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平成18年度 第１回 全体会議

日時 平成 18年 6月 21日 (水), 22日 (木)

会場 九州大学 ベンチャービジネスラボラトリ

プログラム

6月 21日 (水)
15:00 – 16:00 招待講演： 最小節点ランキング全域木問題について

増山繁 (豊橋技術科学大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413
16:15 – 18:45 未解決問題セッション

接尾辞配列の圧縮の下界を得る試みについて
青野良範, 河内亮周, 河村彰星, 渡辺治 (東京工業大学)

ワイヤレスネットワーク
徳山豪 (東北大学)

オンライン TSP
宮野英次 (九州工業大学)

6月 22日 (木)
9:15 – 10:15 招待講演： 平面グラフの分枝幅と分枝分割

玉木久夫 (明治大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
10:30 – 11:30 招待講演： ε-近似 k-制限最小値独立置換族のサイズの下界

伊東利哉 (東京工業大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
11:30 – 13:15 幹事会 　
13:15 – 14:45 全体会議 　
15:00 – 16:00 招待講演： 情報爆発時代に向けた新しい IT基盤技術の研究

喜連川優 (東京大学)

412
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The maximum cardinality of  the vertex cuts of G

associated with the edges of T.

b
g

d

c

a f

e

14

Branchwidth

The width of branch-decomposition T of G :

The maximum cardinality of  the vertex cuts of G

associated with the tree edges of T.

3

a

b d

e

f

g
c

G b
g

d

c

a f

e

15

Branchwidth

The width of branch-decomposition T of G :

G

The maximum cardinality of  the vertex cuts of G

associated with the tree edges of T.

a

b d

e

f

g
c

b
g

d

c

a f

e

3 3
2

3

22
2

2

2
2

4

width = 4

16

Branchwidth

The  branchwidth of G :

The minimum width of all the 

branch-decompositions of G. 

17

Background

� Branch-decompositions are introduced by Robertson and 

Seymour (1991) in relation to tree-decompositions.

vertex cuts tree edges of  a branch-decomposition.

tree nodes of a tree-decomposition,

� bw(G) tw(G) + 1 (3/2) bw(G)

� Many NP-hard combinatorial problems on graphs can be solved 

in 2O(bw(G))n time, via DP based on the decomposition.

.

18

General graphs

NP-complete to decide whether bw(G) k for 
given G, k, if k is part of the input.

Planar graphs

The decision problem: O(n2) time 

Constructing the corresponding decomposition: 
O(n4) time 

If k is fixed, then the decision and the construction 
can both be done in linear time on general graphs 
(Bodlaender & Thilikos 97).

Known results Seymour-Thomas 94)

O(n3) : This work

427



19

Rest of Part 1

� Carving decomposition

� Seymour-Thomas algorithm for planar graphs

� Key lemmas for improvement

� Algorithm and analysis: some ideas

20

Carving decomposition of G

� A recursive binary decomposition of V(G)

� Formally a ternary tree with leaf set V(G).

� The width of carving decomposition T of G is the 

maximum cardinality of the edge cuts of G

associated with tree edges of  T.

1

2
4

53

G
2 3

5

1

4

5

21

Branch-decomposition vs carving-decomposition

The problem of computing an optimal decomposition 

of planar graph G can be reduced to that of 

computing an optimal carving-decomposition of a 

related planar multi-graph M(G). (Seymour and 

Thomas 94).

22

Goal

Tool: O(n2)-time Carving-width decision procedure  

(Seymour and Thomas 94)

Given a planar multi-graph G and a positive 

integer k, decides whether the carvingwidth of G

exceeds k.

Given a planar multi-graph G with n vertices 

and O(n) edges, a minimum-width carving 

decomposition of G can be constructed in O(n3) 

time.

23

Bottom-up construction of a carving-decomposition

Start from singleton sets of vertices.

1 2

3

4
6

5

7

24

Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7
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Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7

1 2

3

4
6

5

7

26

Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7

1 2

3

4 6

5

7

27

Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7

1 2

3

4 6

5

7

28

Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7

1 2

3

4 6

5

7

29

Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7

1 2

3

4 6
5

7

30

Bottom-up construction of a carving-dec.

Merge two vertex sets into one, at a time.

1 2

3

4
6

5

7

1 2

3

4 6
5

7
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Bond carving

Bond carving of G: 

a carving decomposition of G in which every cut 
bipartitions V(G)  into two connected sets, i.e., 
every cut is a dual cycle

Lemma (Seymour and Thomas 94)

In the bottom up process, we can only merge 
adjacent vertex sets

For every planar multi-graph G, the optimal 

carvingwidth can be achieved by a bond carving. 

32

How to guide the bottom-up construction

We have a contracted multi-graph at each step.

1 2

3

4
6

5

7

33

How to guide the bottom-up construction

We have a contracted multi-graph at each step.

1 2

3

6

5

7

34

How to guide the bottom-up construction

We have a contracted multi-graph at each step.

1 2

3

6

5

7

Use the width decision 

procedure to ensure that 

the carvingwidth does not 

exceed the original width  

at any step.

We say that two vertex sets X and Y are 

mergeable if merging them into one does 

not cause the carvingwidth to exceed the 

original optimal width

35

A carving-decomposition algorithm

1. Decide the carvingwidth k of G.

2. M the set of all singleton vertex sets of G.

3. While |M| > 1 do

Find a mergeable pair X , Y of vertex sets in 

M and  replace them by  X U Y.

At each iteration, the O(n2)-time decision 

procedure is called O(n) times for mergeability

testing.

O(n4) time in total for n iterations
36

Our refinement

Reduce the number of calls to the decision procedure 

througout the execution from  O(n2) to  O(n).

The answers to all the other mergeability tests are 

deduced from previous test results in O(n) time 

each.
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Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k,  where k is the carving width of G

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z

38

Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k, 

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z

k
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Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k, 

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z
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Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k, 

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z
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Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k, 

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z
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Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k, 

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z

?
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Key lemma

Let X, Y, W, Z be in the current set M of vertex sets, such that

1. | G(X U Y)| k, 

2. X and Y are not mergeable,

3. No edge of G between W and Z.

4.   X and W are mergeable and so are Y and Z.

Let M� be obtained from M by merging these two pairs

Then, X UW and Y UZ are not mergeable in M�.

X Y

W Z

44

Proof of the key lemma

We assume that X UW and Y UZ are mergeable and 

show that X and Y would then be mergeable

YX
ZW

A

Assume 

we have

45

Proof of the key lemma

We assume that X UW and Y UZ are mergeable and 

show that X and Y would then be mergeable

YX
ZW

A

X

Z

W

A

Y

X
Z

W

A

Y

Assume 

we have
then, we 

have

or

46

Proof of the key lemma

We only need to consider the red cuts below.

(Blue cuts are ok by the assumption of the lemma)

YX
ZW

A

X

Z

W

A

Y

X
Z

W

A

Y

47

Proof of the key lemma (completed)

cut1 + cut2 =  cut3 + cut4 2k

So, either cut1 k or cut2 k 

Note there are no edges between W and Z by assumption

W Z

X Y

A

2

1
3

4

48

Finished?

Only one expensive test between a pair, as long as the set of 

edges between them does not change?

X Y
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Finished?

Only one expensive test between a pair, as long as the set of 

edges between them does not change?

X Y

W1
Z1

50

Finished?

Only one expensive test between a pair, as long as the set of 

edges between them does not change?

X Y

W1
Z1

W2
Z2

51

Finished?

X Y

W1
Z1

W2
Z2

W3
Z3

Only one expensive test between a pair, as long as the set of 

edges between them does not change?

52

Finished?

X Y

W1
Z1

W2
Z2

W3
Z3

Problem: once the union of the pair has > k edges out, we 

cannot apply the lemma any more.

> k

?

53

Need a better use of the lemma

Forest view of the situation.

YX

Z1

Z2

Z3

W1

W2

W3

?

54

Need a better use of the lemma

Forest view of the situation.

YX

Z1

Z2

Z3

W1

W2

W3

?
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If we can rearrange the subtrees on the side �

YX

Z1

Z2

Z3

W1

W2

W3

?

56

If we can rearrange the subtrees on the side �

Then we can apply the lemma.

YX

Z1

Z2

Z3

W1

W2

W3

57

When are the rearrangements are possible?

If the sizes of the red cuts do not exceed the optimal 

width k.

Z1

Z2

Z3

W1

W2

W3

58

Barriers

A descending chain in the constructed forest as below 

is called a barrier if  

| G(Z1 U Z2 U � U Zj)| >  k, 

Z1

Z2

Zj

59

Barrier-free chains

The �side-subtrees� along a descending chain can be 

rearranged into one subtree if no prefix of the chain 

is a barrier.

Z1

Z2

Zj

Z2

Z1

Zj

60

Our test of mergeability

If  | G(X U Y)| > k then answer NO.

YX

?
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Our test of mergeability

Otherwise, identify maximal X� X and Y� Y  

in the forest s.t. EG(X, Y) = EG (X�, Y�) and the test 

for (X�, Y�) was executed with a negative answer.

YX

?

X� Y�

62

Our test of mergeability

If both of the chains from the root for X to the root for 

X� and from the root for Y to the root for Y� are 

barrier free, then answer NO.

YX
X� Y�

barrer-freebarrer-free

63

Our test of mergeability

Otherwise, call the O(n2)-time decision procedure.

YX
X� Y�

?

64

Analysis

Lemma:

Using our test of mergeability, the O(n2)-time decision 
procedure  is called O(n) times.

Proof ideas

F = {(X, Y) | the decision procedure  is called for (X, Y)}

Equivalence relation

(X, Y) (X�, Y�)  EG(X, Y) = EG (X�, Y�) 

The number of equivalence classes in F are O(n).

For each equivalence class C, |C| - 1 barriers are associated.

