
Fast matrix multiplication
and graph algorithms

Uri Zwick
Tel Aviv University

NHC Autumn School on Discrete Algorithms
Sunparea Seto, Seto, Aichi Nov. 15-17, 2006

新世代の計算限界

Overview

• Short introduction to fast matrix multiplication
• Transitive closure
• Shortest paths in undirected graphs
• Shortest paths in directed graphs
• Perfect matchings

Short introduction to
Fast matrix multiplication

Algebraic Matrix Multiplication

× =()i jA a= ()i jB b= ()i jC c=i

j

Can be computed naively in O(n3) time.

Matrix multiplication algorithms

Coppersmith, Winograd (1990)n2.38

Strassen (1969)n2.81

(by definition)n3

AuthorsComplexity

Conjecture/Open problem: n2+o(1) ???

Multiplying 2×2 matrices

8 multiplications
4 additions

T(n) = 8 T(n/2) + O(n2)
T(n) = O(nlog8/log2)=O(n3)

C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22

Strassen’s 2×2 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B
C A B A B
C A B A B
C A B A B

= +
= +
= +
= +

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()()
()

()
()

()
()()
()()

M A A B B
M A A B
M A B B
M A B B
M A A B
M A A B B
M A A B B

−
−

= + +
= +
=
=
= +
=
= +

− +
−

11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M
C M M
C M M
C M M M M

= + +
=

=

−

+−

+
= +

+ 7 multiplications
18 additions/subtractions

Subtraction!

Strassen’s n×n algorithm

View each n×n matrix as a 2×2 matrix
whose elements are n/2 × n/2 matrices.

Apply the 2×2 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)
T(n) = O(nlog7/log2)=O(n2.81)

Matrix multiplication algorithms

The O(n2.81) bound of Strassen was
improved by Pan, Bini-Capovani-Lotti-

Romani, Schönhage and finally by
Coppersmith and Winograd to O(n2.38).

The algorithms are much more complicated…

We let 2 ≤ ω < 2.38 be the
exponent of matrix multiplication.

Gaussian elimination

The title of Strassen’s 1969 paper is:
“Gaussian elimination is not optimal”

Other matrix operations that can
be performed in O(nω) time:

• Computing determinants: detA .
• Computing inverses: A−1

• Computing characteristic polynomials

Rectangular Matrix multiplication

Coppersmith (1997):

Complexity ≤ n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

× =n

p

p

n

n

n

A B C

TRANSIVE CLOSURE

Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)∈E* iff there is a path from u to v.

Can be easily computed in O(mn) time.
Can also be computed in O(nω) time.

Boolean Matrix Multiplication

× =()i jA a= ()i jB b= ()i jC c=i

j

Can be computed naively in O(n3) time.

Algebraic
Product

O(n2.38)
algebraic
operations

Boolean
Product

?

Algebraic
Product

O(n2.38)
algebraic
operations

Boolean
Product

or (∨)
has no inverse!

Algebraic
Product

O(n2.38)
algebraic
operations

Boolean
Product

But, we can work
over the integers!

Algebraic
Product

O(n2.38)
algebraic
operations

Boolean
Product

O(n2.38)
operations on

O(log n) bit words

• Can you use Strassen’s algorithm or the
Coppersmith-Winograd algorithm to
compute Boolean matrix multiplications?

• No, as these algebraic algorithms use
subtractions and the Boolean-or (∨)
operation has no inverse!

• Still, we can run the algebraic algorithms
over the integers and convert any non-zero
result to 1.

Adjacency matrix
of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph,
then (Ak)ij=1 iff there is a path of length k from i to j.

Transitive Closure
using matrix multiplication

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in
which (u,v)∈E* iff there is a path from u to v.

If A is the adjacency matrix of G,
then (A∨I)n−1 is the adjacency matrix of G*.

The matrix (A∨I)n−1 can be computed by log n
squaring operations in O(nωlog n) time.

It can also be computed in O(nω) time.

D*∨GBD*D*CE

EBD*(A∨BD*C)*

DC

BA

HG

FE

X =

X* = =

TC(n) ≤ 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B

Exercise 1: Give O(nω) algorithms for
findning, in a directed graph,
a) a triangle
b) a simple quadrangle
c) a simple cycle of length k.

Hints:
1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.

SHORTEST PATHS

APSP – All-Pairs Shortest Paths
SSSP – Single-Source Shortest Paths

An interesting special case
of the APSP problem

A B

17

23

Min-Plus product

2

5
10

20

30

20

Min-Plus Products

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−∞+

∗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
∞+∞+

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
−
−−−

125
703
48

528
5

731

571
252

1036

Solving APSP by repeated squaring

D ← W
for i ←1 to ⎡log2n⎤
do D ← D*D

If W is an n by n matrix containing the edge weights
of a graph. Then Wn is the distance matrix.

