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Introduction

Independent sets in disk graphs
Vertex covers in disk graphs

Vertex coloring disk graphs
Rectangle intersection graphs
Dominating sets in unit disk graphs
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Some open problems
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What are geometric intersection graphs?

i

[] edges = non-empty intersection between objects

vertices = geometric objects

Example: a rectangle intersection graph

intersection graph

geometric representation
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Popular geometric intersection graphs

[1 disks (I disk graphs), squares

[] “fat” objects

[1 ellipses, rectangles (axis-aligned), arbitrary convex
objects

[1 line segments, curves, higher-dimensional objects

The recognition problem is typically NP-hard!!

Some Applications:

[1 Wireless networks (frequency assignment problems)
[1 Map labeling

[1 Resource allocation (e.g. admission control in line
networks)
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Application: Wireless networks
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Application: Map labeling

(illustration taken from a paper by van Kreveld, Strijk, Wolff)
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Application: Call admission control

-
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Network (line topology)
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Disk graphs

o N

...are the intersection graphs of disks in the plane:

O
O
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S
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Subclasses of disk graphs

| .

[ Unit disk graphs: all disks have diameter 1

[1 Coin graphs: touching graphs of disks whose interiors
are disjoint

Coin graphs are planar, but surprisingly ...
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...every planar graph is a coin graph

-

-

touching graph of disks:

planar graph:

&

touching graph of “blobs’:

8

[Koebe, 1936]




Maximum Independent Set
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Maximum Independent Set (MIS)

o N

Input: a set D of disks In the plane
Feasible solution: subset A C D of disjoint disks
Goal: maximize |A|

/—~\
\
\
~
~
\‘

In the weighted case (MWIS), each disk is associated with
a positive weight.
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Approximation algorithms for MIS
- -

An algorithm for MIS is a p-approximation algorithm if it
(I runs in polynomial time and

[1 always outputs an independent set of size at least
OPT/p, where OPT is the size of the optimal
iIndependent set.

A polynomial-time approximation scheme (PTAS) is a

family of (1 + ¢)-approximation algorithms for every constant
e > 0.

For MWIS, the definitions are analogous.
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MIS In unit disk graphs

o N

The problem is A'P-hard [Clark, Colbourn, Johnson’90].
Let’s try the greedy algorithm:

Algorithm GREEDY
I =10
for all given disks D do
If D is disjoint from the disks in I then
I =TU{D};
return I;
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Analysis of the greedy algorithm
B -

[1 Compare the greedy solution [ with the optimal solution
I*.

[ “Charge” every disk in I* to a disk in 1.

[1 Bound the number of disks charged to the same disk in
I.

Charging rules fora disk D € I*:

L If Disin I, charge D to itself.

LI If Disnotin I, then charge it to any disk that intersects
D and was accepted by GREEDY before it processed
D.
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How often can a disk D In I be charged?

o N

If Disalsoin I*, D Is charged only once.

If D is notin I*, itis charged by disks in I* that intersect D.
These disks are disjoint, so there can be at most 5 such
disks:

(1 |I*| < 5|I| and GREEDY is a 5-approximation
algorithm.

|
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An Improved greedy algorithm

Algorithm LEFTMOST-GREEDY
I =10
for all given disks D in order of increasing z-value do
If D Is disjoint from the disks in I then
I =1TU{D};
return /;

Claim. LEFTMOST-GREEDY is a 3-approximation
algorithm for MIS in unit disk graphs.
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Analysis of LEFTMOST-GREEDY

ste the same charging argument. T
Note: A disk D in I receives charge from disks in I* that
are processed after D by LEFTMOST-GREEDY.
Therefore, each disk is charged at most three times:
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Do we need the representation?
B -

GREEDY did not need to know the representation, but
what about LEFTMOST-GREEDY?

For getting ratio 3 we needed only the following:
When a disk D is selected, the disks intersecting D

that are processed later contain at most three
disjoint disks.

[ We can still get ratio 3 if we can identify a disk whose
neighborhood does not contain four disjoint disks!
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LEFTMOST-GREEDY w/o representation

fGiven a graph G = (V, F) that is the intersection graph of T
unit disks, the following is a 3-approximation algorithm for
MIS:

I =10;
repeat
v = a vertex whose neighborhood does not
have 4 independent vertices;
I =T1TU{v};
delete v and its neighbors from the graph;
until the graph is empty;
return /;

The vertex v can be found in O(|V]°) time.
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The shifting strategy
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[1 Partition graph into
[1 Let £ > 0 be a fixed integer.