We can choose O(n/k) representative barriers, so that 
1. To each element of F, one representative barrier is associated.

2. O(k) elements of F are associated with each representative barrier.

|F| = O(n)

65

Total running time

O(n) decision procedure  calls, 

O(n2) time each  � O(n3)

O(n2) cheap tests, O(n) time each  � O(n3) 

Maintenance of the contracted graphs:

O(n) updates, O(n) time each   � O(n2) 

66

Open questions

o(n3) time algorithm for planar branch-/carving-

decomposition � difficult

o(n2) time algorithm for planar branch-/carvingwidth

� more difficult

Polynomial time algorithm for the treewidth of planar 

graphs � super difficult.
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Part 2

68

G, k

� G

� G

�

�

G e e

k

e

69

(a) 

(b) 

(c) 

k = 4

70

(a) 

(b) 

(c) 

k = 4

71

(a) 

(b) 

(c) 

k = 4

72

(a) 

(b) 

(c) 

k = 4
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(a) 

(b) 

(c) 

k = 4

74

(a) 

(b) 

(c) 

k = 4

75

k

k = 4

76

Carvingwidth

Seymour&Thomas 94)

G: 

k: 

G k

(G, k)

77

�

�

k => 

k => 

�

78

G k

e : G

Ge e

G

B(G, k)

f, v) : f G

v G

e, C) : e G
C Ge

e f v C

f, v) e, C) 

f, 1)

f, 2)

f, 7)

f, 3)

f, 4)

f, 6)

f, 8)

e, {2,3})

e, {6,7})

e, {5})f, 5)

e, {9})

k = 4

1

5

4

3

2

8

6

7

9

10f

e

f, 10)

f, 9)

e, {1,4})

e, {8,10})
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B(G, k) 

f0 v0

(f0, v0) 

(f, v)

(f, v) (e, C) 

e C

(e, C) (f�, v�) 

f� e f

80

B(G, k) 

G < k

f v (f, v)

e f1 , f2 C Ge

(e, C) (f1, v) 
(e, C) (f2, v) 

(e, C)

(f, v) (f, 
v)

81 82

B(G, k) O(n2)

O(n2)

O(n2)

f
f

Gf (f, C) C
Gf

83

k

G k

=> G k bond carving 

X

Y

X

Y

84

k bond carving 

X

Y

X

Y
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k bond carving 

X

Y

X

Y

86

k bond carving 

Y

X1

Y

X2

X1 X2

87

k bond carving 

Y

X1

Y

X2

X1 X2

88

k => 

Graph Minors. X 

Graph Minors. XI

89

Tilt:

G k tilt : 

B 2V(G)

| G X | < k

X V(G) X B

X, Y, Z B X Y Z V(G) 

v V(G) v B

Robertson & Seymour 91)

G k G k tilt 

90

G k tilt => G k

k tilt B k T

B T

X

Y

X B

Y B

Y

X

X

Y

Y

439



91

(

T

T

X Y Z = V(X) tilt 2

X

Y

Z

92

G k tilt 

G k

�

�

�

93

k => 

k

=> k tilt 

tilt 

94

Tilt = 

G:

B : G k tilt 

C G k 

(X, Y): C V(G) 2

X Y B 

B  safe
B

(C )

X Y

C

95

Tilt = 

G, k: 

f G

Cf f 
G

G k tilt B

G f 

tilt B

f intersection 

C1,C2,C3 safe
B

(C1 ) safe
B

(C2 ) safe
B

(C3 )

Tilt 

fC

C
C

B
)(safe

96

� o(n2) o(n3) 

�
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�

� f Gf

C v C (f, v) 

�
k Gf

� Gf

98

�

�

�
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Improved Lower Bounds for 

Families of -Approximate 

k-Restricted Min-Wise 

Independent Permutations

Toshiya Itoh

Tokyo Institute of Technology

Tatsuya Nagatani

Resemblance of  Documents A and B.r(A,B)

Document A Document B

Shingling

DA ò 1, n[ ] DB ò 1, n[ ]

r(A,B) =
DA DBk k

DA DBk k

Estimation of r(A,B).

(1) Choose                         independentlyù1, ù2, . . ., ù` Sn

(2) Define sketches       of      and       of      bySA SBA B

SA = (min{ù1(DA)},min{ù2(DA)}, . . .,min{ù`(DA)}

= (sA,1, sA,2, . . ., sA,`)

SB = (min{ù1(DB)},min{ù2(DB)}, . . .,min{ù`(DB)}

(3) Compute       estimation of         byrà̀ (A,B), r(A,B),

rà̀ (A,B) =
`

{i [1,`]: sA,i=sB,i}k k

lim rà̀ (A,B) = r(A,B)
`

= (sB,1, sB,2, . . ., sB,`)

Def. 1.1

Pr min{ù(X)} = ù(x)[ ] à
ù F

F ò Sn : -Approximate k-Restricted Min-Wise Independent

X ò [1, n] Xk k ô k x Xs. t.

Xk k
1 ô Xk k,

where ù F is chosen uniformly at random.

FòSn estimates k-restricted min-wise independentF :r(A,B)

x1

=0 F : k-Restricted Min-Wise Independent

k=n F : -Approximate Min-Wise Independent

k-Restricted

-Approximate k-Restricted

x2 x3 x4 xká á á

Known Results (1)

Upper Bound

nà1
(kà1)/2b c

ò óò ó

Min-Wise

k-Restricted

Min-Wise

`cm(n, nà 1, . . ., 1) `cm(n, nà 1, . . ., 1)

Lower Bound

O(n ke k)
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Known Results (2)

Upper

Bounds

min k2k/2 log(n),Lower

Bounds

24k+O(k)k2 log log(n/ )

k2 1 à 8( )
à á

k 1 log
k
n

ð ñ

r
ò ó

O 2
k 2

log n
à á

ð ñ

(constructive)

(nonconstructive)

1/3

log(1/ )(lognàlog log(1/ ))

(uniform)

(biased)

(uniform)

-Approximate k-Restricted F={ù1,ù2,...,ùd}òSn : -Approx. k-Restricted Min-Wise

s= k/3, L= n/s, N=Là1

1, n[ ] = {1,2, . . ., n}

X0 X1 XN

={1, . . .,h, . . ., s,s+1, . . .,2s, . . ., (Là1)s+1, . . .,Ls}h

uh
ij =

1/ d

0

min{ùj(X0 Xi)} = ùj( )

otherwise

h h

uh
ijU = X0 Xih [1, s]

ù1 á á á ùj á á á ùd

...
...

...
X0 XN

X0 X1

á á áh
h

X0 = { },X1 = {5, 6, 7, 8},X2 = {9, 10, 11, 12}, . . .1, , 3, 42

u1j =
1/ d

0

min{ùj({1, ,3,4,5,6,7,8})} = ùj( )

otherwise

2 22

u2j =
1/ d

0

min{ùj({1, ,3,4,9,10,11,12})} = ùj( )

otherwise

2 22

u21j

U =

ù1 á á á ùj á á á ùd

u22j

X0 X1 = {1, , 3, 4, 5, 6, 7, 8}

X0 X1 = {1, , 3, 4, 9, 10, 11, 12}
......

......

2

2 2

22
Vh = (vh

ij) = UhU
T
hh [1, s]

Proposition 2.1

i [1, N ](i)

(ii) i, j [1, N ](i 6=j)

2s
1à ô vh

ii ô 2s
1+

3s
1à ô vh

ij ô 3s
1+

2s

îh
11

3s

îh
13

3s

îh
23

3s

îh
1N

3s

îh
2N

...
...

...

3s

îh
13 á á á

3s

îh
1N

3s

îh
23 á á á

3s

îh
2N

3s

îh
3N á á á

á á á 3s

îh
3N

...

N

N

3s

îh
12

2s

îh
22

3s

îh
12

2s

îh
33

2s

îh
NN

...

=

Proof of Proposition 2.1

X0 = { },X1 = {5,6,7,8},X2 = {9,10,11,12}, . . .1, ,3,4

ù F

V2 = (v2
ij) = U2U

T
2

v11 = (u2
11, u

2
12, . . ., u

2
1d) á (u

2
11, u

2
12, . . ., u

2
1d)

T2

v12 = (u2
11, u

2
12, . . ., u

2
1d) á (u

2
21, u

2
22, . . ., u

2
2d)

T2

2

2 2 2

= Pr min{ù({ , 5, 6, 7, 8})} = ù( )[ ] =1, ,3,4
ù F 8

1æ

X0 X1

22

=Pr min{ù({1,2,3,4,5,6,7,8,9,10,11,12})} = ù(2)[ ] =1, ,3,4
12
1æ

X1X0 X2

2
ù F

2

2 V = U T
1 , U

T
2 , . . ., U

T
s

â ã

U1

U2...
Us

Fk k

Proposition 2.2

F ò Sn : -Approximate k-Restricted Min-Wise

Fk k õ rank(V)

= rank(V1) + rank(V2) + á á á+ rank(Vs).

V1
0...
0

0
V2...
0

0
0...
Vs

ááá
ááá
...

ááá

=
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A =

a11 a a á á á a

...
...

...
...

...

t

a a22 a á á á a

a a a33 á á á a

a a a á á á att

Proposition 2.3

i, j [1 , t](i 6= j) a ij = a > 0(C1)

(C2)

A : nonsingular ñ rank(A) = t

m in{a 11, a 22, . . ., a tt} > a

t
Proof of Proposition 2.3

diag(a11àa, a22àa, . . ., attà a)=a(1,1, . . .,1) á (1,1, . . .,1)T+

positive semidefinite positive definite

A : nonsingular ñ rank(A) = t

(C2) min{a11,a22, . . .,att}>a

a11àa>0,a22àa>0, . . .,attàa >0

A =

a11 a ááá a

...
...

