Speed Scaling Algorithms
For Power Management

Kirk Pruhs
University of Pittsburgh

PPT to PDF 1.4

Microprocessor Power Increasing Exponentially

100

Power (Watts)

0.1

==
o

i
|

PG
Pentiu
8086 286"
BOO'BEQ‘BGII I |.| m II
1971 1974 1978 1985 1992 2000
Year
Source: Berkar, De Intel®

PPT to PDF 1.4

Why worry about power ?
Most Obvious Answer: Battery capacity increasing linearly

o0 ‘S T T B R T R B R DA RN |
Rechargable Lithium .
E 40 L
-~
<
: Ni-Metal Hydride
2 30 | 4
£
0 I
320 | _
O Nickel-Cadmium
o
E 10 —
o
d
0 ; — l
&5 70 75 80 85 90 95

L

=iy worry about power ?
Less Obvious Answer 2: Chips get hot

PPT to PDF 1.4

Intel Hits "Thermal Wall”

Reuters Friday May 7, 2004

SAN FRANCISCO, May 7 (Reuters) - Intel Corp. said on Friday it
has scrapped the development of two new computer chips (code-
named Tejas and Jayhawk) for desktop/server systems in order
to rush to the marketplace a more efficient chip technology more
than a year dhead of schedule. Analysts said the move showed
how eager the world's largest chip maker was to cut back on the
heat its chips generate. Intel's method of cranking up chip speed
was beginning to require expensive and noisy cooling systems for

computers.

www.intel.com

PPT to PDF 1.4

Laptops may damage male fertility

| 0 Reuters: December 9, 2004

Men should keep their laptops off their laps because
they could damage fertility, an expert said on Thursday.
Laptops, which reach high internal operating
temperatures, can heat up the scrotum which could
affect the quality and quantity of men’s sperm. "The
increase in scrotal temperature is significant enough to
cause changes in sperm parameters,” said Dr Yefim
Sheyrkin, an associate professor of urology at the
State University of New York at Stony Brook.

WDSHiDeed Scaling to Manage Power/Heat

What happens
when the
CPU cooler is
removed?

o

3
e

www.tomshardware.de
www.tomshardware.com

PPT to PDF 1.4

Outline

2 Introduction

O Importance of power management for enerqgy and
temperature

O Speed scaling power management technique
O Modeling energy and temperature
O Brief review of scheduling
O Brief history of the literature
a Algorithmic results
o Offline optimal speed scaling algorithms
» Deadline feasibility and energy
> Deadline feasibility and temperature
> Flow time and energy
O Online speed scaling algorithms
> Flow time and energy

» Deadline feasibility and energy
> Deadline feasibility and temperature

" Power and Energy Design Space

Constant Variable
Throughput/Latency Throughput/Latency

Energy | Design Time | Non-active Modules | Run Time
Logic Design '
- Reduced Vy, - (Dynamic
Active Sizing Clock Gating Freq. Voltage
Multi-Vyp Scaling)
Sleep Transistors
+ Multi-V Multi-V .
Leakage T Var'iabIeD\[;T + Variable V-
Stack effect |+ Input control

PPT to PDF 1.4

Standard Fixed Speed Processors

0 Historical Intel Pentium processor speeds

CPU CPU speed
8086 4.77 MHz
80286 12 MHz

80386DX 25 MHz
486 DX2-66 66 MHz

5x86-133 133 MHz
Pentium 75 75 MHz
Pentium 90 90 MHz
Pentium 100 100 MHz
Pentium 133 133 MHz
Pentium 166 166 MHz
Pentium 200 200 MHz

10

PPT to PDF 1.4

Intel Pentium 4 with Speed Scaling

Mobile Intel® Pentium® 4 Processor - M

Built on 0.13-micron process
technology and Intel®
~ MNetBurst™ microarchitecture,
the Mobile Intel® Pentium® 4
Pracessor - M provides
innovative capabilities for
graphics-intensive multimedia
applications. It's also
excellent for processor-intensive background computing tasks,
such as compression, encryption, and virus scanning.

Enhanced Intel SpeedStep® technology helps to optimize
application performance and power consumption, and Deeper
Sleep Alert State, a dynamic power management mode, adjusts
voltage during brief periods of inactivity—even between
keystrokes—for longer hattery life.

Mahile Intel® Pentium® 4 Proc or- M Fe

2.60 GHz, 2.50 GHz, 2.40 GHz, 2.20 GHz,
Available Speeds 20 GHz, 1.80GHz, 1.70 GHz, 1 .80 GHz,

1.50 GHz, 1 .40 GHz

Chipset Mobile Intel hipset Fari
Cache 512 KB On-Die Lewvel 2 (L2) Cache
RAM up to 1GB DDR SDRAM

g_':::tem Frequency 400 MHz

Tools

' Product

* Eerforman
* Applicatio
* Design Gy
* Erequenth
* Processor
* Technical
* Boxed Mo
Processor.

