeated squaring algorithm

D« W .
: Consider an easy case:
for i <1 to log,n .
all weights are 1.
do D < D*D

After the i-th 1teration, the finite
elements in D are in the range {1,...,2'}.

The cost of the min-plus product is 2/ n®

The cost of the last product is #®*! !!!

Sampled Repeated Squaring (Z "98)

D ~ | N
< W Choose a subset of V
for i <1 to log,,n do ,
{ of size (9nlnn)/s

s < (3/2)"1

B <« rand(V,(9nlnn)/s)
D « min{ D, D|V,B]|*D|B,V] }

)

Sampled Repeated Squaring (Z "98)

D«W
for i <1 to log,,n do

d
s < (3/2)"1
B <« rand(V,(9nlnn)/s)

D < min{ D, D|V,B|*D|[B,V] }
J

Sampled Repeated Squaring (Z °98)

D«W
for i <1 to log,,n do

d
s « (3/2)*1
B <« rand(V,(9nlnn)/s)
D < min{ D, D|V,B|*D[B,V] }

)

The 1s also a slightly more complicated
deterministic algorithm

Sampled Distance Products (Z ’98)

n

In the i-th
1iteration, the set B

1IsofsizenInn/s,
where s = (3/2)""/

\l The matrices get
smaller and smaller
n but the elements get

larger and larger

/8]

Sampled Repeated Squaring - Correctness

DeWw Invariant: After the i-th
for i <1 to log;,n do . . .
{ 1iteration, distances that are
(3/2)1 . . :
A attained using at most (3/2)
e edges are correct.

Consider a shortest path that uses at most (3/2)"*! edges

at most at most

)
teere s

Failure -3
_ i+1 . (] < n
Lets=(3/2 robabilitv * ()

Rectangular Matrix multiplication

P n

Naive complexity: nzp

[Coppersmith *97]: n1-85p0. 54 4 p2+o(l)

For p <n’?? complexity = n’*o(0) !

Complexity of APSP algorithm

The i-th 1teration:
ninn/s S:(3 /2)i+1

The elements are
of absolute value

at most Ms

S/uulu

0.54 3
mln{ M - n1'85 (_j , } S MO.68n2.58

Open problem:
Can APSP 1n directed graphs
be solved in O(n®) time?

Related result: [Yuster-Z’03]

A directed graphs can be processed 1n
O(n®) time so that any distance query can
be answered 1n O(7) time.

Corollary:
SSSP 1n directed graphs in O(n®) time.

The preprocessing algorithm (YZ °05)

D« W;B«V
for i <1 to log,,n do

d

s < (3/2)"1

B <« rand(B,(9n1nn)/s)

D|V,B| <~ min{D|V,B] , D|V,B|*D|B,B] }
D|B,V] <~ min{D|B,V], D|B,B|*D|B,V] }

)

The APSP algorithm

D« W
for i <1 to log,,n do

{
s < (3/2)"1
B < rand(V,(9nln n)/s)

D « mln{ D, D|V,B]*DI|B,V] }

Twice Sampled Distance Products

n

nﬂll

The query answering algorithm

o(u,v) <~ Dliuj,V|*D[V,{vj]

V

Query time: O(n)

The preprocessing algorithm: Correctness
Let B. be the i-th sample. B, B5,DB8;>

Invariant: After the /-th iteration, if ue B, or ve B,
and there 1s a shortest path from « to v that uses at

most (3/2)" edges, then D(u,v)=0(u,v).

Consider a shortest path that uses at most (3/2)"*! edges

at most at most

—1(3) ——30() ()
R

The query answering algorithm:
Correctness

Suppose that the shortest path from u to v
uses between (3/2)" and (3/2)"*/ edges

at most at most

)) HA0G)—
ww

All-Pairs Shortest Paths

in graphs with small integer weights

Directed graphs.
Edge weights in {—M,...,0,.. M}

Running time Authors
M0.68 n2.58 [Zwick 98]

Improves results of
| Alon-Galil-Margalit *91] [Takaoka *98§]

Answering distance queries

Directed graphs. Edge weights in {—M,...,0,.. M}

Prepr.ocessmg Q}lery Authors
time time
Mn?-38 n [Yuster-Zwick *05]

In particular, any Mn'7¢ distances

can be computed in Mn-% time.

For dense enough graphs with small enough edge
weights, this improves on Goldberg’s SSSP algorithm.

Mn?33 vs. mn’ log M

PERFECT MATCHINGS

Matchings

A matching 1s a subset of edges
that do not touch one another.

Matchings

A matching 1s a subset of edges
that do not touch one another.

Perfect Matchings

A matching 1s perfect if there
are no unmatched vertices

Perfect Matchings

A matching 1s perfect if there
are no unmatched vertices

Algorithms for finding
perfect or maximum matchings

A matching M 1s a
maximum matching iff 1t
admits no augmenting paths

Combinatorial
approach:

Algorithms for finding
perfect or maximum matchings

A matching M 1s a
maximum matching iff 1t
admits no augmenting paths

Combinatorial
approach:

Combinatorial algorithms for finding
perfect or maximum matchings

In bipartite graphs, augmenting paths can be
found quite easily, and maximum matchings
can be used using techniques.