...

a a12 ááá a

a a ááá att

=

a a ááá a

0

a22àa

attàa

+

a a ááá a

a a ááá a
...

...
...

...
...

...

a11àa ááá
0 0ááá

0

0 0 ááá

...
...

. . .

Generalized Ramsey Number

Rm(t) ñ R(t, t, . . ., t)t1=t2= á á á=tm=t

a set of  m colorsCm = {c1, c2, . . ., cm}

edge coloring of ÿ : E Cm K` = (V,E)

min     s.t. i ò [1, m]

R(t1, t2, . . ., tm)

` Kti =(Vi,Ei)òK` e Ei ÿ(e) = ci

mõ 2 tõ 1 Rm(t) ô mmtà(mà1)

Lemma 3.1

Proof of Lemma 3.1

m = 2, t = 4 n = 22á4à(2à1) = 27

v1v1

v2v2

v1

v2

v4

v5

v6

v7

v3

v4

...

v3
v3

Lemma 3.2

F ò Sn : -Approximate k-Restricted Min-Wise

0< < 5
1 kõ 3

Fk k < 2
km (m õ 1)

h 1, s[ ] rank(Vh)

= N

õ m logm
log(3n/k)

j k

m=1

mõ 2

Analysis for rank(Vh)

õ rank(V1) + rank(V2) + á á á+ rank(Vs)Fk k

Proof of Lemma 3.2

F ò Sn : -Approximate k-Restricted Min-Wise

3s
1à ô Fk k

G h
ij ô

3s
1+

k
1à Fk k ô G h

ij ô k
1+ Fk k

k
1à Fk k k

1+ Fk k

k
2 Fk k

G h
ij

h 1, s[ ] i, j 1, N[ ] (i 6=j)

G h
ij = G h

ij

í

í

í

í : integer

{ù F : minGh
ij = {ù(X0 Xi Xj)}= ù(h)}
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k
2 Fk k < m Gh

ij takes at most m (integer) values

m (integer) values ñ Cm= {c1, c2, . . ., cm} : a set of m colors

Vh is symmetric

Vh =

1 2 ááá i j áá á N

1
2...
i

j...
N

v12

v12

vij

vij

1

i

2

j rank(V h) = N

Vh = (vhij) =

vh11

...

N

N

Case 1 : m = 1

i , j [1 , N ]( i 6= j) v h
ij = v > 0

m in{v h
11, v

h
22, . . ., v

h
NN} > v0< < 5

1

Proposition 2.3 Vh : nonsingular

...

v v v

vh22

vh33

vhNNv v v

v v v

vv v

ááá
ááá

ááá

ááá
...

...
...

Vh = (vhij) =

vh11

. . .

vh22

vh33

vhNN

Case 2 : m õ 2

Cm = {c1, c2, . . ., cm}m colors

k
3nà 1 =Nõmmtà(mà1) õRm(t)

ÿ : E Cm of KN = (V, E)

i 1,m[ ] Kt = (Vt,Et)

Lemma 3.1

s.t. e Et ÿ(e) = ci

rank(Vh) õ0 < < 5
1+ Proposition 2.3 m logm

log(3n/k)
j k

Fk k = k 1 log (n/k)
q

ð ñ

.

Main Result

0 < < 5
1 k õ 3

Proposition 2.2 + Lemma 3.2

m õ 1 k
2 Fk k < m

õ s m logm
log(3n/k)
j k

=

Theorem 4.1

( Fk k < 2
k m)

FòSn : -Approx. k-Restricted Min-Wise

Proof of Theorem 4.1

Fk k õ rank(V1) + rank(V2) + á á á+rank(Vs)

3
k

m logm
log(3n/k)
j k

contradiction

3
k

m logm
log(3n/k)
j k

m õ 1 Fk k < 2
km Fk k õ

2
km

3
k

m logm
log(3n/k)
j k

3
k

m logm
log(3n/k)
j k

m õ 1 2
km ô Fk k õ

2
k m

Fk k = k 1 log(n/k)
q

ð ñ

Fk k = (k2(1 à 8 ))

Discussions

1/3

log(1/ )(lognàlog log(1/ ))

k 1 log (n/k)
qð ñ

(LB1)

(LB2) Fk k = min k2k/2 log(n)

Fk k =(Ours)

( ) n ý k (Ours) LB1)

k2k/2 log(n)( ) k <
3
2 log(1/ ) (Ours)

,

1/3

log(1/ )(lognàlog log(1/ ))
( ) k õ

3
2 log(1/ ) (Ours)

(Ours) LB2)
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平成18年度 第２回 全体会議

日時 平成 18年 11月 18日 (土)

会場 名古屋大学 IB電子情報館

プログラム

6月 21日 (水)
10:00 – 12:00 安定結婚問題に対する 1.875-近似アルゴリズム

宮崎修一 (京都大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
組合せ最適化の地平

岩田覚 (京都大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
13:30 – 14:00 新世代の計算限界 －その解明と打破－

プロジェクトの基本アイデアと現在までの成果
岩間一雄 (京都大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

14:00 – 14:30 計算理論の現状と未来
徳山豪 (東北大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

14:30 – 15:30 全体討論 　

446



1.875-

18 2

2006.11.18

N

N

N=5

1:     a     c     b     d     e             a:     2     1     3     4     5 

2:     c     a     e     b     d             b:     2     1     4     5     3

3:     b     a     e     d     c             c:     1     2     3     5     4

4:     c     b     d     e     a             d:     3     1     4     2     5

5:     c     d     b     e     a             e:     4     3     1     2     5   

1,2,3,4,5     1,2,3,4,5     a,a,bb,,cc,,dd,e,e

1 a

2 b

3 c

4 d

5 e

1:     a     c     b     d     e             a:     2     1     3     4     5 

2:     c     a     e     b     d             b:     2     1     4     5     3

3:     b     a     e     d     c             c:     1     2     3     5     4

4:     c     b     d     e     a             d:     3     1     4     2     5

5:     c     d     b     e     a             e:     4     3     1     2     5    

::

11 cc

: : 

-

-

-

(Gale-Shapley )

-

- Residents/Hospitals 

1:     a     c     b     d     e             a:     2     1     3     4     5 

2:     c     a     e     b     d             b:     2     1     4     5     3

3:     b     a     e     d     c             c:     1     2     3     5     4

4:     c     b     d     e     a             d:     3     1     4     2     5

5:     c     d     b     e     a             e:     4     3     1     2     5    

The GaleThe Gale--ShapleyShapley AlgorithmAlgorithm [Gale & [Gale & ShapleyShapley 1962]1962]

(Men(Men--proposepropose

Theorem  [Gale & Theorem  [Gale & ShapleyShapley 1962,  1962,  GusfieldGusfield & Irving 1989]& Irving 1989]

The GaleThe Gale--ShapleyShapley algorithm finds a stable matching.algorithm finds a stable matching.
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Suppose not stable. There is a blocking pair.

2:  e e: 2

During the algorithm execution, �2� made a proposal to �e�,

but he was rejected. 

e: 2

At this moment, �e� had a partner better than �2�.

After that, she may change a partner, but never becomes worse.

a contradiction

(Q.E.D.)

2:     c     a     e     b     d

2:    (c    a)    (e    b)    d

2:     c     a     e

(1)

(2) 

Original Stable Marriage problem (SM)

Stable Marriage with Ties (SMT)

Stable Marriage with Incomplete lists (SMI)

(SMT)

1:     a   ( c    b    d )    e             a:     2     1     3     4     5 

2:     c     a     e     b     d             b:  ( 2    1 )    4     5     3

3:     b     a   ( e    d )   c             c:     1     2     3     5     4

4:     c     b     d   ( e    a )           d:   ( 3    1    4 )  ( 2     5 )

5:     c   ( d    b )    e     a            e:     4     3     1     2     5    

(5,c)

(1,c)

(3,d)

[Gusfield & Irving 1989]

SMT 1

1:     a   ( c    b    d )    e             a:     2     1     3     4     5 

2:     c     a     e     b     d             b:  ( 2    1 )    4     5     3

3:     b     a   ( e    d )   c             c:     1     2     3     5     4

4:     c     b     d   ( e    a )           d:   ( 3    1    4 )  ( 2     5 )

5:     c   ( d    b )    e     a            e:     4     3     1     2     5    

SMT

1:     a     b     c     d     e             a:     2     1     3     4     5 

2:     c     a     e     b     d             b:     1     2     4     5     3

3:     b     a     e     d     c             c:     1     2     3     5     4

4:     c     b     d     a     e             d:     3     1     4     2     5

5:     c     d     b     e     a             e:     4     3     1     2     5    

SM

(SMI)

1:     a     c     b                          a:     2     1     3     4     5 

2:     c     a                                 b:     2     1

3:     b     a                                 c:     1     2

4:     c     b     d     e                   d:     3     1     4

5:     c     d     b                          e:     4     3

�

�

(1,c) 

(4,d) 

(3,a) 

[Gale & Sotomayor 1985]

I : SMI

M : I

W : I

M W

M = M  M        W = W   W

s.t.

I , 

M W   

M W   

21 12

11

22

1 a

2 b

3 c

4 d

5 e

1 a

2 b

3 c

4 d

5 e

1 a

2 b

3 c

4 d

5 e
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SMI

Gale-Shapley

Stable Marriage (SM)

Stable Marriage with Ties (SMT)

Stable Marriage with Incomplete lists (SMI)

Stable Marriage with Ties and Incomplete lists (SMTI)

1:     a                    a:   ( 1    2 )

2:     a     b             b:     2   

1

2

a

b

1

2

a

b

MAX SMTI

�i i i+1

Procedure Increase Procedure Stabilize

blocking pair  (m, w) 

m w m is single

or

w is single m

w

m w

m

w

i i i+1
i

i+1

�i

Overview of  the algorithm (Local Search)

Approximation ratio

i i+1

�i i i+1

Procedure Increase Procedure Stabilize

Never fails

i

i

previously

i

Procedure Increase

�

�

i

i

i i

m w
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i

Current matching
Goal

Increase the matching size.

