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Overview

• Short introduction to fast matrix multiplication
• Transitive closure
• Shortest paths in undirected graphs
• Shortest paths in directed graphs
• Perfect matchings



Short introduction to
Fast matrix multiplication



Algebraic Matrix Multiplication

× =( )i jA a= ( )i jB b= ( )i jC c=i

j

Can be computed naively in O(n3) time.



Matrix multiplication algorithms

Coppersmith, Winograd (1990)n2.38

Strassen (1969)n2.81

(by definition)n3

AuthorsComplexity

Conjecture/Open problem: n2+o(1)   ???



Multiplying 2×2 matrices

8 multiplications
4 additions

T(n) = 8 T(n/2) + O(n2)
T(n) = O(nlog8/log2)=O(n3)

C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22



Strassen’s 2×2 algorithm
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+ 7 multiplications
18 additions/subtractions

Subtraction!



Strassen’s n×n algorithm

View each n×n matrix as a 2×2 matrix 
whose elements are n/2 × n/2 matrices. 

Apply the 2×2 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)
T(n) = O(nlog7/log2)=O(n2.81)



Matrix multiplication algorithms

The O(n2.81) bound of Strassen was 
improved by Pan, Bini-Capovani-Lotti-

Romani, Schönhage and finally by 
Coppersmith and Winograd to O(n2.38). 

The algorithms are much more complicated…

We let 2 ≤ ω < 2.38 be the 
exponent of matrix multiplication.



Gaussian elimination

The title of Strassen’s 1969 paper is:
“Gaussian elimination is not optimal”

Other matrix operations that can 
be performed in O(nω) time:

• Computing determinants:  detA .
• Computing inverses:  A−1

• Computing characteristic polynomials



Rectangular Matrix multiplication

Coppersmith (1997):

Complexity  ≤ n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

× =n

p

p

n

n

n

A B C



TRANSIVE CLOSURE



Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 
which (u,v)∈E* iff there is a path from u to v.

Can be easily computed in O(mn) time.
Can also be computed in O(nω) time.



Boolean Matrix Multiplication

× =( )i jA a= ( )i jB b= ( )i jC c=i

j

Can be computed naively in O(n3) time.



Algebraic 
Product

O(n2.38)
algebraic 
operations

Boolean 
Product

?



Algebraic 
Product

O(n2.38)
algebraic 
operations

Boolean 
Product

or (∨)
has no inverse!



Algebraic 
Product

O(n2.38)
algebraic 
operations

Boolean 
Product

But, we can work
over the integers!



Algebraic 
Product

O(n2.38)
algebraic 
operations

Boolean 
Product

O(n2.38)
operations on 

O(log n) bit words



• Can you use Strassen’s algorithm or the 
Coppersmith-Winograd algorithm to 
compute Boolean matrix multiplications?

• No, as these algebraic algorithms use 
subtractions and the Boolean-or (∨) 
operation has no inverse!

• Still, we can run the algebraic algorithms 
over the integers and convert any non-zero 
result to 1.



Adjacency matrix 
of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph, 
then (Ak)ij=1 iff there is a path of length k from i to j.



Transitive Closure 
using matrix multiplication

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 
which (u,v)∈E* iff there is a path from u to v.

If A is the adjacency matrix of G, 
then (A∨I)n−1 is the adjacency matrix of G*.

The matrix (A∨I)n−1 can be computed by log n
squaring operations in O(nωlog n) time.

It can also be computed in O(nω) time.



D*∨GBD*D*CE

EBD*(A∨BD*C)*

DC

BA

HG

FE

X =

X* = =

TC(n) ≤ 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B



Exercise 1: Give O(nω) algorithms for 
findning, in a directed graph,
a) a triangle
b) a simple quadrangle
c) a simple cycle of length k.

Hints:
1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.



SHORTEST PATHS

APSP – All-Pairs Shortest Paths
SSSP – Single-Source Shortest Paths



An interesting special case
of the APSP problem

A B

17

23

Min-Plus product
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20



Min-Plus Products
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Solving APSP by repeated squaring

D ← W
for i ←1 to ⎡log2n⎤
do D ← D*D

If W is an n by n matrix containing the edge weights
of a graph. Then Wn is the distance matrix.

Thus: APSP(n) ≤ MPP(n) log n
Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized 
by paths that use at most k edges. 



D*∨GBD*D*CE

EBD*(A∨BD*C)*

DC

BA

HG

FE

X =

X* = =

APSP(n) ≤ 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B



Algebraic 
Product

ij ik kj
k

C A B
c a b

= ⋅

= ∑

O(n2.38)

Min-Plus 
Product

min operation 
has no inverse!

min{ }ij ik kjk

C A B
c a b

= ∗
= +

?