‘Whe

“ Find the R
* Intel® Pro

Benchmar

*Compare |

| Tgch_nic:

o Tarm Taak

11

PPT to PDF 1.4

Outline

2 Introduction

O Importance of power management for energy and
temperature

O Speed scaling power management technique
O Modeling energy and femperature

O Brief review of scheduling

O Brief history of the literature

12

RélaTionship of Power, Energy, and Speed

Power

Time

13

PPT to PDF 1.4

Relationship of Power, Energy, and Speed

Power

Energy

Time

14

RélaTionship of Power, Energy, and Speed

‘Power is strictly
convex function

Power of speed

Speed

15

PPT to PDF 1.4

Relationship of Power, Energy, and Speed

Power

Speed

Work /

16

Cube Root Rule in CMOS Technologies(1)

0 Power P = Energy used per unit time

O = dynamic power +-lealage-pewerd ()

» Leakage power = power used when idling

100000

10000

1000

100

Power (Watts)
Of Intel Parts

0.1+

P6 -t

1971 1974 1978 1985 1992 2000 2004 2008

Leakage
Power

17

Cube Root Rule in CMOS Technologies(2)

0 Dynamic Power P =c V2 s
» V = voltage
> s = frequency = processor speed
» € = some constant

0 There is a minimum voltage V required to run
the processor at speed s, and V is roughly
linear in s.

aP=cs?

O Speed is cube root of power

18

PPT to PDF 1.4

Newton's Law of Cooling(1)

0 Key Assumption: fixed ambient temperature T,

0 Newton's Law: rate of cooling is proportional to the
temperature difference

0 Equation

dT/dt=P-b(T-T,)=P-bT

O T = Temperature

O t = time

O P = supplied power

O b is constant cooling parameter
o For simplicity rescale so that T, =0

19

Nlew‘ron's Law of Cooling(2)

0 If supplied power P =0, then temperature
decays exponentially with half-life 6(1/b)

dT/dt=-b T

0 Theorem: Maximum temperature = O(
maximum over time intervals T of length 1/b
of energy used during I)

20

PPT to PDF 1.4

Understanding dT/dt =P -bT

0 Theorem: Maximum temperature ~
maximum energy over an interval of length 1/b

a If b=0, then maximum temperature = total energy
Q If b=, then maximum temperature = maximum power

2 Definition: An algorithm is cooling oblivious if O(1)-
approximate for temperature for all b

0 Theorem: A cooling oblivious algorithm is O(1)-
approximate for total energy, maximum power, and
maximum speed

21

PPT to PDF 1.4

Outline

2 Introduction

O Importance of power management for energy and
temperature

O Speed scaling power management technique
O Modeling energy and temperature

O Brief review of scheduling

O Brief history of the literature

22

Online Scheduling Without Speed Scaling

+«— work w;, —

4
Release
Time r,

Input

Current
Time

l

Schedule

23

Online Scheduling Without Speed Scaling

Input

Current
Time

Schedule -

24

Online Scheduling Without Speed Scaling

Input

Current
Time

25

Online Scheduling Without Speed Scaling

Input

Current
Time

26

Online Scheduling Without Speed Scaling

Input

Current
Time

Schedule d

27

Standard Scheduling Problem Without Speed Scaling

2 Find a job selection policy A that optimizes some
Quality of Service (QoS) measure of the schedule

1 The two QoS measures that we care about
here are:

O Deadline feasibility = each job i finishes by a
specified deadline d.

> Optimal job selection policy: Earliest Deadline
First (EDF)

O Total (Average) flow time = Sum of flow times of
jobs
> Flow time F; of a job i is completion time C. - r.
> Most common QoS measure in systems literature

> Optimal job selection policy: Shortest Remaining
Processing Time (SRPT)

28

PPT to PDF 1.4

Outline

2 Introduction

O Importance of power management for energy and
temperature

O Speed scaling power management technique
O Modeling energy and temperature

O Brief review of scheduling

O Brief history of the literature

29

PPT to PDF 1.4

History

0 [YDS95] Frances Yao, Alan Demers, and Scott Shenker, A
Scheduling Model for Reduced CPU Energy, FOCS 95. First
theoretical paper on energy management.

o QoS = deadline feasibility

0 2004 -: 10's of Elaper's on speed scaling of jobs with deadlines.
Concentrate on the following papers which introduced
temperature management.

o [BKPO4] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs, Dynamic Speed
caling to Manage Energy and Temperature, FOCS 2001
o [BPO4] Nikhil Bansal, and Kirk Pruhs, Speed Scaling o Manage
emperature, STACS 2005
0 2004 - : 3 papers on speed scaling for flow time problems

o [PUWO4] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard
oeginger, Getting the Best Response for Your Erg, SWAT 2004

O [AFO6] Susanne Albers and Hiroshi Fujiwara, Energy-efficient
algorithms for flow time minimization , STACS 06.

o [BPSO7] Nikhil Bansal Kirk Pruhs and Cliff Stein, Speed Scaling for
eighted Flow, SODA 2007

30

Outline

3 Introduction
0 Algorithmic results
O Offline optimal speed scaling algorithms
> Deadline feasibility and energy
> Deadline feasibility and temperature

> Flow time and energy
O Online speed scaling algorithms
> Flow time and energy
> Deadline feasibility and energy
> Deadline feasibility and temperature