Prohibited blocking pairs 

may not arise.

Problems

There is no guarantee that every 

2t persons find a partner.

Many prohibited blocking pairs may

arise. 

If we remove some pairs to resolve prohibited blocking pairs,

the size may decrease.

We construct a new matching so that  the number of removed edges

is at most t-1.

Strategy in [Iwama et.al. 2004]

Good edges

Strategy in [Iwama et.al. 2004]

iMMopt

M Mopt i

1:  � a � a: � � �

2: � � � b: � 2 �

a

b

Property of good edges

1 2

b a

(            )

(1) Both 2 and a write a person who is currently single (b and 1, respectively).

(2) Both 2 and a are currently matched with a person at least as good as 

the partner in OPT (OPT-partner).

(3) For either 2 or a, OPT-partner and current partner are tied.

current partner

OPT-partner

current partner
OPT-partner

Strategy in [Iwama et.al. 2004]

P

i

Current matching

Strategy in [Iwama et.al. 2004]

i i

# of bad edges c� log i

2

Good edge P

P/4 

P/4

P

Strategy in [Iwama et.al. 2004]

i i

# of bad edges c� log i

P/4 = 

P/4

c� log         +1 i

P/4

P = O(log )
i

(2- )-

i

i bad edges 

opt

i

m w
m, w
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i

(                 )

(                 )

(                 )

(                 )

(                 )

(                 )

(  1   3     � 8 ) �.3

8

1

i i

M  

M  

M  

1
Gale-Shapley

Gale-Shapley

i i

(M  ) good edge 
i
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1

i i

M  good edge 

(|M  | i

i

>         (M  ) good edge 
i

(|M  | i

good

bad

(MAX SMTI)

(1.105 1.875)

Minimum Maximal Matching Minimum

Vertex Cover 

1.875
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1

Combinatorial Optimization:

A Tour d�Horizon

2006 11 18 

( )

2

�

�

�

3

Satoru Iwata and  Kenjiro Takazawa: 

The Independent Even Factor Problem,

SODA�07 

M2

4

[Cunningham & Geelen �01]

[Pap �05]

[Tutte �47, Berge �58]

[Edmonds �65]

[Edmonds �70]

[ & �74, Lawler �75, Edmonds �79]

5

G = (V, E)

M E

M

2 max{| |}

X

Tutte-Berge 

V

6

(even factor)

(Cunningham and Geelen �01)

M
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7

( ) 

: 

2 | | |    |

8

Cunningham & Geelen �01 

NP 

Pap �05 

9

{| |}

G = (V, A): 

Xodd(X)X+ = X

Tutte-Berge 

, X+ = X

Cunningham & Geelen �01

10

: 
Pap �05

11

: 

Pap �05

12

454



13

M = (V,    ) [Whitney �35]

V,  V

: V = ,    = { }

: V = ,      = {G }

14

15

M+ = (V,      ), M = (V,      )

[Edmonds �70]

16

a b c d e fa b d e f

M

a b c

d e

g f

[Cunningham & Geelen �01]

18

a a

b b

c c

d d

e e

f f

{b, c, e} 

M
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19

max{| |}

G = (V, A): ;                                      

, 

a a

b b

c c

d d

e e

f f 20

a d eb c g hf i

j

a db c g h iw

Shrink

21

Expand 

: �Shrink�

Shrink 

VV

22

O n Q n = Q =

23

Cunningham & Geelen �01

[Murota �96]

24

Yuji Matsuoka: 

Fractional Packing in Ideal Clutters,

SODA�07 

D
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25

st- st-

st- st-

st- st-

26

st

6

46

8

3

4

2

3

9

27

6

46

8

3

4

2

3

st 9 9

st

28

6

46

8

3

4

2

[Ford-Fulkerson, 1962]

st st-

3

st 9 9

st

29

:),( EAH E

AE 2

0  , P

EP

PP ywy

RAw :

:
EP

Py

:A

:)( EPyP

A

30

:),( EAH

:F E:),()( FAHb

H
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31

MFMC

:),( EAH

RAw :)(min Cw
FC

:H MFMC

,

RAw :)(min Cw
FC

:H

,

:),()( FAHb

32

33

6

65

46

286

4

2

34

6

65

46

286

4

2

6

35

6

65

46

286

4

2

6

36
, 

Schrijver
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37

6

65

46

286

4

2

6

[Schrijver 1980]

38

6

65

46

286

4

2

6

[Schrijver 1980]

[Lucchesi-Younger  1978]

=

39

6

65

46

286

4

2

6

[Schrijver 1980]

[Lucchesi-Younger  1978]

=

MFMC

40

41

1

1

1

3

2

2

2

42

1

1

1

3

2

2

2

4
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43

1

1

1

3

2

2

2

4

44

1

1

1

3

2

2

2

4

45

(2007)

46

47

1P

2P

3P

4P

A

P
dijoinP

P
dijoinP

Q R}{conv}{conv
::

48

1P

2P

3P

4P

A

P
dijoinP

P
dijoinP

Q R}{conv}{conv
::
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49

1P

2P

3P

4P

A

P
dijoinP

P
dijoinP

Q R}{conv}{conv
::

},1,|{ FCzzz
T

C

A
R

50

  :  s.t.

  )(  min.

dicutC

Cw

0  ,    s.t. 

  max.

:

:

P

dijoinP

PP

dijoinP

P

ywy

y

51

1  ,0          

  ,    s.t. 

  .max

:

:

P

dijoinP

P

dijoinP

PP

w

0  ,    s.t. 

  max.

:

:

P

dijoinP

PP

dijoinP

P

ywy

y

PP

dijoinP

P

y

y
:

52

1  ,0          

  ,    s.t. 

  .max

:

:

P

dijoinP

P

dijoinP

PP

w

0  ,    s.t. 

  max.

:

:

P

dijoinP

PP

dijoinP

P

ywy

y

PP

dijoinP

P

y

y
:

53

1  ,0          

  ,
)(

    s.t. 

    Find

:

:

P

dijoinP

P

dijoinP

PP

P

w

w

conv}{conv
)(

P
w

w

}{conv PQ

w

)(w

w

+

54
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55 56

57 58

59 60
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61

  )(:3 Step

.   

   1

   :2 Step

   )( :1 Step

}.,1|{)(            

: )(  :0 Step

*

*

F

C

Cw

P

F

CzzQF

Fw

T

C

P

T

C

62

    s.t.  )(  min. EPPl FCCw   s.t.  )(  min.

 0  ,  s.t.   max.
EP

PPP

EP

P ywyy

O(m) O(m^2) 

63

n

64

�

�

�

�

�

�

�
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�

�

�

�

�

NHC (New Horizons of Computing)

� 2004 -2007

� 1.2

� 27 100

�
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

�

�

�

�

�

� 2NASH PPAD

�

�

�

�

�

� Dagstuhl, DIMACS, 

� 1/4

�

�

�

�

�

�

�

�

�

�
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� [ ] Workshop on New Horizons in Computing --- Recent Trend 

in Theoretical Computer Science

� [ ] 2005 2 28 3 3

� [ ] Magnus Halldorsson (U. Iceland)

� [ (21 )] Ming Li (U. Waterloo), Mikkel Thorup (AT&T), R. 

Ravi (Carnegie Mellon U.), David Shmoys (Cornell U.), Tao Jiang 

(UC Riverside), Avrim Blum (Carnegie Mellon U.), Uriel Feige

(Weizmann Inst.), Timothy Chan (U. Waterloo), Herbert 

Edelsbrunner (Duke U.), Martin Farach-Colton (Rutgers U.), Shan 

Muthukrishnan (Rutgers U.), Kazuhisa Makino (Osaka U.), Lisa 

Fleischer (IBM), Seffi Naor (Technion), Uri Zwick (Tel-Aviv U.), 

Josep Diaz (U. Politecnica de Catalunya), Richard Cole (New York 

U.), Susanne Albers (U. Freiburg), Jiri Matousek (Charles U.), Lance 

Fortnow (U. Chicago), Osamu Watanabe (Tokyo Inst. of 

Technology)

� [ ] NHC Spring School and Workshop on Discrete 
Algorithms

� [ ] 
� 2006 2 27 3 1

� 3 2 3

� [ ] 

� [ (13 )] 
� Bernard Chazelle (Princeton U.)*, Leonidas J. Guibas

(Stanford U.), Eva Tardos (Cornell U.), Vijay V. Vazirani
(Georgia Inst. of Technology), Marek Karpinski (U. Bonn)* (*
WS )

� WS: Bernhard Korte (U. Bonn), Jens Vygen (U. Bonn), Magnus 
M. Halldorsson (U. Iceland), D. T. Lee (Academia Sinica), 
Timothy M. Chan (U.Waterloo), Alexander Wolff (U. Karlsruhe), 
James R. Lee (UC Berkeley), Takeshi Tokuyama (Tohoku U.)

� [ ] NHC Autumn School on Discrete Algorithms

� [ ] 2006 11 15 17

� [ ] 

� [ ] 

� [ ( )] 
� Tibor Szabo (ETH Zurich)

� Thomas Erlebach (University of Leicester)

� Magnus M. Halldorsson (University of Iceland)

� Uri Zwick (Tel Aviv University)

� Kirk Pruhs (University of Pittsburgh)

ICALP
� [ ] iETA (improving Exponential-Time Algorithms)

� [ ] 2006 7 16

� [ ] 

� [ (11 )]

� Tobias Riege and Joerg Rothe (Heinrich-Heine-Univ. Duesseldorf)

� Tobias Riege, Joerg Rothe, Holger Spakowski (Heinrich-Heine-Univ. 
Duesseldorf), and Masaki Yamamoto (Kyoto Univ.)