UNWEIGHTED
UNDIRECTED

SHORTEST PATHS



Directed versus undirected graphs

x
y

z

δ(x,z) ≤ δ(x,y) + δ(y,z)

x
y

z

δ(x,z) ≤ δ(x,y) + δ(y,z)

δ(x,z) ≥ δ(x,y) – δ(y,z)
δ(x,y) ≤ δ(x,z) + δ(z,y)Triangle inequality

Inverse triangle inequality



Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where 
(u,v)∈E2 if and only if (u,v)∈E or there 

exists w∈V such that (u,w),(w,v)∈E

Let δ (u,v) be the distance from u to v in G.
Let δ2(u,v) be the distance from u to v in G2.

δ(u,v)=5 δ2(u,v)=3



Distances in G and its square G2 (cont.)

Lemma: δ2(u,v)= ⎡δ(u,v)/2⎤ ,  for every u,v∈V.

Thus: δ(u,v) = 2δ2(u,v) or
δ(u,v) = 2δ2(u,v) −1 

δ2(u,v) ≤ ⎡δ(u,v)/2⎤

δ(u,v) ≤ 2δ2(u,v)



Distances in G and its square G2  (cont.)

Lemma: If δ(u,v)=2δ2(u,v) then for every 
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every 
neighbor w of v we have δ2(u,w) ≤ δ2(u,v) and 

for at least one neighbor δ2(u,w) < δ2(u,v).

, , , , ,
( , )

( ) : deg( )u w u w w v u v u v
wv w E

c c a CA v c
∈

= =∑ ∑

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2



Even distances
Lemma: If δ(u,v)=2δ2(u,v) then for every 
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2



Odd distances
Lemma: If δ(u,v)=2δ2(u,v)–1 then for every 

neighbor w of v we have δ2(u,w) ≤ δ2(u,v) and 
for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Exercise 2: Prove the lemma.



Seidel’s algorithm
1. If A is an all one matrix, 

then all distances are 1.

2. Compute A2, the adjacency 
matrix of the squared graph.

3. Find, recursively, the distances 
in the squared graph.

4. Decide, using one integer 
matrix multiplication, for every 
two vertices u,v, whether their 
distance is twice the distance in 
the square, or twice minus 1.



Seidel’s algorithm
1. If A is an all one matrix, 

then all distances are 1.

2. Compute A2, the adjacency 
matrix of the squared graph.

3. Find, recursively, the distances 
in the squared graph.

4. Decide, using one integer 
matrix multiplication, for every 
two vertices u,v, whether their 
distance is twice the distance in 
the square, or twice minus 1.

Assume that A has 
1’s on the diagonal.

Boolean matrix 
multiplicaion

Integer matrix 
multiplicaion



Seidel’s algorithm
Algorithm APD(A)
if A=J then

return J–I
else

C←APD(A2)
X←CA , deg←Ae–1
dij←2cij– [xij<cijdegj]
return D

end

1. If A is an all one matrix, 
then all distances are 1.

2. Compute A2, the adjacency 
matrix of the squared graph.

3. Find, recursively, the distances 
in the squared graph.

4. Decide, using one integer 
matrix multiplication, for every 
two vertices u,v, whether their 
distance is twice the distance in 
the square, or twice minus 1.

Complexity: 
O(nωlog n)



Exercise 3: (*) Obtain a version of 
Seidel’s algorithm that uses only 
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.



Distances vs. Shortest Paths

We described an algorithm for 
computing all distances.

How do we get a representation of
the shortest paths?

We need witnesses for the 
Boolean matrix multiplication.



Witnesses for 
Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(nωlog n) time.



Exercise 4:
a) Obtain a deterministic O(nω)-time 

algorithm for finding unique witnesses.
b) Let 1≤d≤n be an integer. Obtain a 

randomized O(nω)-time algorithm for 
finding witnesses for all positions that 
have between d and 2d witnesses.

c) Obtain an O(nωlog n)-time algorithm for 
finding all witnesses.

Hint: In b) use sampling.



[Shoshan-Zwick ’99]Mnω
AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 
Edge weights in {0,1,…M}

Improves results of 
[Alon-Galil-Margalit ’91] [Seidel ’95]



DIRECTED
SHORTEST PATHS



Exercise 5: Obtain an O(nωlog n) time 
algorithm for computing the diameter

of an unweighted directed graph.