31

PPT to PDF 1.4

Outline: Offline optimal speed scaling algorithms

0 Deadline feasibility and energy
O Simple greedy algorithm
O Proof of correctness comes from KKT conditions
of convex programming formulation
0 Deadline feasibility and temperature
O Show that Ellipsoid algorithm can be applied to
convex programming formulation
0 Flow time and energy

O Restrict to unit work iobs so that we can have a
convex programming formulation

O Show how to trace the optimal flow time schedule
as a function of the available energy

32

PPT to PDF 1.4

Deadline Feasibility and Energy

0 Input: A collection of tasks, where task i has
O Release time r;when it arrives in the system
O Deadline d; when it must finish by
O Work requirement w,

0 The processor must perform w; units of work on each task i
after time r, and before time d, (Preemption is allowed)

0 For each time, the scheduler must specify both
o Job Selection Policy: which job to run
> wlog, may assume EDF
O Speed Setting Policy: set speed the processor should run at

0 Objective: Minimize the total energy subject to
deadline feasibility

33

Offline YDS Algorithm [YDS 95]

4 Repeat

O Find the interval I with maximum intensity
> Intensity of time interval I = X w. / |I|
Where the sum is over tasks i with [r, d.]inI

O During I

» speed = the intensity of I

» earliest deadline first scheduling policy
O Remove I, and the jobs completed in I

34

YDS Example(1)

d Input

release
tume Area = work of job

deadline

35

YDS Example(2)

First Interval

-+ >

Intensity

Second Interval
Intensity = green work + blue work

Length of solid green line

36

YDS Example(3)

0 Recall input was: -

2 Final YDS Schedule

O Height = processor speed

PPT to PDF 1.4

YDS Theorems

0 Easy Theorem: The YDS schedule is optimal for
maximum power (b=ce),

O Proof: Every schedule must have maximum power equal to the
power of the first interval that YDS considers.

2 Theorem (YDS95) : The YDS schedule is optimal for
energy (b=0).
O Our Proof (on next slides): A cute consequence of KKT
optimality
d Theorem (BPO5): The YDS schedule is cooling
oblivious. That is, YDS at worst 20-competitive with
respect o temperature for all cooling parameters b

O Proof idea: If YDS uses a lot of energy over an interval of
length 1/b then every schedule uses almost that much
energy over some interval of length 1/b

38

PPT to PDF 1.4

Correctness Proof of YDS Algorithm for Energy [BPO5]

Interval Indexed Convex Program

min F
‘LUJ ﬁ Z wzjj J= 15 y 1
icJJ~1(j)

E
]
?F]‘
~
| =
o 82
N—_~
3
-
+
|
ok
| /A
ey

wi; > 0 1=1,...,m jEJ(’L)

*W;; =work on job j in interval i

Interval i = [t 1,;] = maximal *ime period with no
release times or deadlines

+J(i) = jobs that can run in interval |

39

KKT Optimality Conditions(2)

Consider a strictly-feasible convex differentiable program

min fo(z)
filz) <0 t=1,...,n

A sufficient condition for a solution x to be optimal is the
existence of Lagrange multipliers A, such that

fz(fE) < 0 ‘i=1,... s 1

Aj 2 0 ‘i!.=1ji s 1
Aifg(ﬂ?) = 0
= 0

Vfole) +) AV fi(z)
=1

40

PPT to PDF 1.4

Introducing Lagrange Multipliers

Interval Indexed Convex Program

O
=
IA

oo Z w,?_,,. ji=1,...

iCJ 1

W
(]
N
?F]‘
=~
&
—
w3
T
ps
|
o
I\
=

=<

&
AV
)

-

|
[a—

j € J(3)

41

PPT to PDF 1.4

KKT Optimality Conditions (3)

0 The w;; component of the gradient equation is

—1
EEGJ(i} Wik ’ R

—Q; +;5’p<

0 If w;; >0 (that is, job jis run in interval i) then y;; =0 by
comp1emen+ary slackness. Hence,

7 _ p—1
EkeJ(z‘) Wik

Lirl —

lejzp

0 Therefore, a task j is run at the same speed s; in every interval in
which it is run.

- 1
0 Note g, = p s/

42

PPT to PDF 1.4

KKT Optimality Conditions (4)

0 If w;; =0 then
D sJ.(P-l)

=
E:EJ(i) Wi, k !
Yij =P (e

Liy1— &

0 This has a solution with v, ; >= O if the speed that the processor is

run during interval i is >= s

0 Since YDS satisfies these conditions, it is optimal

43

Outline: Offline optimal speed scaling algorithms

0 Deadline feasibility and energy
O Simple greedy algorithm
O Proof of correctness comes from KKT conditions
of convex programming formulation
0 Deadline feasibility and temperature
O Show that Ellipsoid algorithm can be applied to
convex programming formulation
0 Flow time and energy

O Restrict to unit work iobs so that we can have a
convex programming formulation

O Show how to trace the optimal flow time schedule
as a function of the available energy