Thus: APSP(n) ≤ MPP(n) log n
Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized
by paths that use at most k edges.

D*∨GBD*D*CE

EBD*(A∨BD*C)*

DC

BA

HG

FE

X =

X* = =

APSP(n) ≤ 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B

Algebraic
Product

ij ik kj
k

C A B
c a b

= ⋅

= ∑

O(n2.38)

Min-Plus
Product

min operation
has no inverse!

min{ }ij ik kjk

C A B
c a b

= ∗
= +

?

UNWEIGHTED
UNDIRECTED

SHORTEST PATHS

Directed versus undirected graphs

x
y

z

δ(x,z) ≤ δ(x,y) + δ(y,z)

x
y

z

δ(x,z) ≤ δ(x,y) + δ(y,z)

δ(x,z) ≥ δ(x,y) – δ(y,z)
δ(x,y) ≤ δ(x,z) + δ(z,y)Triangle inequality

Inverse triangle inequality

Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where
(u,v)∈E2 if and only if (u,v)∈E or there

exists w∈V such that (u,w),(w,v)∈E

Let δ (u,v) be the distance from u to v in G.
Let δ2(u,v) be the distance from u to v in G2.

δ(u,v)=5 δ2(u,v)=3

Distances in G and its square G2 (cont.)

Lemma: δ2(u,v)= ⎡δ(u,v)/2⎤ , for every u,v∈V.

Thus: δ(u,v) = 2δ2(u,v) or
δ(u,v) = 2δ2(u,v) −1

δ2(u,v) ≤ ⎡δ(u,v)/2⎤

δ(u,v) ≤ 2δ2(u,v)

Distances in G and its square G2 (cont.)

Lemma: If δ(u,v)=2δ2(u,v) then for every
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Lemma: If δ(u,v)=2δ2(u,v)–1 then for every
neighbor w of v we have δ2(u,w) ≤ δ2(u,v) and

for at least one neighbor δ2(u,w) < δ2(u,v).

, , , , ,
(,)

() : deg()u w u w w v u v u v
wv w E

c c a CA v c
∈

= =∑ ∑

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Even distances
Lemma: If δ(u,v)=2δ2(u,v) then for every
neighbor w of v we have δ2(u,w) ≥ δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Odd distances
Lemma: If δ(u,v)=2δ2(u,v)–1 then for every

neighbor w of v we have δ2(u,w) ≤ δ2(u,v) and
for at least one neighbor δ2(u,w) < δ2(u,v).

Let A be the adjacency matrix of the G.
Let C be the distance matrix of G2

Exercise 2: Prove the lemma.

Seidel’s algorithm
1. If A is an all one matrix,

then all distances are 1.

2. Compute A2, the adjacency
matrix of the squared graph.

3. Find, recursively, the distances
in the squared graph.

4. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Seidel’s algorithm
1. If A is an all one matrix,

then all distances are 1.

2. Compute A2, the adjacency
matrix of the squared graph.

3. Find, recursively, the distances
in the squared graph.

4. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Assume that A has
1’s on the diagonal.

Boolean matrix
multiplicaion

Integer matrix
multiplicaion

Seidel’s algorithm
Algorithm APD(A)
if A=J then

return J–I
else

C←APD(A2)
X←CA , deg←Ae–1
dij←2cij– [xij<cijdegj]
return D

end

1. If A is an all one matrix,
then all distances are 1.

2. Compute A2, the adjacency
matrix of the squared graph.

3. Find, recursively, the distances
in the squared graph.

4. Decide, using one integer
matrix multiplication, for every
two vertices u,v, whether their
distance is twice the distance in
the square, or twice minus 1.

Complexity:
O(nωlog n)

Exercise 3: (*) Obtain a version of
Seidel’s algorithm that uses only
Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for
computing all distances.

How do we get a representation of
the shortest paths?

We need witnesses for the
Boolean matrix multiplication.

Witnesses for
Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(nωlog n) time.

Exercise 4:
a) Obtain a deterministic O(nω)-time

algorithm for finding unique witnesses.
b) Let 1≤d≤n be an integer. Obtain a

randomized O(nω)-time algorithm for
finding witnesses for all positions that
have between d and 2d witnesses.

c) Obtain an O(nωlog n)-time algorithm for
finding all witnesses.

Hint: In b) use sampling.

[Shoshan-Zwick ’99]Mnω
AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs.
Edge weights in {0,1,…M}

Improves results of
[Alon-Galil-Margalit ’91] [Seidel ’95]

DIRECTED
SHORTEST PATHS

Exercise 5: Obtain an O(nωlog n) time
algorithm for computing the diameter

of an unweighted directed graph.