PERFECT 
MATCHINGS



Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b
c c a a b b

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠O O O

min{ }ij ik kjk
c a b= +
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x x x x
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Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '
' '

a a b b

a a b b
c c
c c

x x x x
x x x x

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
O O O

nω

polynomial 
products

M
operations per 

polynomial 
product

× =
Mn ω

operations per 
max-plus 
product

Assume:   0 ≤ aij , bij ≤ M



Trying to implement the 
repeated squaring algorithm

Consider an easy case: 
all weights are 1.

D ← W
for i ←1 to log2n 
do D ← D*D

After the i-th iteration, the finite 
elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i nω

The cost of the last product is nω+1 !!!



Sampled Repeated Squaring  (Z ’98)

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand( V , (9n lnn)/s )
D ← min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V
of size (9nlnn)/s

Select the columns
of D whose 

indices are in B

Select the rows
of D whose 

indices are in B



Sampled Repeated Squaring  (Z ’98)

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand( V , (9n lnn)/s )
D ← min{ D , D[V,B]*D[B,V] }

}

With high probability, 
all distances are correct!



Sampled Repeated Squaring  (Z ’98)

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand( V , (9n lnn)/s )
D ← min{ D , D[V,B]*D[B,V] }

}

The is also a slightly more complicated 
deterministic algorithm



Sampled Distance Products (Z ’98)

n

n

n

|B|

In the i-th
iteration, the set B
is of size n ln n / s, 
where s = (3/2)i+1

The matrices get 
smaller and smaller

but the elements get 
larger and larger



Sampled Repeated Squaring - Correctness
D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V,(9 ln n)/s)
D ← min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th
iteration, distances that are 
attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

( )1
2

3
2

i

( )1
2

3
2

i( )1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/39ln(1 )
s

nn
s

−<−Failure 
probability :



Rectangular Matrix multiplication

[Coppersmith ’97]: n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

× =n

p

p

n

n

n

Naïve complexity:        n2p



Complexity of APSP algorithm
The i-th iteration:

×n

n ln n / s
n n ln

n / s

s=(3/2)i+1

The elements are 
of absolute value 

at most Ms

0.54 3
1.85min{ , }n nMs n

s s
⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

0.68 2.58M n≤



Open problem:
Can APSP in directed graphs 

be solved in O(nω) time?

Related result: [Yuster-Z’05]
A directed graphs can be processed in 

O(nω) time so that any distance query can 
be answered in O(n) time.

Corollary:
SSSP in directed graphs in O(nω) time.



The preprocessing algorithm (YZ ’05)

D ← W ; B ←V
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(B,(9n lnn)/s)
D[V,B] ← min{D[V,B] , D[V,B]*D[B,B] }
D[B,V] ← min{D[B,V] , D[B,B]*D[B,V] }

}



The APSP algorithm

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V,(9nlnn)/s)

}

D ← min{ D , D[V,B]*D[B,V] }



Twice Sampled Distance Products

n

n

n

|B|

n
|B|

|B|

|B|
|B|

n



The query answering algorithm

δ(u,v) ← D[{u},V]*D[V,{v}]

u

v

Query time: O(n)



The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u∈ Bi or v∈Bi
and there is a shortest path from u to v that uses at 

most (3/2)i edges, then D(u,v)=δ(u,v).

Let Bi be the i-th sample.    B1⊇ B2 ⊇ B3 ⊇ …

Consider a shortest path that uses at most (3/2)i+1 edges

( )1
2

3
2

i

( )1
2

3
2

i( )1
2

3
2

i
at most at most



The query answering algorithm: 
Correctness

Suppose that the shortest path from u to v
uses between (3/2)i and (3/2)i+1 edges

( )1
2

3
2

i

( )1
2

3
2

i( )1
2

3
2

i
at most at most

u v



All-Pairs Shortest Paths
in graphs with small integer weights

[Zwick ’98]M0.68 n2.58
AuthorsRunning time

Directed graphs. 
Edge weights in {−M,…,0,…M}

Improves results of 
[Alon-Galil-Margalit ’91] [Takaoka ’98]



Answering distance queries

n

Query
time

[Yuster-Zwick ’05]Mn2.38

AuthorsPreprocessing 
time

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances 
can be computed in Mn2.38 time.

For dense enough graphs with small enough edge 
weights, this improves on Goldberg’s SSSP algorithm.

Mn2.38 vs. mn0.5logM



PERFECT MATCHINGS



Matchings

A matching is a subset of edges 
that do not touch one another.



Matchings

A matching is a subset of edges 
that do not touch one another.