[1 Remove slices equal to ¢
modulo £ and compute a
maximum independent set in
the graph G(¢), 0 < ¢ < k.

[1 Output the largest set
found in this way.

The largest of these sets con-
tains at least (1 — 7)OPT ver-

tices. J
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Shifting for unit disk graphs
- -

0 active

4 active

0 1 2 3 4 ) 6 7 8
L Remove disks hitting active lines (and shift active lines). J
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Solving the Subproblems

-

considered independently:

Active lines partition the plane into squares that can be

-

G

O

%

@

[] Compute maximum independent set I in each square by
brute-force enumeration. Since || = O(k2), time n®*")

Lsuffices.

|
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PTAS for MIS In unit disk graphs
-

I For 0 <r,s <k, getD(r,s) from D by deleting disks that

[ hit a horizontal line equal to » modulo & or
[ hit a vertical line equal to s modulo .

[1 Compute the maximum independent set /5 in each
k x k square S of D(r, s) by brute-force enumeration.

[1 The union of the sets /5 gives a maximum independent
set in D(r, s).

[1 Output the largest independent set obtained in this way.

Running-time: n°*°) for n disks. (Can be improved to
nOk) )
Approximation: Computed solution has size at least

L(l — ) OPT. |
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MIS In unit disk graphs: Summary

o N

O NP-hard [Clark, Colbourn, Johnson 1990].

[1 GREEDY gives a 5-approximation.
[Marathe et al., 1995]

[ LEFTMOST-GREEDY gives a 3-approximation. There Is
a variant that does not need the representation.
[Marathe et al., 1995]

[1 The shifting strategy gives a PTAS. It needs the
representation.
[Hochbaum and Maass, 1985; Hunt Il et al., 1998]
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Recent related results

o N

# [Nieberg, Hurink, Kern, 2004] PTAS for maximum
weight independent set in unit disk graphs without given
representation.

# [Marx, 2005] Maximum independent set in unit disk
graphs is W[1]-hard. (O No FPT algorithm and no
EPTAS unless FPT=W[1].)

# [van Leeuwen, 2005] Asymptotic FPTAS for maximum
Independent set (and various other problems) in unit
disk graphs of bounded density.
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MIS iIn general disk graphs

o N

[J The approximation ratio of GREEDY is only |V| — 1.
[1 But it helps to process the disks in the right order:

Algorithm SMALLEST-GREEDY
I =0;
for all given disks D in order of increasing diameter do
If D is disjoint from the disks in I then
[ =1U{D};
return I;
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Analysis of SMALLEST-GREEDY
o B

Again, charge disks in the optimal solution I* to disks in the
solution I computed by the algorithm.

[1 Every disk D in I receives charge only from disks in I*
that intersect D and were processed after D. There can
be at most five such disks.

SMALLEST-GREEDY is a 5-approximation algorithm.

If the representation is not given: Find a vertex whose
neighborhood does not contain an independent set of size
6, select it, and delete its neighbors.
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Extending the shifting strategy
B o | o

[] Classify the disks into layers according to their sizes.
[1 Use the shifting strategy on all layers simultaneously.

[1 After removing all disks that hit active lines, use
dynamic programming to compute a maximum
iIndependent set.

Classification into layers:

[1 Assume that the largest disk has diameter 1.

0 Layer ¢: disks with diameter d, (k+1) > d > (k+i)€+1'

T apart, every k-th line is active.

[1 Lines on layer ¢ are (k+1

o |
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Into layers

1Ition

Part

Layer O

o6\ OY
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Layer O:

§Ss

Layer 1:

90000 oo
249, %&Cé%% ® 0155
D 9D | P & &
4( C U | @)
%@é@ B @& | PP
&% & & °|&

Layer 2:
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Dynamic programming table

-

At square S on level ¢/, compute TABLEg. T
If I is an independent set of disks of level < ¢ intersecting S,
then

size of maximum independent set [’
TABLEg|I| = < of disks of level > ¢ in S such that
I'U I’ is an independent set.
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TABLEg [