� Andreas Bjoerklund and Thore Husfeldt (Lund Univ.)

� Heidi Gebauer (ETH) and Yoshio Okamoto (Toyohashi Univ. of Tech.)

� Takehiro Ito (Tohoku Univ.), Yoshio Okamoto (Toyohashi Univ. of Tech.), and 
Takeshi Tokuyama (Tohoku Univ.)

� Dieter Kratsch (Univ. Paul Verlaine - Metz)

� Fedor V. Fomin (Univ. of Bergen)

� Federico Della Croce (Politecnico di Torino), Marcin Kaminski (Rutgers Univ.), 
and Vangelis Paschos (Univ. Paris-Dauphine)

� Kazuo Iwama and Takuya Nakashima (Kyoto Univ.)

� Falk Hueffner, Rolf Niedermeier, and Sebastian Wernicke (Friedrich-Schiller-Univ. 
Jena)

� Magnus M. Halldorsson (Univ. of Iceland), Takeshi Tokuyama (Tohoku Univ.), 
and Alexander Wolff (Univ. Karlsruhe)
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� Susanne Albers (University Freiburg), 2005.2.26--2005.3.5

� Wolfgang Bein (Univ. of Nevada, Las Vegas), 2004.12.11--2005.1.15

� Avrim Blum (Carnegie Mellon University), 2005.2.21--2005.3.5

� Timothy Chan (University of Warterloo), 2005.2.26--2005.3.3

� Richard Cole (New York University), 2005.2.26--2005.3.5
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� Workshop on Randomness and Computation (2005/7/18-21, )

� WS

�

� (2005/3/23), (2006/03/26)

�
� 2005/4/26, 2006/4/24

�
� 2004/11, 2005/3, 2005/7, 2006/1, 2006/8

�
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� 18 RAMP (2006/10/12-13, )
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SODA2007

� ACM/SIAM Symposium on Discrete 

Algorithms 

�

Impact Factor by CiteSeer

� 9. SIGGRAPH: 2.53 (top 0.73%)

� 106. VLDB: 1.52 (top 8.68%)

� 110. SODA: 1.51 (top 9.00%)

� 112. AAAI: 1.49 (top 9.17%)

� 133. INFOCOM: 1.39 (top 10.89%)

� 207. DAC: 1.16 (top 16.95%)

� 353. RECOMB: 0.87 (top 28.91%)

�8/135= 6%

�A :  0/83=0%

�B :  5/235= 2%
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Forest Search:

(C11)

�

P2P

� Forest Search: 

� 100 4

(C09)

�

�
� : (n1- ) [Hastad 99]

� ( (3n/3)) [Moon, et al. 65]

�

� O(c422cm)

� c=O(1) c=O(logn)

�

k

< ck

� �

�

� (A06)

� (A07)

� (A10)

� IC
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� P2P (B06)
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NHC Autumn School on Discrete Algorithms

November 15th–17th, 2006

Sunparea Seto, Aichi

Program

Nov. 15th (Wed.)
11:00 – Registration
12:30 – Lunch
14:00 – 17:00 Making, avoiding and probabilistic intuition in positional games

Tibor Szabo (ETH Zurich) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
17:00 – 18:00 Discussion
18:00 – Dinner
20:00 – 23:00 Open problem session

Nov. 16th (Thu.)
8:00 – Breakfast
9:30 – 12:30 Approximation algorithms for geometric intersection

Thomas Erlebach (University of Leicester) . . . . . . . . . . . . . . . . . . . . . . . . 484
12:30 – Lunch
14:00 – 17:00 Approximation Techniques for Coloring Problems

Magnus M. Halldorsson (University of Iceland) . . . . . . . . . . . . . . . . . . . .504
17:00 – 18:00 Discussion
18:00 – Dinner
20:00 – 23:00 Open problem session

Nov. 17th (Fri.)
7:30 – Breakfast
9:00 – 12:00 Fast matrix multiplication and graph algorithms

Uri Zwick (Tel Aviv University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12:00 – Lunch
13:30 – 16:30 Speed Scaling Algorithms For Power Management

Kirk Pruhs (University of Pittsburgh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
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Making, avoiding and probabilistic 

intuition in positional games

Tibor Szabó

ETH Zürich

(Dan Hefetz, Michael Krivelevich, Milos Stojakovic)

Positional Games

�

� F ⊆

� Player I and II alternately claim one 
unclaimed element of the board

� Who is the WINNER?

� STRONG GAME:

Whoever occupies a winning set first

� EXAMPLES: Tic-tac-toe

Winning sets in Tic-tac-toe Winning Tic-tac-toe

Drawing in Tic-tac-toe Positional Games

�

� F ⊆

� Player I and II alternately claim one 
unclaimed element of the board

� Who is the WINNER?

� STRONG GAME:

Whoever occupies a winning set first

� EXAMPLES: Tic-tac-toe

5-in-a-row
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Winning sets in 5-in-a-row Weak game

� In a strong game both players have to 

occupy and

prevent the other from occupying

In a weak game these jobs are separated

� WEAK GAME:

Player I (Maker) wins if he fully occupies a 

winning set, otherwise Player II (Breaker)

� EXAMPLE: Hex

�Weak� Tic-tac-toe �Reasons� for study

� Beautiful theory 

� Recent book of Beck: �Tic-Tac-Toe Theory�

� Positional games motivated the technique 
of derandomization in the theory of 
algorithms

� First application of the method of conditional 
expectations (Erd s-Selfridge)

� First algorithmization of the Lovász Local 
Lemma (Beck)

Graph Games

� Board E(Kn)

� Examples:

� Connectivity game T

Playing �Connectivity�

Maker WON!!!
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Maker�s strategyT

� Build a tree by joining one isolated vertex 

in each round to his component

� Why can Maker always do this?

� The game will end after n-1 moves

� If Maker�s current component has k

vertices, there are k(n-k) n-1 potential 

edges to choose from. There is a free one.

(Breaker selected at most n-2  edges)

Graph Games

� Board E(Kn)

� Examples:
� Connectivity game T
� M
� H

Graph Games

� Connectivity

Maker wins (easily) 

for every n

� Hamiltonicity

Maker wins for large n

(Chvatal-Erd s)

Biased games

� Chvatal-Erd s: Give Breaker a break (a bias)

(m:b) game: Maker takes m edges at once

Breaker takes b edges at once 

� bF is the threshold bias of game F if 

� Maker wins the (1:b) game for every b bF

� Breaker wins the (1:b) game for every b > bF

� bF

Biased graph games

� Connectivity

Chvatal-Erd s

Maker wins

Breaker wins 

Beck

Maker wins

� Hamiltonicity

Bollobás-Papaioannou

Maker wins

Beck: Maker wins +
n

n

log
)1(:1 ε

−
n

n

log4

1
:1 ε

−
n

n

log
)2(log:1 ε

n

nc

loglog

log
:1

−
n

n

log27

2log
:1 ε

Improvement

Theorem. (2006+) Maker can build a 

Hamilton cycle playing against a bias of 

Big open question: What is the asymptotic 

threshold bias for minimum degree 1 

(isolation of a vertex)?

( )
n

n

log
2log ε−
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How to build a connected graph 

against a large bias?

� Proof (Beck)

� Ideas:

� A criterion

� Solving a kind of �dual� problem

Criteria

� Erd s-Selfridge: Breaker has a winning 
strategy in the (1:1)-game on F provided

� Beck: Breaker has a winning strategy in 
the (p:q) game on F provided

2

1
2 ||

<
∈

−

FA

A

( )
1

1
1

||

+
<+

∈

−

q
q

A

pA

F

Proof of Erd s-Selfridge

� Existence of winning final position is easily 

proved by probabilistic argument

� But how to achieve it against a skilled 

adversary?

� Appropriate definition of the �danger� of a 

situation for Breaker.                             

Then try to minimize the danger.
� Assume first that Breaker starts the game.

Danger function

� Bi={x1,�,xi},         Mi={y1,�,yi}

� Breaker wins iff every A∈F has danger < 1

� Cumulative danger of the position

( )
=

≠
=

−
{} if2

{} if0
|\|

AB

AB
if

i

MA

i

A i

( ) ( )
∈

=
FA

A ifiF

� At the beginning F(0)<1

� Let�s keep it that way!

� How? 

� GREEDILY!

� Breaker�s strategy: Select bi+1∈X ¥ Mi ¥ Bi

which decreases the cumulative danger 

the most!

� That is:                      is maximized for x=bi+1

� Hence
=

∈

−
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Criteria

� Erd s-Selfridge: Breaker has a winning 
strategy in the (1:1)-game on F provided

� Beck: Breaker has a winning strategy in 
the (p:q) game on F provided

2

1
2 ||

<
∈

−

FA

A

( )
1

1
1

||

+
<+

∈

−

q
q

A

pA

F

How to make a connected graph?

� Make a spanning tree!

or rather

� Put an edge into every cut!!!