Perfect Matchings

A matching is perfect if there
are no unmatched vertices



Perfect Matchings

A matching is perfect if there
are no unmatched vertices



Algorithms for finding 
perfect or maximum matchings

Combinatorial 
approach:

A matching M is a 
maximum matching iff it 

admits no augmenting paths



Algorithms for finding 
perfect or maximum matchings

Combinatorial 
approach:

A matching M is a 
maximum matching iff it 

admits no augmenting paths



Combinatorial algorithms for finding 
perfect or maximum matchings

In bipartite graphs, augmenting paths can be 
found quite easily, and maximum matchings
can be used using max flow techniques.

In non-bipartite the problem is much harder. 
(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases): 
O(mn1/2) [Hopcroft-Karp] [Micali-Vazirani]



Adjacency matrix 
of a undirected graph

1

3
2

4

6

5

The adjacency matrix of an 
undirected graph is symmetric.



Matchings, Permanents, Determinants

Exercise 6: Show that if A is the adjacency matrix 
of a bipartite graph G, then per A is the number of 

perfect matchings in G.

Unfortunately computing the 
permanent is  #P-complete…



Tutte’s matrix 
(Skew-symmetric symbolic adjacency matrix)

1

3
2

4

6

5



Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte
matrix. Then, G has a perfect matching iff det A ≠0.

1

3

2

4

There are perfect matchings



Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte
matrix. Then, G has a perfect matching iff det A ≠0.

1

3

2

4

No perfect matchings



Proof of Tutte’s theorem

Every permutation  π∈Sn defines a cycle collection

1 2 10
3 4

6 5

7

9 8



Cycle covers

1 2
3 4

6 5

7

9 8

A permutation  π∈Sn for which {i,π(i)}∈E, 
for 1 ≤ i ≤ k, defines a cycle cover of the graph.

Exercise 7: If π’ is obtained from π by reversing
the direction of a cycle, then sign(π’)=sign(π).

Depending on the 
parity of the cycle!



Reversing Cycles

Depending on the 
parity of the cycle!

7

9 8

3 4

6 5
1 2

7

9 8

3 4

6 5
1 2



Proof of Tutte’s theorem (cont.)

The permutations  π∈Sn that contain an odd cycle 
cancel each other! Thus we effectively sum only 

over even cycle covers.
A graph contains a perfect matching 
iff it contains an even cycle covers.



An algorithm for perfect matchings?

• Construct the Tutte matrix A.
• Compute detA.
• If detA ≠ 0, say ‘yes’, otherwise ‘no’. 

Problem: detA is a symbolic expression 
that may be of exponential size!

Lovasz’s
solution:

Replace each variable xij by a 
random element of Zp, where 
p= Θ(n2) is a prime number.



The Schwartz-Zippel lemma
Let P(x1,x2,…,xn) be a polynomial of degree d
over a field F. Let S ⊆ F. If P(x1,x2,…,xn)≠0 
and a1,a2,…,an are chosen randomly and 
independently from S, then

Proof by induction on n.
For n=1, follows from the fact that polynomial of 

degree d over a field has at most d roots 



Lovasz’s algorithm for 
existence of perfect matchings

• Construct the Tutte matrix A.
• Replace each variable xij by a random 

element of Zp, where p=O(n2) is prime.
• Compute det A.
• If det A ≠ 0, say ‘yes’, otherwise ‘no’. 

If algorithm says ‘yes’, then 
the graph contains a perfect matching.

If the graph contains a perfect matching, then 
the probability that the algorithm says ‘no’, 

is at most O(1/n).



Finding perfect matchings
Rabin-Vazirani (1986): An edge {i,j}∈E is 
contained in a perfect matching iff (A−1)ij≠0. 

Leads immediately to an O(nω+1) algorithm:
Find an allowed edge {i,j}∈E , delete it and it 
vertices from the graph, and recompute A−1.

Mucha-Sankowski (2004): Recomputing A−1 

from scratch is very wasteful. Running time 
can be reduced to O(nω) !

Harvey (2006): A simpler O(nω) algorithm.



SUMMARY AND 
OPEN PROBLEMS



Open problems
• An O(nω) algorithm for the directed unweighted

APSP problem?
• An O(n3−ε) algorithm for the APSP 

problem with edge weights in {1,2,…,n}?
• Deterministic O(nω) algorithm for

maximum or perfect matcing?
• An O(n2.5−ε) algorithm for weighted matching 

with edge weights in {1,2,…,n}?
• Other applications of fast matrix multiplication?