44

PPT to PDF 1.4

Offline Speed Scaling to Minimize Temperature

0 Convex program formulation of determining whether
temperature T, ., is feasible

w; <), Wi 1<3<n
izj€J (1)
>, wi; < MazW(ti,ti1,7:,Ti1) 1<i<m—1
jEJ (i)
0 < ng 1 S’i <m
0 < w; 1<i1<m1<j3<n

0 MaxW(t, t.;, T, T.,) = maximum work that can be accomplished
during time interval [t,, t,,], starting at temperature T, ending at
temperature T,;, maintaining the invariant that T< T,

0 To apply Ellipsoid algorithm we need to be able to find
subgradient of MaxW(t,, 1,4, T;, T.,;) constraints

i+1e

45

PPT to PDF 1.4

MaxW Subproblem

2 You start at time t, with temperature T, and want to
end at time 1, with temperature T,. What is the
maximum work you can accomplish subject to the
constraint that the temperature T remains < T, .2

Tmax
?
Tl
?
TU !
Temperature

t,=0 time 4
46

PPT to PDF 1.4

Solution without Boundary Constraint T ¢ T, (1)

0 You want to find the T that maximizes maximum work
o W=[Jsdt
> By cube root rule P = s3
> So W= JPL3
> Recall temperature equation dT/dt =P-bT=s3-b T
o W= [((dT/dt + bT)/a)'/? dt
0 By fundamental theorem of calculus of variations, T
satisfies
o Fr=dF.. /dt
> Functional F(T, T') = ((dT/dt + bT)/a)!/3
» T'= dT/dt
» Fr = the partial of F with respect to T
» Fr. = the partial of F with respect to T

47

Solution without Boundary Constraint T < T, (2)

0 Evaluating F+ = d F+ /dt and solving for T we
get
a T = cexp(-bt)+dexp(-3bt/2)
o Where d = (T, exp(-bt,) - T,)/(exp(-bt,) - exp(-
3bt,/2))

oand ¢ = T, - d and are constants determined
from the boundary conditions

0 Plugging T back into the integral J ((dT/dt +
bT)/a)V? dt we get

O Max Work = (-4d/ab?)'/3 (1-exp(-bt, /2))

48

Solution without Boundary Constraint T< T, (3)

ab=1T,=0,%t,=20,and T, =50

100
80 }
Temperature

T 50 }

20

20 }

Euler Curve

10
Time

15

20

49

PPT to PDF 1.4

Solution with Boundary Constraint T< T,

Derivative of

Euler Curve
=0
Tmax Euler
T= Tmax CUI"VE
Tl Euler
Curve
TU

ty time 4

50

Outline: Offline optimal speed scaling algorithms

0 Deadline feasibility and energy
O Simple greedy algorithm
O Proof of correctness comes from KKT conditions
of convex programming formulation
0 Deadline feasibility and temperature
O Show that Ellipsoid algorithm can be applied to
convex programming formulation
a Flow time and energy

O Restrict to unit work ijobs so that we can have a
convex programming formulation

O Show how to trace the optimal flow time schedule
as a function of the available energy

51

QoS measure = Total Flow Time

0 Flow time f; of a job i is completion time C, - r,

0 Minimize total/average flow time subject to
the constraint that at most E energy is used

0 We make the simplifying assumptions that all
jobs have the same (unit) amount of work

O In this case the optimal job selection policy is
First Come First Served.

O We thus focus on speed setting policy.
0 wlog assume, ry<r, <. <r,

52

PPT to PDF 1.4

Convex Programming Formulation

0 x; = execution time of task i

53

KKT Optimality Conditions

0 Total energy of E is used
aC <r,implies p; = p,
O p; = power of task i
aC >r,, impliesp = p.; * p,
aC =r, impliesp, <pi ¢ pi1 *+ P,

54

PPT to PDF 1

KKT Optimality Conditions

0 Total energy of E is used

aC <r,implies p; = p,

a G >ry, implies p, = p.; + p,
QG =ry, implies p, < p; < piy + p,
0 Example:

55

KKT Optimality Conditions

0 Algorithmic Difficulties:
O This doesn't tell us the value of p,
> Solution: Binary search

o Don't know the value of p, whenC. =r,, 2
> Solution: Can calculate since
you know interval when job runs
Pz * Pn

O Don't know if C < r orC.or,,
» Easy for high energy E, C. < r.

1, Gi = Py,
» Solution: Trace out optimal schedules as E
decreases

P2

56

PPT to PDF 1.4

Configurations

High Energy

<

=<
Configurations
> <

==

-

Low Energy

57

One Curve For Each Configuration

Flow
time

energy

o i i i i L

PPT to PDF 1.4

O(n2) Time Algorithm

0 Decrease p, (or equivalently energy), keeping track of the
schedule until the energy used is ¢ E

O Saving 6race: The schedule is a continuous function of p,

-0 Only O(n) structural changes in
schedule

O Structural changes are either
» aC; becoming = tor

i+1+

> or a C, becoming > than r,

59

PPT to PDF 1.4

Intuition

0 Intuitively as you lose energy, jobs should run slower,
but this intuition is false

2 Example:
o Higher energy: p;=2p; and p, = p;

O Lower energy: p; = 3p; and p, = 2 p;

O p,/p, decreases and job 2 speeds up as we lose energy

60

PPT to PDF 1.4

A Concrete Example

more energy LRSS)]
4 <<< ? d 1 1+d 3 3+d

E=3 N OO]
=<< ¢ I 2 3 4
E=2.260 —— N\ badedo b A LN
><< ¢ 1 2.260 3 4.260

E=1.282

E=1.