TABLEg

TABLEg
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Computing TABLEg

1. Enumerate all n°*") independent sets J of disks of
level < ¢ touching S.

2. Look up corresponding entries of TABLEg: for
subsguares of S.

3. Update TABLEg|I|for / = {D < J | D has level </},

n ¥y .
; : , Lookups: &2 % @
( — )
:LTABLES [ﬁ]max{ TABLEg [ ﬁ ],3 > (note
\ /
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Two more examples for lookups

o N

N\
\\.'
DA,
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The PTAS for MIS

f I For0 <r,s <k, getD(r,s) from D by deleting disks thatj

[1 hit a horizontal line equal to » modulo & on their
evel, or
[ hit a vertical line equal to s modulo £ on their level

[1 Compute dynamic programming tables for D(r, s) in all
squares.

[1 The union of TABLEg[(] over all top-level squares gives
a maximum independent set in D(r, s).

[1 Output the largest independent set obtained in this way.

Running-time: n°*") for n disks. (Can be improved to
nO(kQ)_)
Approximation: Computed solution has size at least

- (1-7)OPT. |
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MIS In disk graphs: Summary

o N

[1 SMALLEST-GREEDY Is a 5-approximation algorithm.
There I1s a variant that does not need the

representation.
[Marathe et al., 1995]

[1 The shifting strategy combined with dynamic
programming gives a PTAS. It needs the representation.

[E, Jansen, Seidel’'01: nO*); Chan'01: n®®)]

Note: These results can be adapted to squares, regular
polygons and other “disk-like” or fat objects, also Iin
higher dimensions. The PTAS works also for the
weighted version.
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Minimum Vertex Cover
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The problem MINVERTEXCOVER

-

Input: a set D of disks in the plane T
Feasible solution: subset C' C D of disks such that, for any
Di1,Dy € D, D1NDy#0= Dy eCorDyeC.

Goal: minimize |C|

- o~
7
/
/
I
|
\
\
N\
\-—
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Approximating MINVERTEXCOVER

o N

An algorithm for MINVERTEXCOVER IS a p-approximation
algorithm if it

I runs in polynomial time and

[1 always outputs a vertex cover of size at most p - OPT,
where OPT is the size of the optimal vertex cover.

A polynomial-time approximation scheme (PTAS) is a
family of (1 + ¢)-approximation algorithms for every constant
e > 0.
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PTAS i1dea for MiNVERTEXCOVER
L -

[] Fact: I is an independent set < D \ I IS a vertex cover

[1 To approximate MINVERTEXCOVER In unit disk graphs,
we can again use the shifting strategy.

[1 Disks that hit an active line are considered in all
squares that they intersect (at most 4 sqguares).

& Qi@ o A M DO
8
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PTAS: MINVERTEXCoVER IN unit disk graphs

-

[1 For 0 <r, s < k, partition the plane into squares via

[1 horizontal lines equal to » modulo k£ and
[1 vertical lines equal to s modulo .

[1 Compute the minimum vertex cover C's among the
disks intersecting each k£ x k£ square S by computing a
maximum independent set and taking the complement.

[1 The union of the sets Cg gives a candidate vertex cover
(for each (r,9)).

[1 Output the smallest vertex cover obtained In this way.

Running-time: n°*°) for n disks. (Can be improved to

nOk) )
| -

T. Erlebach — Approximation algorithms for geometric intersection graphs — NHC Autumn School on Discrete Algorithms — Sunparea Seto, Seto, Aichi, Japan — November 15-17, 2006 — p.42/81



Analysis of PTAS for MINVERTEXCOVER
- -

[] Let C* be an optimum vertex cover.

[J For 0 <r,s < klet C*(r,s) be the disks intersecting
active lines for (r,s) and let S(r, s) be the set of all £ x k&
squares determined by these active lines.

[ Forak x k-square S, let C§ be the disks in C*
intersecting S and let OPT(S) be the optimum vertex
cover of the disks intersecting S.
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Candidate vertex cover computed by the algorithm for (r,s)

fhas size T

) OPT(S)| < >  |OPT(9)
SeS(r,s) SeS(r,s)
< > cr9)
SeS(r,s)

< 3[C7(r, s)] 4+ |C7

For some choice of (r, s):
[0 at most +|C*| disks of C* intersect vertical active lines

(] at most 1|C*| disks of C* intersect horizontal active lines
For this choice, we have |C*(r, s)| < £|C*|.