PERFECT
MATCHINGS

Using matrix multiplication
to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b
c c a a b b

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠O O O

min{ }ij ik kjk
c a b= +

11 12 11 12

21 22 21 22

11 12

21 22

' '
' '

a a b b

a a b b
c c
c c

x x x x
x x x x

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
O O O

Using matrix multiplication
to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '
' '

a a b b

a a b b
c c
c c

x x x x
x x x x

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
O O O

nω

polynomial
products

M
operations per

polynomial
product

× =
Mn ω

operations per
max-plus
product

Assume: 0 ≤ aij , bij ≤ M

Trying to implement the
repeated squaring algorithm

Consider an easy case:
all weights are 1.

D ← W
for i ←1 to log2n
do D ← D*D

After the i-th iteration, the finite
elements in D are in the range {1,…,2i}.

The cost of the min-plus product is 2i nω

The cost of the last product is nω+1 !!!

Sampled Repeated Squaring (Z ’98)

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V , (9n lnn)/s)
D ← min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V
of size (9nlnn)/s

Select the columns
of D whose

indices are in B

Select the rows
of D whose

indices are in B

Sampled Repeated Squaring (Z ’98)

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V , (9n lnn)/s)
D ← min{ D , D[V,B]*D[B,V] }

}

With high probability,
all distances are correct!

Sampled Repeated Squaring (Z ’98)

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V , (9n lnn)/s)
D ← min{ D , D[V,B]*D[B,V] }

}

The is also a slightly more complicated
deterministic algorithm

Sampled Distance Products (Z ’98)

n

n

n

|B|

In the i-th
iteration, the set B
is of size n ln n / s,
where s = (3/2)i+1

The matrices get
smaller and smaller

but the elements get
larger and larger

Sampled Repeated Squaring - Correctness
D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V,(9 ln n)/s)
D ← min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th
iteration, distances that are
attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

()1
2

3
2

i

()1
2

3
2

i()1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/39ln(1)
s

nn
s

−<−Failure
probability :

Rectangular Matrix multiplication

[Coppersmith ’97]: n1.85p0.54+n2+o(1)

For p ≤ n0.29, complexity = n2+o(1) !!!

× =n

p

p

n

n

n

Naïve complexity: n2p

Complexity of APSP algorithm
The i-th iteration:

×n

n ln n / s
n n ln

n / s

s=(3/2)i+1

The elements are
of absolute value

at most Ms

0.54 3
1.85min{ , }n nMs n

s s
⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

0.68 2.58M n≤

Open problem:
Can APSP in directed graphs

be solved in O(nω) time?

Related result: [Yuster-Z’05]
A directed graphs can be processed in

O(nω) time so that any distance query can
be answered in O(n) time.

Corollary:
SSSP in directed graphs in O(nω) time.

The preprocessing algorithm (YZ ’05)

D ← W ; B ←V
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(B,(9n lnn)/s)
D[V,B] ← min{D[V,B] , D[V,B]*D[B,B] }
D[B,V] ← min{D[B,V] , D[B,B]*D[B,V] }

}

The APSP algorithm

D ← W
for i ←1 to log3/2n do
{

s ← (3/2)i+1

B ← rand(V,(9nlnn)/s)

}

D ← min{ D , D[V,B]*D[B,V] }

Twice Sampled Distance Products

n

n

n

|B|

n
|B|

|B|

|B|
|B|

n

The query answering algorithm

δ(u,v) ← D[{u},V]*D[V,{v}]

u

v

Query time: O(n)

The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u∈ Bi or v∈Bi
and there is a shortest path from u to v that uses at

most (3/2)i edges, then D(u,v)=δ(u,v).

Let Bi be the i-th sample. B1⊇ B2 ⊇ B3 ⊇ …

Consider a shortest path that uses at most (3/2)i+1 edges

()1
2

3
2

i

()1
2

3
2

i()1
2

3
2

i
at most at most

The query answering algorithm:
Correctness

Suppose that the shortest path from u to v
uses between (3/2)i and (3/2)i+1 edges

()1
2

3
2

i

()1
2

3
2

i()1
2

3
2

i
at most at most

u v

All-Pairs Shortest Paths
in graphs with small integer weights

[Zwick ’98]M0.68 n2.58
AuthorsRunning time

Directed graphs.
Edge weights in {−M,…,0,…M}

Improves results of
[Alon-Galil-Margalit ’91] [Takaoka ’98]

Answering distance queries

n

Query
time

[Yuster-Zwick ’05]Mn2.38

AuthorsPreprocessing
time

Directed graphs. Edge weights in {−M,…,0,…M}

In particular, any Mn1.38 distances
can be computed in Mn2.38 time.

For dense enough graphs with small enough edge
weights, this improves on Goldberg’s SSSP algorithm.