� Play Breaker on the following family:

{ }{ }VSSVySxxyn ⊆∈∈= :\,:C

Using Beck�s criterion

� For

( ) )1(211
2

1

)(/||
o

k

nn

k

bknk

A

bA

n

==+
=

−−

∈

−

C

( ) nnb log2log ε−=

Evaluating 

� For

� For 

( )( )( ){ }
k

boknk nonkn
3

1
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<−+−≤
−− ε

=

−−
2
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)(2
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nk ≤

nk >

( ) nnb log2log ε−=

( ) ( )
k
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k

n
k

nek
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1
1log

2
logexp2 2

<+−≤
− ε

for

Theorem (Beck) Maker can build a spanning 

tree while playing against a bias of 

Improvement:

Theorem (2006+) Maker can build a Hamilton 

cycle while playing against a bias of 

( )
n

n

log
2log ε−

( )
n

n

log
2log ε−

Main tools

� Beck�s criterion for Breaker�s win

� New pseudorandom criterion for 

Hamiltonicity --- involving only two 

�positive� conditions

� A thinning trick
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Hamiltonicity criterion

Let

P1 For every S⊆V, if                             

Then |N(S)| d|S|

P2 There is an edge in G between any two 

disjoint subsets A,B⊆V if  

Then G is hamiltonian.

n

n
d

loglogloglog

logloglog
=

nnd

dnn
S

loglogloglog

logloglog
|| ≤

nn

dnn
BA

loglogloglog4130

logloglog
|||,| ≥

When dumb players are playing�

� Maker/Breaker are random edge generators

� What is the largest bias against which DumbMaker

still beats DumbBreaker (almost always)?

� At the end DumbMaker�s graph is a random graph 

G(n,M) with                  edges

� What is the smallest M=M(n) such that almost all 

graphs with M edges and n vertices are connected 

/ having a perfect matching / Hamiltonian?

( )1
2

+= b
n

M

The model G(n,M)

� G(n,M) is the probability space of graphs 

where each graph with n vertices and M

edges occurs with the same probability.

� Introduced by Erd s and Rényi in 1960

� Studied extensively ever since 

Thresholds in random graphs

Theorem (Bollobás, Thomason)

Let P be a monotone graph property. Then there 

exists a threshold function MP(n) such that 

Pr(G(n,M�(n)) has property P) 0

for every M� « M and

Pr(G(n,M��(n)) has property P) 1

for every M�� » M

Theorem (Erd s-Rényi) Mp = nlog n for connectivity

Theorem (Pósa) Mp = nlogn for hamiltonicity

Clever game vs. Dumb game

� For F = T M H
the largest bias of Clever Breaker against which 

CleverMaker succeeds is approximately equal to

the largest bias of DumbBreaker against which 

DumbMaker succeeds a.a.

bF n2/2MF=

�

� �

Θ
n

n

log

How far does the random graph 

intuition go?

� QUESTION: Is the random graph intution

tight up to constant factor?
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Sharp threshold

Theorem (Erd s, Rényi) For every ε > 0

Pr(                                      is connected) 0

Pr(                                      is connected) 1

Theorem (Komlós-Szemerédi) For every ε > 0

Pr(                                      is hamiltonian) 0

Pr(                                      is hamiltonian) 1

( )( )nnnG log21, ε−

( )( )nnnG log21, ε+

( )( )nnnG log21, ε−

( )( )nnnG log21, ε+

How far does the random graph 

intuition go?

� QUESTION: Is the random graph intution

tight up to constant factor?

� Is bT bH  

� The general answer to the above question 

is negative

( )
n

n
o

log
)1(1+

Further threshold biases

� Theorem (2006+) 

bNP 
(NP

M
(M

NC
(NC

�Sharp� random graph intuition fails

ForNP and M the �clever-bias� is n/2, 

while the �dumb-bias� is n

Planar graphs

� Definition. A graph G is planar if there is 

an embedding of G in the plane such that 

no two edges cross.

� Euler�s formula. Let G be a planar graph 

with a plane embedding. Then  

#vertices + #faces = #edges +2

� Corollary. Let G be a planar graph with 

girth k. Then 
( )2

2
)( −

−
≤ n
k

k
Ge

How to build a nonplanar graph?

� Trivial:

If  b < n/6, then any strategy will do

� Maker has at least 3n edges at the end, so 

he won 
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How to build a nonplanar graph

Let

# of edges of Maker:

Let               be the smallest s.t.

nb −= ε
2

1

( )
1

2

1

2
)(1

+−

=+

n

n

nn

ε

εα

)(εkk =
22

1
−

>+
k

kα

� GOAL of Maker: 

� Avoid creating cycles of length < k, in the 

first                 moves

� If Maker succeeds in doing this, he won:

He has a graph of girth at least k with 

at least                          edges

( )n21 α+

n
k

k
n

22
1

−
>+

α

� GOAL of Maker: 

� Avoid creating cycles of length < k, in the 

first                 moves

� Strategy: Claim edge (u,v) such that

� (u,v) does not close a cycle of length < k

� Degrees of u and v are < n1/(k+1)

� Works, since in the time-interval of our 

interest there exist (n2) unclaimed edges

( )n21 α+

How to prevent our opponent from 

building a non-planar graph?

� Proof: Let b=n/2-1. How can Breaker win?

� He will force Maker to build a spanning 

tree! (which is planar)

� (Assume that n is even. Note that Maker has 

exactly n-1 edges at the end)

Enforcing a spanning tree

� More generally: assume G consists of b+1

pairwise edge-disjoint spanning trees.

� Then Breaker can make sure that Maker

has a spanning tree at the end of the 

game.

� Note Kn can be partitioned into n/2 spanning trees.

Breaker�s strategy

� Maintain spanning trees T1,T2,�,Tf+1

such that

� Maker�s graph    = E(Ti)

� Breaker�s graph   = E(Kn) ¥ UE(Ti)

� Unclaimed edges  = UE(Ti) ¥ E(Ti)
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� What did just happen here?

� Breaker �enforced� that his opponent did 

something.

Avoider/Enforcer games

� Avoider wins the game if he does NOT 
occupy any of the �winning sets� (which 
thus could be called �losing sets�),

otherwise Enforcer wins

� fF is the threshold bias of the 
Avoider/Enforcer game F if 

� Enforcer wins the (1:f) game for every f fF
� Avoider wins the (1:f) game for every f > fF

Occurences

� The goal of Maker is to build a graph from 

a monotone decreasing family.

� planarity game

� Building a pseudorandom graph (useful for 

various Maker/Breaker games)

� Making lots of edge-disjoint Hamilton cycles

First surprise

� Random graph intuition fails

BADLY!

Theorem.(2006+) Avoider loses the (1:b) 
game on Tn as soon as b is such that he 

has at least n-1 edges at the end. I.e.

−
=

even is 12

odd is 2

nn

nn
f

nT

Second surprise

� We do not even know whether a threshold 

bias exists at all!

� Sometimes it doesn�t!

What do we know?

� The lower threshold bias is the largest 

integer such that Enforcer wins the (1:f)
AE-game F  for every f 

� The upper threshold bias is the largest 

integer such that Avoider wins the (1:f)
AE-game F  for every f >

Theorem (2006+) For all the discussed 

games,  

−

Ff

−

Ff

+

Ff

+

Ff

−
≤ FF fb
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Criterion

� Theorem Avoider has a winning strategy 
in the (p:q)-game on F provided

� Remark Formula does not depend on q

� Open Problem Obtain a useful criterion 

for q>1.

p

A

A

pp

−

∈

−

+<+
1

1
1

1

||

F

What we don�t know

� Burning open problems. 

Upper bounds on

Prove                  for �nice� games

+

Ff

( )−+
Θ= FF ff
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Approximation algorithms
for geometric intersection graphs

Thomas Erlebach
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Outline

Introduction
Independent sets in disk graphs
Vertex covers in disk graphs
Vertex coloring disk graphs
Rectangle intersection graphs
Dominating sets in unit disk graphs
Some open problems
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What are geometric intersection graphs?

* vertices = geometric objects

* edges = non-empty intersection between objects

Example: a rectangle intersection graph

intersection graph

geometric representation
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Popular geometric intersection graphs

o disks (Ü disk graphs), squares
o “fat” objects
o ellipses, rectangles (axis-aligned), arbitrary convex

objects
o line segments, curves, higher-dimensional objects

The recognition problem is typically NP-hard!!

Some Applications:
ñ Wireless networks (frequency assignment problems)
ñ Map labeling
ñ Resource allocation (e.g. admission control in line

networks)
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Application: Wireless networks
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Application: Map labeling

(illustration taken from a paper by van Kreveld, Strijk, Wolff)
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Application: Call admission control

9
10
11
12
13
14
15
16
17
18
19

Time

Network (line topology)
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Disk graphs

. . . are the intersection graphs of disks in the plane:
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Subclasses of disk graphs

_ Unit disk graphs: all disks have diameter 1

_ Coin graphs: touching graphs of disks whose interiors
are disjoint

Coin graphs are planar, but surprisingly . . .
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. . . every planar graph is a coin graph

à

à

[Koebe, 1936]

planar graph:

touching graph of “blobs”:

touching graph of disks:
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Maximum Independent Set
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Maximum Independent Set (MIS)

Input: a set D of disks in the plane
Feasible solution: subset A ⊆ D of disjoint disks
Goal: maximize |A|

In the weighted case (MWIS), each disk is associated with
a positive weight.
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Approximation algorithms for MIS

An algorithm for MIS is a ρ-approximation algorithm if it

â runs in polynomial time and

â always outputs an independent set of size at least
OPT/ρ, where OPT is the size of the optimal
independent set.

A polynomial-time approximation scheme (PTAS) is a
family of (1 + ε)-approximation algorithms for every constant
ε > 0.

For MWIS, the definitions are analogous.
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MIS in unit disk graphs

The problem is NP-hard [Clark, Colbourn, Johnson’90].
Let’s try the greedy algorithm:

Algorithm GREEDY
I = ∅;
for all given disks D do

if D is disjoint from the disks in I then
I = I ∪ {D};

return I;
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Analysis of the greedy algorithm

¬ Compare the greedy solution I with the optimal solution
I∗.

 “Charge” every disk in I∗ to a disk in I.
® Bound the number of disks charged to the same disk in

I.