- [ Solution has size at most (1 + £) C* for some choice of(iis

T. Erlebach — Approximation algorithms for geometric intersection graphs — NHC Autumn School on Discrete Algorithms — Sunparea Seto, Seto, Aichi, Japan — November 15-17, 2006 — p.44/81



MINVC In disk graphs: Summary

o N

[1 PTAS for unit disk graphs using the shifting strategy
(needs the representation). [Hunt Il et al., 1994]

[] %-approximation algorithm for general disk graphs (not

needing the representation). [Malesinska, 1997]

[1 PTAS for general disk graphs using the shifting
strategy and dynamic programming (needs the
representation).

[E, Jansen, Seidel’01]

Note: PTAS adapts to squares, regular polygons etc.,
also in higher dimensions. Result holds for the weighted
version as well.
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Vertex Coloring
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Coloring disk graphs
- -

Goal: Assign a minimum number of colors to the disks
such that intersecting disks get different colors!

Algorithm SMALLEST-DEGREE-LAST(graph G)
v = a vertex with minimum degree Iin G,
color G\ {v} recursively;

assign v the smallest available color;

Observation. Let D be the maximum degree of a vertex v

at the time it was colored. Then the algorithm needs at
most D + 1 colors.
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Analysis for disk graphs
B -

Let v be the vertex corresponding to the smallest disk.
Let N(v) be the set of neighbors of v.

Note: At most 5 disks in N(v) can get the same color.

[1 Optimal number of colors OPT is at least 1 + M

1 |N(w)| <5-0PT — 5.
[1 So we must also have D < 50PT — 5.

The SMALLEST-DEGREE-LAST algorithm colors any
disk graph with at most 50PT — 4 colors. [Marathe et al.
1995; Graf 1995]
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Rectangle Intersection Graphs
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MIS In Rectangle Graphs

[1 Idea: find a “stabbing line” with at most half of the

o N

rectangles above and below.

o |
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Approximation algorithm for rectangles

L .

Algorithm RECTANGLE-APPROX(set of rectangles R)

¢ = stabbing line with at most |R|/2 rectangles above and below;
Rapove = rectangles above stabbing line;

Rya0w = rectangles below stabbing line;

Riq = rectangles intersecting stabbing line;

compute approximations I; and I for R,ove and Ry recursively;
compute optimal independent set I for R,;q4;

return the larger of Iy and I; U Is;
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Analysis of RECTANGLE-APPROX

fTheorem The algorithm achieves approximation ratio logn T
for n rectangles.

Proof. by induction on the number of rectangles.
Let /* be an optimal independent set.

Let I, I7, I5 be the rectangles in I* that are on, above,
below 7.

Case 1: |[;| Is at least |I*|/logn.
Algorithm outputs a set of size at least

17|
logn

ol = [Ip] 2

o |
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o N

Case 2: |I;]| Is smaller than |I*|/logn.
The algorithm outputs a set of size at least

OPT(Rabove) . OPT(RbeIOW)

LU >

‘ ‘ log |Rabove| log ‘Rbelow|
N OPT(Rabove) X OPT(RbeIOW)
— (logn) —1 (logn) — 1

IR
(logn) —1  (logn) —1

* 1
‘] | ' (1 B logn) _ |]*‘
(logn) — 1 logn []
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MIS In rectangle graphs: Summary
- -

[I There is an O(logn)-approximation algorithm (with given
representation).

[Agarwal et al., 1998; Khanna et al. 1998; Nielsen 2000]

[1 For every constant ¢ > 0, there is an approximation
algorithm with ratio 1 + X logn.
[Berman et al., 2001]

[1 If all rectangles have the same height, there is a PTAS.
[Agarwal et al., 1998]
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Minimum Dominating Set
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Flooding an Ad-Hoc Network
-
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Flooding an Ad-Hoc Network
-
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Flooding an Ad-Hoc Network
-
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Efficient Flooding
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Routing Backbone
-

# For efficient flooding, we want to find a small subset of T
the nodes that can reach all other nodes. That subset is
then the routing backbone. [Guha and Khuller, 1999]

# We can model the network as a graph.

s Simple model: Unit Disk Graph
Two nodes can reach each other if their distance iIs
at most d, for some fixed value d.