Mn2.38 vs. mn0.5logM

PERFECT MATCHINGS

Matchings

A matching is a subset of edges
that do not touch one another.

Matchings

A matching is a subset of edges
that do not touch one another.

Perfect Matchings

A matching is perfect if there
are no unmatched vertices

Perfect Matchings

A matching is perfect if there
are no unmatched vertices

Algorithms for finding
perfect or maximum matchings

Combinatorial
approach:

A matching M is a
maximum matching iff it

admits no augmenting paths

Algorithms for finding
perfect or maximum matchings

Combinatorial
approach:

A matching M is a
maximum matching iff it

admits no augmenting paths

Combinatorial algorithms for finding
perfect or maximum matchings

In bipartite graphs, augmenting paths can be
found quite easily, and maximum matchings
can be used using max flow techniques.

In non-bipartite the problem is much harder.
(Edmonds’ Blossom shrinking techniques)

Fastest running time (in both cases):
O(mn1/2) [Hopcroft-Karp] [Micali-Vazirani]

Adjacency matrix
of a undirected graph

1

3
2

4

6

5

The adjacency matrix of an
undirected graph is symmetric.

Matchings, Permanents, Determinants

Exercise 6: Show that if A is the adjacency matrix
of a bipartite graph G, then per A is the number of

perfect matchings in G.

Unfortunately computing the
permanent is #P-complete…

Tutte’s matrix
(Skew-symmetric symbolic adjacency matrix)

1

3
2

4

6

5

Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte
matrix. Then, G has a perfect matching iff det A ≠0.

1

3

2

4

There are perfect matchings

Tutte’s theorem
Let G=(V,E) be a graph and let A be its Tutte
matrix. Then, G has a perfect matching iff det A ≠0.

1

3

2

4

No perfect matchings

Proof of Tutte’s theorem

Every permutation π∈Sn defines a cycle collection

1 2 10
3 4

6 5

7

9 8

Cycle covers

1 2
3 4

6 5

7

9 8

A permutation π∈Sn for which {i,π(i)}∈E,
for 1 ≤ i ≤ k, defines a cycle cover of the graph.

Exercise 7: If π’ is obtained from π by reversing
the direction of a cycle, then sign(π’)=sign(π).

Depending on the
parity of the cycle!

Reversing Cycles

Depending on the
parity of the cycle!

7

9 8

3 4

6 5
1 2

7

9 8

3 4

6 5
1 2

Proof of Tutte’s theorem (cont.)

The permutations π∈Sn that contain an odd cycle
cancel each other! Thus we effectively sum only

over even cycle covers.
A graph contains a perfect matching
iff it contains an even cycle covers.

An algorithm for perfect matchings?

• Construct the Tutte matrix A.
• Compute detA.
• If detA ≠ 0, say ‘yes’, otherwise ‘no’.

Problem: detA is a symbolic expression
that may be of exponential size!

Lovasz’s
solution:

Replace each variable xij by a
random element of Zp, where
p= Θ(n2) is a prime number.

The Schwartz-Zippel lemma
Let P(x1,x2,…,xn) be a polynomial of degree d
over a field F. Let S ⊆ F. If P(x1,x2,…,xn)≠0
and a1,a2,…,an are chosen randomly and
independently from S, then

Proof by induction on n.
For n=1, follows from the fact that polynomial of

degree d over a field has at most d roots

Lovasz’s algorithm for
existence of perfect matchings

• Construct the Tutte matrix A.
• Replace each variable xij by a random

element of Zp, where p=O(n2) is prime.
• Compute det A.
• If det A ≠ 0, say ‘yes’, otherwise ‘no’.

If algorithm says ‘yes’, then
the graph contains a perfect matching.

If the graph contains a perfect matching, then
the probability that the algorithm says ‘no’,

is at most O(1/n).

Finding perfect matchings
Rabin-Vazirani (1986): An edge {i,j}∈E is
contained in a perfect matching iff (A−1)ij≠0.

Leads immediately to an O(nω+1) algorithm:
Find an allowed edge {i,j}∈E , delete it and it
vertices from the graph, and recompute A−1.

Mucha-Sankowski (2004): Recomputing A−1

from scratch is very wasteful. Running time
can be reduced to O(nω) !

Harvey (2006): A simpler O(nω) algorithm.

SUMMARY AND
OPEN PROBLEMS

Open problems
• An O(nω) algorithm for the directed unweighted

APSP problem?
• An O(n3−ε) algorithm for the APSP

problem with edge weights in {1,2,…,n}?
• Deterministic O(nω) algorithm for

maximum or perfect matcing?
• An O(n2.5−ε) algorithm for weighted matching

with edge weights in {1,2,…,n}?
• Other applications of fast matrix multiplication?