Charging rules for a disk D ∈ I∗:

í If D is in I, charge D to itself.
í If D is not in I, then charge it to any disk that intersects

D and was accepted by GREEDY before it processed
D.
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How often can a disk D in I be charged?

If D is also in I∗, D is charged only once.
If D is not in I∗, it is charged by disks in I∗ that intersect D.
These disks are disjoint, so there can be at most 5 such
disks:

D D

å |I∗| ≤ 5|I| and GREEDY is a 5-approximation
algorithm.
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An improved greedy algorithm

Algorithm LEFTMOST-GREEDY
I = ∅;
for all given disks D in order of increasing x-value do

if D is disjoint from the disks in I then
I = I ∪ {D};

return I;

Claim. LEFTMOST-GREEDY is a 3-approximation
algorithm for MIS in unit disk graphs.
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Analysis of LEFTMOST-GREEDY

Use the same charging argument.
Note: A disk D in I receives charge from disks in I∗ that
are processed after D by LEFTMOST-GREEDY.
Therefore, each disk is charged at most three times:

D D
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Do we need the representation?

GREEDY did not need to know the representation, but
what about LEFTMOST-GREEDY?
For getting ratio 3 we needed only the following:

When a disk D is selected, the disks intersecting D
that are processed later contain at most three
disjoint disks.

å We can still get ratio 3 if we can identify a disk whose
neighborhood does not contain four disjoint disks!
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LEFTMOST-GREEDY w/o representation

Given a graph G = (V, E) that is the intersection graph of
unit disks, the following is a 3-approximation algorithm for
MIS:

I = ∅;
repeat

v = a vertex whose neighborhood does not
have 4 independent vertices;

I = I ∪ {v};
delete v and its neighbors from the graph;

until the graph is empty;
return I;

The vertex v can be found in O(|V |5) time.
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The shifting strategy

[Baker, 1984; Hochbaum and Maass, 1985]

G

G(0)

G(1)

G(2)

G(3)

Ê Partition graph into slices.

Ë Let k > 0 be a fixed integer.

Ì Remove slices equal to `
modulo k and compute a
maximum independent set in
the graph G(`), 0 ≤ ` < k.

Í Output the largest set
found in this way.

The largest of these sets con-
tains at least (1 − 1

k
)OPT ver-

tices.
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Shifting for unit disk graphs

[Hochbaum and Maass, 1985]

8764320

5

3

2

1

1 5

0

4 active

active

Remove disks hitting active lines (and shift active lines).
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Solving the Subproblems

Active lines partition the plane into squares that can be
considered independently:

å Compute maximum independent set I in each square by
brute-force enumeration. Since |I| = O(k2), time nO(k2)

suffices.
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PTAS for MIS in unit disk graphs

Ê For 0 ≤ r, s < k, get D(r, s) from D by deleting disks that
Ù hit a horizontal line equal to r modulo k or
Ù hit a vertical line equal to s modulo k.

Ë Compute the maximum independent set IS in each
k × k square S of D(r, s) by brute-force enumeration.

Ì The union of the sets IS gives a maximum independent
set in D(r, s).

Í Output the largest independent set obtained in this way.

Running-time: nO(k2) for n disks. (Can be improved to
nO(k).)
Approximation: Computed solution has size at least
(

1 − 2
k

)

OPT.
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MIS in unit disk graphs: Summary

à NP-hard [Clark, Colbourn, Johnson 1990].

à GREEDY gives a 5-approximation.
[Marathe et al., 1995]

à LEFTMOST-GREEDY gives a 3-approximation. There is
a variant that does not need the representation.
[Marathe et al., 1995]

à The shifting strategy gives a PTAS. It needs the
representation.
[Hochbaum and Maass, 1985; Hunt III et al., 1998]
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Recent related results

[Nieberg, Hurink, Kern, 2004] PTAS for maximum
weight independent set in unit disk graphs without given
representation.

[Marx, 2005] Maximum independent set in unit disk
graphs is W[1]-hard. (à No FPT algorithm and no
EPTAS unless FPT=W[1].)

[van Leeuwen, 2005] Asymptotic FPTAS for maximum
independent set (and various other problems) in unit
disk graphs of bounded density.
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MIS in general disk graphs

F The approximation ratio of GREEDY is only |V | − 1.
F But it helps to process the disks in the right order:

Algorithm SMALLEST-GREEDY
I = ∅;
for all given disks D in order of increasing diameter do

if D is disjoint from the disks in I then
I = I ∪ {D};

return I;
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Analysis of SMALLEST-GREEDY

Again, charge disks in the optimal solution I∗ to disks in the
solution I computed by the algorithm.

å Every disk D in I receives charge only from disks in I∗

that intersect D and were processed after D. There can
be at most five such disks.

SMALLEST-GREEDY is a 5-approximation algorithm.

If the representation is not given: Find a vertex whose
neighborhood does not contain an independent set of size
6, select it, and delete its neighbors.
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Extending the shifting strategy

Ê Classify the disks into layers according to their sizes.

Ë Use the shifting strategy on all layers simultaneously.

Ì After removing all disks that hit active lines, use
dynamic programming to compute a maximum
independent set.

Classification into layers:
â Assume that the largest disk has diameter 1.
â Layer `: disks with diameter d, 1

(k+1)` ≥ d > 1
(k+1)`+1 .

â Lines on layer ` are 1
(k+1)` apart, every k-th line is active.

T. Erlebach – Approximation algorithms for geometric intersection graphs – NHC Autumn School on Discrete Algorithms – Sunparea Seto, Seto, Aichi, Japan – November 15-17, 2006 – p.29/81

Partition into layers

è

è

è

Layer 0:

Layer 1:

Layer 2:
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Layer 0:

è

Layer 1:

è

Layer 2:

è
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Dynamic programming table

At square S on level `, compute TABLES.
If I is an independent set of disks of level < ` intersecting S,
then

TABLES [I] =

{

size of maximum independent set I ′

of disks of level ≥ ` in S such that
I ∪ I ′ is an independent set.
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Example

S:

TABLES

[ ]

= 4 (note )

TABLES

[ ]

= 3 (note )

TABLES

[ ]

= 1 (note )
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Computing TABLES

1. Enumerate all nO(k4) independent sets J of disks of
level ≤ ` touching S.

2. Look up corresponding entries of TABLES′ for
subsquares of S.

3. Update TABLES [I] for I = {D ∈ J | D has level < `}.

Example:

S: J : Lookups:

⇒ TABLES

[ ]

= max







TABLES

[ ]

, 3







(note )
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Two more examples for lookups
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The PTAS for MIS
Ê For 0 ≤ r, s < k, get D(r, s) from D by deleting disks that

Ù hit a horizontal line equal to r modulo k on their
level, or

Ù hit a vertical line equal to s modulo k on their level
Ë Compute dynamic programming tables for D(r, s) in all

squares.
Ì The union of TABLES [∅] over all top-level squares gives

a maximum independent set in D(r, s).
Í Output the largest independent set obtained in this way.

Running-time: nO(k4) for n disks. (Can be improved to
nO(k2).)
Approximation: Computed solution has size at least
(

1 − 2
k

)

OPT.
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MIS in disk graphs: Summary

à SMALLEST-GREEDY is a 5-approximation algorithm.
There is a variant that does not need the
representation.
[Marathe et al., 1995]

à The shifting strategy combined with dynamic
programming gives a PTAS. It needs the representation.
[E, Jansen, Seidel’01: nO(k2); Chan’01: nO(k)]

Note: These results can be adapted to squares, regular
polygons and other “disk-like” or fat objects, also in
higher dimensions. The PTAS works also for the
weighted version.
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Minimum Vertex Cover
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The problem MINVERTEXCOVER

Input: a set D of disks in the plane
Feasible solution: subset C ⊆ D of disks such that, for any
D1, D2 ∈ D, D1 ∩ D2 6= ∅ ⇒ D1 ∈ C or D2 ∈ C.
Goal: minimize |C|
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Approximating MINVERTEXCOVER

An algorithm for MINVERTEXCOVER is a ρ-approximation
algorithm if it

â runs in polynomial time and

â always outputs a vertex cover of size at most ρ · OPT,
where OPT is the size of the optimal vertex cover.

A polynomial-time approximation scheme (PTAS) is a
family of (1 + ε)-approximation algorithms for every constant
ε > 0.
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PTAS idea for MINVERTEXCOVER

â Fact: I is an independent set ⇔ D \ I is a vertex cover

â To approximate MINVERTEXCOVER in unit disk graphs,
we can again use the shifting strategy.

â Disks that hit an active line are considered in all
squares that they intersect (at most 4 squares).
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PTAS: MINVERTEXCOVER in unit disk graphs

Ê For 0 ≤ r, s < k, partition the plane into squares via
Ù horizontal lines equal to r modulo k and
Ù vertical lines equal to s modulo k.

Ë Compute the minimum vertex cover CS among the
disks intersecting each k × k square S by computing a
maximum independent set and taking the complement.

Ì The union of the sets CS gives a candidate vertex cover
(for each (r,s)).

Í Output the smallest vertex cover obtained in this way.

Running-time: nO(k2) for n disks. (Can be improved to
nO(k).)
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Analysis of PTAS for MINVERTEXCOVER

ò Let C∗ be an optimum vertex cover.

ò For 0 ≤ r, s < k let C∗(r, s) be the disks intersecting
active lines for (r, s) and let S(r, s) be the set of all k × k
squares determined by these active lines.