Each node corresponds to a unit disk, and there is
an edge between two nodes if the disks intersect.

# The problem of identifying a small routing backbone
then becomes the minimum (connected) dominating set
problem in unit disk graphs.

o |
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Unit Disk Graph




Minimum Dominating Set (MDS)

o N

Input: a set D of unit disks Iin the plane
Feasible solution: subset A C D that dominates all disks
Goal: minimize | A]

o |
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Minimum Dominating Set (MDS)
B -

Input: a set D of unit disks Iin the plane
Feasible solution: subset A C D that dominates all disks

Goal: minimize | A]

In the weighted case (MWDS), each disk is associated with
a positive weight.

o |
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Minimum Dominating Set (MDS)

o N

Input: a set D of unit disks Iin the plane
Feasible solution: subset A C D that dominates all disks
Goal: minimize | A]

In the weighted case (MWDS), each disk is associated with
a positive weight.

For Minimum (Weight) Connected Dominating Set
(MCDS/MWCDS), the dominating set must induce a

~ connected subgraph. o
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Approximation Algorithms
- -

An algorithm for MWDS is a p-approximation algorithm if it
runs in polynomial time and always outputs a solution of
weight at most p - OPT, where OPT Is the weight of an
optimal solution.

A polynomial-time approximation scheme (PTAS) is a family
of algorithms containing a (1 + ¢)-approximation algorithm
for every fixed ¢ > 0.

Remark: In practice, we are interested in distributed
algorithms with fast running-time and good performance in
realistic scenarios.

o |
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A simple algorithm for MDS

o N

# Initialise U/ as the empty set.

# Repeat until no disk left:
s pick an arbitrary disk D
s Insert D into the set i/
s delete the disk D and all its neighbours from the
Instance

# Output the set I/ as dominating set

o |
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Example run
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Example run

o N

DO
5A

o |
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Example run
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Example run

o N

%

o |
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Example run

o N

7 TN
Y 4 \
1 \ l
1
\ @
\
~

o |
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Example run
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Example run

o |
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Analysis of the algorithm

o N

# How much worse than the optimal dominating set can
the solution produced by this algorithm be?
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Analysis of the algorithm
- -

# How much worse than the optimal dominating set can
the solution produced by this algorithm be?

# The set i/ output by the algorithm consists of disjoint
disks.

o |
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Analysis of the algorithm

f # How much worse than the optimal dominating set can T
the solution produced by this algorithm be?

# The set i/ output by the algorithm consists of disjoint
disks.

# The optimal solution also needs to dominate all disks Iin
U.

o |
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Analysis of the algorithm
- -

# How much worse than the optimal dominating set can
the solution produced by this algorithm be?

# The set i/ output by the algorithm consists of disjoint
disks.

# The optimal solution also needs to dominate all disks Iin
U.

# How many disks in ¢/ can one disk D from the optimal
solution dominate?

o |
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Analysis of the algorithm

f # How much worse than the optimal dominating set can T
the solution produced by this algorithm be?

# The set i/ output by the algorithm consists of disjoint
disks.

# The optimal solution also needs to dominate all disks Iin
U.

# How many disks in ¢/ can one disk D from the optimal
solution dominate?
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Simple approximation results

o N

The algorithm outputs the set |I/|, and the optimal solution
has size at least |I/]/5.
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Simple approximation results

o N

The algorithm outputs the set |I/|, and the optimal solution
has size at least |I/]/5.

Theorem (Marathe et al., 1992)
This simple greedy algorithm is a 5-approximation algorithm

for MDS In unit disk graphs.

o |
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Simple approximation results

o N

The algorithm outputs the set |I/|, and the optimal solution
has size at least |I/]/5.

Theorem (Marathe et al., 1992)
This simple greedy algorithm is a 5-approximation algorithm
for MDS in unit disk graphs.

Theorem (Marathe et al., 1992)
There Is a simple 10-approximation algorithm for MCDS In
unit disk graphs.

o |
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Simple approximation results

o N

The algorithm outputs the set |I/|, and the optimal solution
has size at least |I/]/5.

Theorem (Marathe et al., 1992)
This simple greedy algorithm is a 5-approximation algorithm
for MDS in unit disk graphs.

Theorem (Marathe et al., 1992)
There Is a simple 10-approximation algorithm for MCDS In
unit disk graphs.