>>< < 1.399 3 5.017
\j

less energy S NN g, L X X X X XX X X _
d 2.145d 3.587d time

61

PPT to PDF 1.4

What Goes Wrong With Arbitrary Work Jobs

Arbitrary length

- N

1A
FAY
A

Open Question: What is the - I
complexity of finding optimal - < <
flow time schedules when

jobs have arbitrary work? -

2

1A

<

Optimal scheudule .
IS not a continuous
function of energy E — 7

WQ

Outline

2 Introduction

0 Algorithmic results
O Offline optimal speed scaling algorithms
O Online speed scaling algorithms
» Flow time and energy
> Deadline feasibility and energy
> Deadline feasibility and temperature

63

PPT to PDF 1.4

Outline: Online speed scaling algorithms

0 Online speed scaling algorithms
O Review
» Competitiveness
» Local competitiveness
» Resource augmentation
> Amortized local competitiveness
O Flow time and energy
O Deadline feasibility and energy
O Deadline feasibility and temperature

64

PPT to PDF 1.4

Competitive Analysis

0 Competitive ratio of algorithm A =

max; A(I)/Opt(I)
o A(I) is the total flow time on input I using algorithm A
o Opt(I) is the total time for the optimal schedule

Q An algorithm with a competitive ratio of 2 means that
it guarantees flow time at most 2 times optimal on all
iInputs

65

PPT to PDF 1.4

Standard Local Competitiveness Analysis to Prove Competitiveness

0 Standard local competitiveness analysis technique:

O Show that at all times, the increase in the objective function
G for the candidate algorithm A is competitive with the
increase in the objective function for an arbitrary algorithm
Opt

dGa(t) _ _dGon(!)
dit dt

O y is competitive ratio

66

Total Flow Time Ob jective

S
—F— *F7

- Fl =

F, + F, + F5 = J; number of unfinished jobs at time t dt
‘Increase in total flow objective = number of alive jobs

67

Total Fractional Flow Time Ob jective

Schede _

n=2/3+ 9

‘n, = fractional unfinished jobs at time t

*A job that is 1/3 finished counts 2/3 toward nt
Fractional flow = [, n,dt
Increase in fractional flow objective = n, .

Input

Questions

0 What is the optimal algorithm for total flow
time?

O Shortest Remaining Processing Time (SRPT) = run
the job that has the least work remaining
unfinished

0 What is the optimal algorithm for total
fractional flow time?

O Shortest Job First (§JF) = run he job that initially
had the least work

69

Example Local Competitiveness Argument(1)

0 Theorem [Folklore]: Shortest Remaining Processing Time
(SRPT) is optimal for total flow time for fixed speed processor

O Proof:

dG(t)/dt =
Number
of
unfinished
jobs

70

Example Local Competitiveness Argument(1)

0 Theorem [Folklore]: Shortest Job First (SJF) is optimal for
total fractional flow time for fixed speed processor

O Proof:

dG(t)/dt =
Number Opt
of
unfinished
jobs

Time

71

Nonclairvoyant Schedulers

2 One can not in general implement SRPT in an
operating system seT’rir:(g since one doesn't
know processing time of a job

0 A nonclairvoyant job selection policy doesn't
know the work (processing time) of a job when
It arrives

0 Example nonclairvoyant job selection policy
O Shortest Elapsed Time First (SETF)
O Run the job that has been run the least so far

O Favors newly arriving jobs until that have been run
as much as old jobs

72

PPT to PDF 1.4

Resource Augmentation Analysis [KP 95]

0 Compare the limited (e.g. online) algorithm with more resources

(e.g. a faster processor or more processors) to the optimal
algorithm with less resources

0 Online algorithm A is s-speed c-competitive if
max; A (I)/Opt,(T) < c
O Subscript denotes processor speed

0 Example: A 2-speed 3-competitive algorithm equipped with a
speed 2 processor Fuar'an'l'ees an average response time at most
3 times the optimal average response time for al speed
processor

73

PPT to PDF 1.4

Classic Server QoS Curves

That SETF is s-speed
c-competitive means

Online
Average
response
time
Low load High load

Fast processor Slow Processor

74

Old Chinese Saying:

2 Two blind shoemakers are better than one
politician

-
I

e i %

5

12/

75

PPT to PDF 1.4

Example Local Competitiveness Argument(2)

0 Theorem [KP95]: Shortest Elapsed Time First (SETF) is (1+¢)-
speed O(1 + 1/ g£)-competitive for total flow time

0 Proof: Let vy = competitive ratio

dG(t)/dt - S ETF1+E v Opt,

Number L
of

unfinished

jobs

Time

76

PPT to PDF 1.4

Why Local Competitiveness won't work with Speed Scaling

Opt may be doing way
better at this time

Opt

Power

Time

77

PPT to PDF 1.4

Algorithm A is Amortized Locally y-Competitive for Objective & with
Potential Function &