In non-bipartite the problem 1s much harder.
(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases):
O(mn'?) [Hopcroft-Karp] [Micali-Vazirani]

Adjacency matrix
of a undirected graph

5

The adjacency matrix of an
undirected graph 1s symmetric.

Matchings, Permanents, Determinants

det A = Z sign(ﬁ)ﬁ&m(i)
i=1

TeS,

per A = Z Ham(i)

7wesS,, 1=1

Exercise 6: Show that if 4 1s the adjacency matrix
of a graph G, then per 4 1s the number of
perfect matchings in G.

Unfortunately computing the
permanent 1s #P-complete...

Tutte’s matrix

(Skew-symmetric symbolic adjacency matrix)

4
(T4 Tis5 0 \
Tog Ta25 0
6 —X23 0 T35 T36
—T14 —T24 0
—x15 —X25 —I35
5 \ 0 0 —o36 —T46 —Ts6)

(.CCZ']' 1f{Z,]}EE&HdZ<],
—x;; if{i,jleFandi>j, Al = —A

0 otherwise

Tutte’s theorem

Let G=(V,E) be a graph and let 4 be its Tutte
matrix. Then, G has a perfect matching 1ff det 4 #0.

1 2 (0 T12 0 T14 \
D A — — 12 0 o3 0
0 —X23 0 — X34
4 3 \—51114 0 —x3 0 /

2 9 2 92
det A = x7,75, + 2742535 + 2x12T23234741 7# O

There are perfect matchings

Tutte’s theorem

Let G=(V,E) be a graph and let 4 be its Tutte
matrix. Then, G has a perfect matching 1ff det 4 #0.

1N2 / 0 Z12 T13 T4 \
A . — X192 0 0 0
o —X13 0 0 0
4 3 \ —T14 0 0 0 /
det A = 0

No perfect matchings

Proof of Tutte’s theorem

n

det A = > sign(m) [[ainci

TES, 1=1

Every permutation meS_ defines a cycle collection

= (214563897 10)

G ‘e s ®

Cycle covers

A permutation neS_ for which {i,n(i)} €F,
for 1 <i <k, defines a cycle cover of the graph.

B

Exercise 7: If 7’ 1s obtained from 7 by reversing
the direction of a cycle, then sign(n’)=sign(m).

n n
N = L Depending on the
Aixr(i) — =L A (4
?:1;[1 (¥ };[1 2 parity of the cycle!

+T12

¢ o

—X192

—I12

¢ o

+X12

H az’w’(i) —
1=1

—I36

+T36

Reversing Cycles

—|—$34

—ZX79 —|—£E78

+X45

TI56 +I89

—I34

+Z79 — 78

—d45
—L56 —LR9
n
H Qins Depending on the
P parity of the cycle!

Proof of Tutte’s theorem (cont.)

n

det A = Z sign(’ﬂ)Ham(fz)

TESH 1=1

The permutations meS_ that contain an odd cycle
cancel each other! Thus we effectively sum only
over even cycle covers.

A graph contains a perfect matching
1ff 1t contains an even cycle covers.

o— [

An algorithm for perfect matchings?

e Constructt

ne Tutte matrix A4.

 Compute ¢

etA.

o If detA4 # 0, say ‘yes’, otherwise ‘no’.

Problem:

detA 1s a symbolic expression

that may be of exponential size!

Lovasz’s
solution:

Replace each variable x; by a
random element of Z, where
p= GXn?) is a prime number.

The Schwartz-Zippel lemma

Let P(x,.x,,...,x,) be a polynomial of degree d
over a field F. Let S c F. If P(x,.x,,....x)70
and a,,a,,...,a, are chosen randomly and

independently from S, then

d
Pr| P(a1,as,...,a,) =0] < _S\

Proof by induction on 7.

For n=1, follows from the fact that polynomial of
degree d over a field has at most d roots

Lovasz’s algorithm for
existence of perfect matchings

Construct the Tutte matrix A4.

Replace each variable x; by a random
element of Z , where p=0(n?) is prime.

Compute det 4.
If det A # 0, say ‘yes’, otherwise ‘no’.

If algorithm says ‘yes’, then
the graph contains a perfect matching.

If the graph contains a perfect matching, then
the probability that the algorithm says ‘no’,
1s at most O(1/n).

Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j} €F 1s
contained in a perfect matching iff (4~"),#0.

Leads immediately to an O(n®*") algorithm:
Find an allowed edge {i,j} € £ , delete 1t and 1t
vertices from the graph, and recompute 4.

Mucha-Sankowski (2004): Recomputing 4!
from scratch 1s very wasteful. Running time
can be reduced to O(n®) !

Harvey (2006): A simpler O(n®) algorithm.

SUMMARY AND
OPEN PROBLEMS

Open problems

An O(n®) algorithm for the directed unweighted
APSP problem?

An O(n°~®) algorithm for the APSP
problem with edge weights in {1,2,...,n}?

O(n®) algorithm for
maximum or perfect matcing?

An O(n?>7%) algorithm for weighted matching
with edge weights in {1,2,....n}?

Other applications of fast matrix multiplication?