Remark: There are also fast distributed approximation
algorithms for dominating set problems in unit disk graphs
or general graphs. (Gao et al., 2001, Kuhn & Wattenhofer,

- 2005) |
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Known dom. set approximations

# In arbitrary graphs, ratio ©(logn) Is best possible T
(unless P = NP) for MDS, MWDS, MCDS and MWCDS.
[Feige '96; Arora and Sudan '97; Guha and Khuller '99]

# For MDS in unit disk graphs, a PTAS can be obtained
using the shifting strategy [Hunt Il et al., 1994]:
s Any maximal independent set is a dominating set.

» Therefore, the smallest dominating set in a
constant-size square can be found in polynomial
time by enumeration.

# PTAS for MDS In unit disk graphs without
representation [Nieberg and Hurink, 2005]

# PTAS for MCDS in unit disk graphs [Cheng et al., 2003]
L #® Question: MWDS and MWCDS in unit disk graphs? J
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Shifting strategy doesn’t seem to work

fMWDS can be arbitrarily large for unit disks in an area of T
constant size:

small weight / large weight
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Constant-Factor Approximation
- -

Theorem (Ambuhl, E, Mihal’ak, Nunkesser, 2006) There
IS a constant-factor approximation algorithm for MWDS in
unit disk graphs.

ldeas:

# Partition the plane into unit squares and solve the
problem for each square separately.

# |n each square, reduce the problem to the problem of
covering points with weighted disks.

# Use enumeration techniques (guess properties of OPT)
and dynamic programming to solve the latter problem.

The constant factor is 72.

o |
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The subproblem for each square

o N

# Find a dominating set for the square:

s Let Dg denote the set of disks with centerina 1l x 1
square S.

s Let N(Dg) denote the disks in Dg and their
neighbors.

s Task: Find a minimum weight set of disks in N(Dg)
that dominates all disks in Dg.

o |

T. Erlebach — Approximation algorithms for geometric intersection graphs — NHC Autumn School on Discrete Algorithms — Sunparea Seto, Seto, Aichi, Japan — November 15-17, 2006 — p.69/81



The subproblem for each square

o N

# Find a dominating set for the square:

s Let Dg denote the set of disks with centerina 1l x 1
square S.

s Let N(Dg) denote the disks in Dg and their
neighbors.

s Task: Find a minimum weight set of disks in N(Dg)
that dominates all disks in Dg.

# Reduces (by guessing the max weight of a disk in OPTy)
to covering points in a square with weighted disks:

s Let P be a set of points in a 5 x 3 square S.

s Let D be a set of weighted unit disks covering P.
s Task: Find a minimum weight set of disks in D that

L covers all points in P. J
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Covering points by weighted disks




Covering points by weighted disks

Remark. O(1)-approximation algorithms are known for
unweighted disk cover [Bronninmann and Goodrich, 1995].
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Polynomial-time solvable subproblem

o N

# Given a set of points in a strip, and a set of weighted
unit disks with centers outside the strip, compute a
minimum weight set of disks covering the points.

o |
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Dynamic programming

o N

o \Vertical sweepline, table entry for every pair of disks
that could be on the lower and upper envelope:
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Main cases: One hole or many holes

One hole case: Many-holes case:

Enlarged:

Enlarged:
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Sketch of the one-hole case

o N

Step 1: Guess the four “corner points” of the optimal
solution (each of them is defined by two disks).
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Sketch of the one-hole case

o N

Step 2: Two regions that can only be covered with disks
whose centers are to the left or right of the square.

o |
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Sketch of the one-hole case

o N

Step 3: Remaining area can only be covered with disks
whose centers are above or below the square.

o |
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Summary: MWDS In unit disk graphs

-

.

9

°

B

Partition the plane into unit squares and solve the
problem for each square separately. (We lose a
constant factor compared to OPT.)

For each square, reduce the weighted dominating set
problem to a weighted disk cover problem.

Distinguish one-hole case and many-holes case.

In each case, we have a 2-approximation or optimal
algorithm for covering points in the square with
weighted unit disks.

This implies the constant-factor approximation
algorithm for MWDS in unit disk graphs.

|
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Weighted Connected Dominating Sets

fTheorem. There Is a constant-factor approximation T
algorithm for MWCDS in unit disk graphs.