2 Boundary Condition
Intuition:

®(0) = 0 and &(+o0) >0 ® = an energy bank for
the online algorithm

2 Running Condition

dGa(t) < 4Gon(®)
dt - dt

Removing potential change returns
us to local competitiveness condition

78

PPT to PDF 1.4

Local Competitiveness and Speed Scaling

dGa(t) do(i) < dGop(t)

i ar SV a

Power

79

PPT to PDF 1.4

Outline: Online speed scaling algorithms

0 Online speed scaling algorithms
O Review
» competitiveness
» local competitiveness
> resource augmentation
> Amortized local competitiveness
O Flow time and energy
O Deadline feasibility and energy
O Deadline feasibility and temperature

80

First Observation About Speed Scaling for Flow Problems

0 Bounded Energy Problem
O Minimize total flow time
O Subject to the constraint that the energy
consumed is bounded by E, the energy in the
battery
0 Theorem: There is no O(1)-competitive online
algorithm for the bounded energy problem

O Proof Idea: How much energy do you give the first
job that arrives?

O If it is not an £2(E) then you are not O(1)-
competitive

81

Energy/Flow Trade-Off Problem Definition [AF06]

0 Job i has release date r; and work vy,
0 Optimize total flow + p * energy used

a Natural interpretation: User specifies an
energy amount p that he is willing to spend to
get a unit improvement in response

oe.g. If the user is willing to spend 1 ergs of
energy for a 3 microsecond improvement in
response, then p=3.

2 wlog, p=1.

82

Offline Bounded Energy Problem

0 Recall that the KKT optimality conditions
imply that in a normal schedule, power of job i
p; is proportional o the number of jobs
delayed by job i

O Normal = no job completes at exactly the time that
another job is released

0 [AFO6] Propose online algorithm naturally
suggested by this corollary

O Online lower bound to delayed jobs:

> Number of alive]]obs < number of jobs that the
selected jobs delays

O Online speed scaling algorithm:
> p, = number of alive jobs

83

Eher'gy/ Flow Trade-Off Results

0 [AFO6] Show natural online algorithm is about
400-competitive for unit-work jobs when the
cube-root rule holds (a =3)

O Reasoned about optimal schedule

0 [BPSO7] show this algorithm is 4-competitive
for all a for unit-work jobs

2 [BPSO7] show a natural generalization of this
algorithm for arbitrary weight and arbitrary
work jobs is about 20-competitive when the
cube-root rule holds

84

Running Condition for Flow Plus Energy Ob jective

0 If objective G is flow plus energy then

dG (1)

@ — nlt) +p@) = nt) + s(t)”

O s(t) = speed at time 1

O p(t) = power at time 1

O n(t) = number of jobs alive at time t
2 And thus the running condition

dG A(t dP(i dG opt(t
Al) | d2(0) __dGon(t)
dit di dt

0 becomes

ma(t) + 540 — Y(nopl®) + s0p®)) + D < 0

85

Running Condition for Flow Plus Energy Ob jective

na(®) + 0% -~ Ynop(® + s0p(®) + T <0

0 Als suggests the speed scaling algorithm
s4()* = na(t)

2 With this speed scaling algorithm, the running
condition reduces to

2n 4(t) ~ Y(mop(t) + s0p()") + o2 <0

86

_[BPSO7] Unit Work Flow

0 Theorem: For unit-weight unit-work jobs, the
natural speed scaling algorithm is 2-
competitive with respect to fractional flow
plus energy

O Proof: Amortized local competitiveness argument
with potential function

87

PPT to PDF 1.4

[BPSO7] Unit Work Flow

O A drop of intuition:
> Standard potential function
e.g Edmonds 1999 analysis of Round Robin

> ® = future online cost -y (future adversary
costs)
assuming no more jobs arrive
» Standard potential function generally works if
the worst case future for the online algorithm
is if no more jobs arrive

PPT to PDF 1.4

[BPSO7] Unit Work Flow

O Standard potential function here would be something like

(I)(t) —ny (t)(2a+1)/a - nopﬁ(t)(Zaﬁ—l)/a

O Doesn't work when n, >> ng,, and one new job arrives.

O In speed scaling problems, the empty future is apparently
never the worst case future for the online algorithm.

O So we end up using:

2o

(20 + 1)

O Note that this new potential function decreases faster when
N, > Ng,, and a new job arrives

o(t) = (max(0,n4(t) — nopt(t)))(2ﬂ+1)fﬂf

89

_[BPSO7] Unit Work Flow

O Recall

VYo%

(2a+1)/a
0+ 1) (2x(0,ma(0) — mope(0))

o(t) =

O Trivially @ is initially zero, and never negative

O When a job completes, @ remains unchanged since
we are considering fractional weight

O When a job arrives, @ remains unchanged since
both n, and ng,,, increase by 1.