Algorithm Sketch:
# First, compute an O(1)-approximate MWDS D.

# Build auxiliary graph H with a vertex for each
component of D, and weighted edges corresponding to
paths with at most two internal vertices.

# Compute a minimum spanning tree of 4 and add the
disks corresponding to its edges to D.

We can show: The total weight of the disks added to D is at

most 17 - OPT, where OPT is the weight of a minimum

weight connected dominating set. The overall
Lapproximation ratio Is then 72 + 17 = 89. J
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Further results on MDS and MWDS

o N

Theorem. [E, van Leeuwen 2006] For disk graphs with
bounded ply, there is a (3 + ¢)-approximation algorithm for
MWDS.

Theorem. [E, van Leeuwen 2006] For rectangle
Intersection graphs, MDS is APX-hard.

Theorem. [E, van Leeuwen 2006] For intersection graphs
of “squares with bumps” (or even for similar, convex
objects), MDS cannot be approximated with ratio o(logn)
unless P = NP.

o |
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Open Problems
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Disk graphs

o N

# Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

o |
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Disk graphs
- -

# Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

# |s there a PTAS for MDS in disk graphs with bounded
ply?

o |
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Disk graphs
- -

# Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

# |s there a PTAS for MDS in disk graphs with bounded
ply?

# What is the best possible approximation ratio for
minimum dominating set in general disk graphs:

o |
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Disk graphs
- -

# Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

# |s there a PTAS for MDS in disk graphs with bounded
ply?

# What is the best possible approximation ratio for
minimum dominating set in general disk graphs:

s Is there an O(1)-approximation algorithm or even a
PTAS?

o |
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Disk graphs
- -

# Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

# |s there a PTAS for MDS in disk graphs with bounded
ply?

# What is the best possible approximation ratio for
minimum dominating set in general disk graphs:

s Is there an O(1)-approximation algorithm or even a
PTAS?

s Is the problem APX-hard?

o |
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.

Disk graphs
-

Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

Is there a PTAS for MDS In disk graphs with bounded
ply?

What is the best possible approximation ratio for
minimum dominating set in general disk graphs:

s Is there an O(1)-approximation algorithm or even a
PTAS?

s Is the problem APX-hard?

What is the complexity of the maximum clique problem

In disk graphs?

(polynomial for unit disk graphs [Clark et al., 1990],
NP-hard for ellipses [Ambuhl, Wagner 2002]) J
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Rectangle intersection graphs

o N

# What is the best possible approximation ratio for
maximum independent set?
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Rectangle intersection graphs

o N

# What is the best possible approximation ratio for
maximum independent set?

» Known: For every ¢ > 0, there Is an approximation
algorithm with ratio 1 + % logn. [Berman et al., 2001]

o |
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Rectangle intersection graphs

o N

# What is the best possible approximation ratio for
maximum independent set?

» Known: For every ¢ > 0, there Is an approximation
algorithm with ratio 1 + %log n. [Berman et al., 2001]

s Known: If all rectangles have the same height, there
IS a PTAS. [Agarwal et al., 1998]

o |
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Rectangle intersection graphs

o N

# What is the best possible approximation ratio for
maximum independent set?

» Known: For every ¢ > 0, there Is an approximation
algorithm with ratio 1 + %log n. [Berman et al., 2001]

s Known: If all rectangles have the same height, there
IS a PTAS. [Agarwal et al., 1998]

# Can we achieve approximation ratio o(logn) for MDS
and MWDS?

o |

T. Erlebach — Approximation algorithms for geometric intersection graphs — NHC Autumn School on Discrete Algorithms — Sunparea Seto, Seto, Aichi, Japan — November 15-17, 2006 — p.80/81



Rectangle intersection graphs

o N

# What is the best possible approximation ratio for
maximum independent set?
» Known: For every ¢ > 0, there Is an approximation
algorithm with ratio 1 + 1 logn. [Berman et al., 2001]

s Known: If all rectangles have the same height, there
IS a PTAS. [Agarwal et al., 1998]

# Can we achieve approximation ratio o(logn) for MDS
and MWDS?

# Can rectangle intersection graphs be colored with O(w)
colors, where w Is the cligue number?

(best known upper bound: O(w?) colors [Asplund and
Grinbaum, 1960])

o |
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Thank you!
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