O So we are left to consider times when no jobs
arrive or are completed

90

_[BPSO7] Unit Work Flow

O Recall

VYo%

(2cx + 1)

(i) = (max(0,n4(f) — nopt(t)))(2”+1]f“

O If ny < ngy then ®= 0 and d@/dt = 0, and by setting
v=2 we have that

ao(t) _

<0
dt —

2na(t) — (ﬂopt(t) - Sopt(t)a) T

01

_[BPSO7] Unit Work Flow

2
O Recall B(t) = 20

(2a+1)/a
o+ 1) ({0, ma(6) — mop(6)

O If ny > ngy then
4o (2)
dt

d(ng, — np) B
di

— %a(ng — 1)

aP 1 a/p 14
O By Young inequality: # -+ (;) — > ab

dD(t)
o We get — < 2(na — o) + 25 and by

setting y=2, we get

na(t) — Ynop(t) + s0p®)) + T <0

92

_[BPSO7] Unit Work Flow

0 Corollary: For unit-weight unit-work jobs, the
natural speed scaling algorithm is 4-
competitive with respect to flow plus energy

93

PPT to PDF 1.4

Weighted Flow Plus Energy Objective

d

d

Problem definition: each job has a weight and the QoS objective
is the weighted sum of flow times

Job selection algorithm= Highest Density First (HDF)
O Density = weight/work

The natural speed scaling algorithm is now

X
sA(t)" = wa(t)
O where w,(1) is fractional weight of unfinished jobs
and the running condition is then
dd(t)
dt

2wa(t) — v(wopt(t) + s0p(t)*) + <0

Everything is essentially the same, except that "weights”
replace "number of jobs" and that the potential function will
have to be different

94

_[BPSO7] Weighted Flow

0 Theorem: For arbitrary work and weight jobs,
the natural speed scaling algorithm is (2a-2)-
competitive with respect to fractional
weighted flow plus energy

O Proof: Amortized local competitiveness argument
with more complicated potential function.

95

PPT to PDF 1.4

[BPSO7] Weighted Flow

O Intuition: The following potential function works for unit
work jobs

20

o — 1

o(t) = wy " wa - ———wop)

O Intuitively this potential is the future online cost
minus the future adversary cost assuming that the
adversary has to work at least the speed that
online is now working

96

PPT to PDF 1.4

Proof Continued

O More intuition: Notice that this same potential function also
works for unit density jobs

2
—1

2(t) = wiy ™ M(wa — ~—wom)

O Now if all jobs have inverse density h, some calculation shows
that the potential function should be multiplied by h

¢
—1

Bt) =h w0 D *(wy - o)

97

PPT to PDF 1.4

Proof Continued

O More intuition: Now if you have jobs with different
densities, the weight of the lower density jobs should add to
the weight in the potential for higher density jobs. The
potential for inverse density h jobs is then

20

O(t) = h-wa(h) > D/ *(wa(R) - g

wopt(h))

> w(h) is fractional weight of alive jobs with inverse density
at least h

O Summing up the potential for all the possible densities gives
us our potential

20x

o — 1

o(t) = Y k- wa(h) DV *(wa(h) - wopt(h))

o8

PPT to PDF 1.4

Proof Continued

O Or equivalently

o) =0 [(wat) @A) - 2 wou(h)) i

o To finish we need to verify the running condition

2wa(t) — y(wop(t) + s0p)*) + D < 0

a Corollary: For arbitrary work and weight jobs, there
is a speed scaling algorithm that is 20-competitive
with respect to weighted flow plus energy when the
cube-root rule holds

O Proof: Uses resource augmentation analysis of HDF from
[BLMPO1]

99

PPT to PDF 1.4

Outline: Online speed scaling algorithms

0 Online speed scaling algorithms
O Review
» competitiveness
» local competitiveness
> resource augmentation
> Amortized local competitiveness
O Flow time and energy
O Deadline feasibility and energy
O Deadline feasibility and temperature

100

Natural Online Algorithms Given in YDS95

0 Average Rate (AVR): Run each job I at rate
Wi
(di-r)
0 Optimal Available (OA): After each arrival,
recompute the YDS schedule assuming no

more arrivals.

O Essentially all jobs are treated as having equal
release times

101

PPT to PDF 1.4

First Example Instance

AVR
: w-=1/8
=1/4
0 1/4 1/2 1

OA and Optimal

102

PPT to PDF 1.4

Second Example Instance

AVR and OA |
w,=1/4 W=1/8 -
0 1/4 1/2 1
Optimal

103

PPT to PDF 1.4

Results for Online Scheduling to Mange Energy

2 YDS95

O pP lower bound on competitive ratio for AVR

» Easy to see this lower bound also holds for OA
O 2P-1pP upper bound on competitive ratio for AVR

> Complicated spectral analysis

0 BKPO4

o Tight p? bound on competitive ratio of OA

O New online algorithm BKP with competitive ratio at most 8 eP,
for p at least 2.

O BKP is e-competitive with respect to the objective function
max;,... : speed at time t

> No deterministic algorithm can have a better competitive
ratio.

104

Upper' Bound on Competitive Ratio for OA (1)

0 Introduce potential function &
O If all deadlines are equal then

@ = s5p4P (p Wos - PP Woay)

O wg, be work left for OA
O Wy, be work left for the adversary
O Sp, be speed OA is working

O 8,4, be speed that the adversary is working

105

Upper' Bound on Competitive Ratio for OA (2)

J RBCO” Q - SOAP-I (p Woa ~ P2 wqdv)

2 We then need to show

2 dGar) | de) __dGop(d)

dt a1 ar

O Here G = energy
o dG/dt = power
O Need to consider 2 cases:

> When OA runs a job and
» when a new job arrives

106

PPT to PDF 1.4

Outline: Online speed scaling algorithms

0 Online speed scaling algorithms
O Review
» competitiveness
» local competitiveness
> resource augmentation
> Amortized local competitiveness
O Flow time and energy
O Deadline feasibility and energy
O Deadline feasibility and temperature

107

PPT to PDF 1.4

Online Speed Scaling to Minimize Temperature

a It is clear that neither the online algorithms proposed
by YDS, that is, OA and AVR, are not O(1)-competitive
with respect to temperature

w;=1/8
w,=1/4 =1/

0 1/4 1/2 1

108

e Lower Bound on Competitiveness for Maximum Speed(1)

0 The adversary releases work at the speed s, (1) =
-1/ ((1-1)In €) that the adversary works

0 The deadline for all work =1

Z0

15

adv

10

109

PPT to PDF 1.4

e Lower Bound on Competitiveness for Maximum Speed

0 If the adversary stops releasing work at some time t > (e-
1)/e, then by some calculation the first YDS interval will be
[et - (e-1), 1] and thus the optimal maximum speed is

J2t—(e—1) Sadn(t)dt
1 — (et — (e — 1))

0 A c-competitive online algorithm can work no faster than c
times this amount

0 Then c needs to be sufficiently large so that online finishes
all work by time 1. By calculation, ¢ has to be at least e.

110

BKP Algorithm

a Algorithm Description:
Speed k(1) at time 1 =

e * maximum over all +, > t of
2w/ (t-1)

O Sum is over jobsiwith 1, = et - (e-1)t,<r,<tandd <t,

ti=et-(e-1)t,

d.

L d

current
time

111

PPT to PDF 1.4

BKP Analysis

0 Theorem (BKP0O4) BKP completes all jobs by their
deadlines

d Theorem (BKP0O4): BKP is cooling oblivious, that is,
O(1)-competitive with respect fo temperature for all
O Proof: If YDS does y(t) work at time t, then we modify the
instance so that y(t) work arrives at time t with deadline 1+1

o This transformation doesn't effect YDS and won't decrease
speed/temperature for BKP

O Show that [, /% k(1) dt (an upper bound for the energy used

by BKP during a interval of length 1/b) is O(1) times the
energy that YDS uses during that interval

»Hilbert's Theorem, Hardy and Littlewood
inequalities
Q Corollary: BKP is O(1)-competitive with respect to
total energy and maximum power
o Proof: BKP is cooling oblivious

112

PPT to PDF 1.4

Summary of Results for Deadline Scheduling

Recall
Equals
dT/dt= | | |
/ Max, [, P dt Offline Online
aP-bT
Optimal YD S algorithm O(1)-competitive
Energy oo YDS 1995 algorithms
b=0) Cute correctness proof OA AVR : YD5 1995
BP2005 BKP : BKP 2004
Temperature | _ S O(1)-competitive
0<h < oo x= ©(1/b) YDS5 is O(1)-approximation | o000
BP2005
Maximum i .
Optimal YDS algorithm RRE s strangly et
Power edinfinitesimal | YOS 1995 compeftitive
b=eo BKP 2004

113

PPT to PDF 1.4

Exercise

a

a

Assume that we want to minimize the total flow Timecrlus 4 times the energy, for unit work
jobs. Assume that the power is the cube of the speed. By npplﬁvin the KKT optimality
congiiiuns, explain how to recognize an optimal schedule. Recall the KKT optimality
conditions are

win) R
filz) <0 i=1,...,n A,-f,-(:n):;u e
an(f')JrZ)ﬁvf:(ﬂ") =0

We consider the online algorithm A for minimizing fractional flow time plus enerqy for unit
work jobs. Assume that power = the square of speed. Recall that speed s, for A is then
(n,)c, where n, is the fractional number of unfinished jobs (fractional means that a job
that is 1/3 finished only adds 2/3 to n,). The 'Fr'ucfiunnl"fluw for A is the in1'a¥r'n| over time
of n,. We wish to show that A is O(1)-competitive using a different potential Tunction,
namely & = a(n,3/2 - 4n,Y2n,), where o is some constant. Here ng,, is the
fractional number of jobs remaining in the optimal solution.

O First show that the equation 2n, + 1,||'(nOP,r + SOPTE) + d®/dt < O holds at times when no jobs

arrive, for some constant y

» Hints: First evaluate d®/dt. Recall dn,/dt= - s,. Using Young's inequality we know
that (n,)'¢ s, <n,/2 + s, .°/2. This is not too hard.

O Then show the potential function & does not increase when a new job arrives, that is
when n, and Nopt both increase by 1.

115