ò For a k × k-square S, let C∗
S be the disks in C∗

intersecting S and let OPT(S) be the optimum vertex
cover of the disks intersecting S.
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Candidate vertex cover computed by the algorithm for (r,s)
has size

∣

∣

∣

∣

∣

∣

⋃

S∈S(r,s)

OPT(S)

∣

∣

∣

∣

∣

∣

≤
∑

S∈S(r,s)

|OPT(S)|

≤
∑

S∈S(r,s)

|C∗(S)|

≤ 3|C∗(r, s)| + |C∗|

For some choice of (r, s):
ñ at most 1

k
|C∗| disks of C∗ intersect vertical active lines

ñ at most 1
k
|C∗| disks of C∗ intersect horizontal active lines

For this choice, we have |C∗(r, s)| ≤ 2
k
|C∗|.

å Solution has size at most
(

1 + 6
k

)

C∗ for some choice of (r, s).
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MINVC in disk graphs: Summary

à PTAS for unit disk graphs using the shifting strategy
(needs the representation). [Hunt III et al., 1994]

à 3
2-approximation algorithm for general disk graphs (not
needing the representation). [Malesińska, 1997]

à PTAS for general disk graphs using the shifting
strategy and dynamic programming (needs the
representation).
[E, Jansen, Seidel’01]

Note: PTAS adapts to squares, regular polygons etc.,
also in higher dimensions. Result holds for the weighted
version as well.
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Vertex Coloring
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Coloring disk graphs

Goal: Assign a minimum number of colors to the disks
such that intersecting disks get different colors!

Algorithm SMALLEST-DEGREE-LAST(graph G)
v = a vertex with minimum degree in G;
color G \ {v} recursively;
assign v the smallest available color;

Observation. Let D be the maximum degree of a vertex v
at the time it was colored. Then the algorithm needs at
most D + 1 colors.
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Analysis for disk graphs

Let v be the vertex corresponding to the smallest disk.
Let N(v) be the set of neighbors of v.
Note: At most 5 disks in N(v) can get the same color.
å Optimal number of colors OPT is at least 1 + |N(v)|

5 .
å |N(v)| ≤ 5 · OPT − 5.
å So we must also have D ≤ 5OPT − 5.

The SMALLEST-DEGREE-LAST algorithm colors any
disk graph with at most 5OPT − 4 colors. [Marathe et al.
1995; Gräf 1995]
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Rectangle Intersection Graphs
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MIS in Rectangle Graphs

V Idea: find a “stabbing line” with at most half of the
rectangles above and below.
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Approximation algorithm for rectangles

Algorithm RECTANGLE-APPROX(set of rectangles R)
` = stabbing line with at most |R|/2 rectangles above and below;
Rabove = rectangles above stabbing line;
Rbelow = rectangles below stabbing line;
Rmid = rectangles intersecting stabbing line;
compute approximations I1 and I2 for Rabove and Rbelow recursively;
compute optimal independent set I0 for Rmid;
return the larger of I0 and I1 ∪ I2;
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Analysis of RECTANGLE-APPROX

Theorem The algorithm achieves approximation ratio log n
for n rectangles.

Proof. by induction on the number of rectangles.
Let I∗ be an optimal independent set.
Let I∗0 , I∗1 , I∗2 be the rectangles in I∗ that are on, above,
below `.
Case 1: |I∗0 | is at least |I∗|/ log n.
Algorithm outputs a set of size at least

|I0| ≥ |I∗0 | ≥
|I∗|

log n
.
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Case 2: |I∗0 | is smaller than |I∗|/ log n.
The algorithm outputs a set of size at least

|I1 ∪ I2| ≥
OPT(Rabove)

log |Rabove|
+

OPT(Rbelow)

log |Rbelow|

≥
OPT(Rabove)

(log n) − 1
+

OPT(Rbelow)

(log n) − 1

≥
|I∗1 | + |I∗2 |

(log n) − 1
=

|I∗| − |I∗0 |

(log n) − 1

≥
|I∗| ·

(

1 − 1
log n

)

(log n) − 1
=

|I∗|

log n �
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MIS in rectangle graphs: Summary

à There is an O(log n)-approximation algorithm (with given
representation).
[Agarwal et al., 1998; Khanna et al. 1998; Nielsen 2000]

à For every constant c > 0, there is an approximation
algorithm with ratio 1 + 1

c
log n.

[Berman et al., 2001]

à If all rectangles have the same height, there is a PTAS.
[Agarwal et al., 1998]
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Minimum Dominating Set
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Flooding an Ad-Hoc Network
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Flooding an Ad-Hoc Network
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Routing Backbone

For efficient flooding, we want to find a small subset of
the nodes that can reach all other nodes. That subset is
then the routing backbone. [Guha and Khuller, 1999]

We can model the network as a graph.
Simple model: Unit Disk Graph
Two nodes can reach each other if their distance is
at most d, for some fixed value d.

Each node corresponds to a unit disk, and there is
an edge between two nodes if the disks intersect.

The problem of identifying a small routing backbone
then becomes the minimum (connected) dominating set
problem in unit disk graphs.
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Unit Disk Graph
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Minimum Dominating Set (MDS)

Input: a set D of unit disks in the plane
Feasible solution: subset A ⊆ D that dominates all disks
Goal: minimize |A|

In the weighted case (MWDS), each disk is associated with
a positive weight.

For Minimum (Weight) Connected Dominating Set
(MCDS/MWCDS), the dominating set must induce a
connected subgraph.
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Approximation Algorithms

An algorithm for MWDS is a ρ-approximation algorithm if it
runs in polynomial time and always outputs a solution of
weight at most ρ · OPT, where OPT is the weight of an
optimal solution.

A polynomial-time approximation scheme (PTAS) is a family
of algorithms containing a (1 + ε)-approximation algorithm
for every fixed ε > 0.

Remark: In practice, we are interested in distributed
algorithms with fast running-time and good performance in
realistic scenarios.
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A simple algorithm for MDS

Initialise U as the empty set.

Repeat until no disk left:
pick an arbitrary disk D

insert D into the set U
delete the disk D and all its neighbours from the
instance

Output the set U as dominating set
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Example run
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Analysis of the algorithm

How much worse than the optimal dominating set can
the solution produced by this algorithm be?

The set U output by the algorithm consists of disjoint
disks.

The optimal solution also needs to dominate all disks in
U .

How many disks in U can one disk D from the optimal
solution dominate?

At most 5: D D
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Simple approximation results

The algorithm outputs the set |U|, and the optimal solution
has size at least |U|/5.

Theorem (Marathe et al., 1992)
This simple greedy algorithm is a 5-approximation algorithm
for MDS in unit disk graphs.

Theorem (Marathe et al., 1992)
There is a simple 10-approximation algorithm for MCDS in
unit disk graphs.

Remark: There are also fast distributed approximation
algorithms for dominating set problems in unit disk graphs
or general graphs. (Gao et al., 2001, Kuhn & Wattenhofer,
2005)
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Known dom. set approximations

In arbitrary graphs, ratio Θ(log n) is best possible
(unless P = NP) for MDS, MWDS, MCDS and MWCDS.
[Feige ’96; Arora and Sudan ’97; Guha and Khuller ’99]

For MDS in unit disk graphs, a PTAS can be obtained
using the shifting strategy [Hunt III et al., 1994]:

Any maximal independent set is a dominating set.
Therefore, the smallest dominating set in a
constant-size square can be found in polynomial
time by enumeration.

PTAS for MDS in unit disk graphs without
representation [Nieberg and Hurink, 2005]

PTAS for MCDS in unit disk graphs [Cheng et al., 2003]

Question: MWDS and MWCDS in unit disk graphs?
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Shifting strategy doesn’t seem to work
MWDS can be arbitrarily large for unit disks in an area of
constant size:

small weight large weight

à Brute-force enumeration does no longer work.
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Constant-Factor Approximation

Theorem (Ambühl, E, Mihal’ák, Nunkesser, 2006) There
is a constant-factor approximation algorithm for MWDS in
unit disk graphs.

Ideas:
Partition the plane into unit squares and solve the
problem for each square separately.

In each square, reduce the problem to the problem of
covering points with weighted disks.

Use enumeration techniques (guess properties of OPT)
and dynamic programming to solve the latter problem.

The constant factor is 72.
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The subproblem for each square

Find a dominating set for the square:
Let DS denote the set of disks with center in a 1 × 1
square S.
Let N(DS) denote the disks in DS and their
neighbors.
Task: Find a minimum weight set of disks in N(DS)
that dominates all disks in DS.

Reduces (by guessing the max weight of a disk in OPTS)
to covering points in a square with weighted disks:

Let P be a set of points in a 1
2 × 1

2 square S.
Let D be a set of weighted unit disks covering P .
Task: Find a minimum weight set of disks in D that
covers all points in P .
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Covering points by weighted disks

Remark. O(1)-approximation algorithms are known for
unweighted disk cover [Brönninmann and Goodrich, 1995].
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Polynomial-time solvable subproblem

Given a set of points in a strip, and a set of weighted
unit disks with centers outside the strip, compute a
minimum weight set of disks covering the points.
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Dynamic programming

Vertical sweepline, table entry for every pair of disks
that could be on the lower and upper envelope:
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Main cases: One hole or many holes

One-hole case:

Enlarged:

Many-holes case:

Enlarged:
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Sketch of the one-hole case

Step 1: Guess the four “corner points” of the optimal
solution (each of them is defined by two disks).
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Sketch of the one-hole case

Step 2: Two regions that can only be covered with disks
whose centers are to the left or right of the square.
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Sketch of the one-hole case

Step 3: Remaining area can only be covered with disks
whose centers are above or below the square.
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Summary: MWDS in unit disk graphs

Partition the plane into unit squares and solve the
problem for each square separately. (We lose a
constant factor compared to OPT.)

For each square, reduce the weighted dominating set
problem to a weighted disk cover problem.

Distinguish one-hole case and many-holes case.

In each case, we have a 2-approximation or optimal
algorithm for covering points in the square with
weighted unit disks.

This implies the constant-factor approximation
algorithm for MWDS in unit disk graphs.
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Weighted Connected Dominating Sets
Theorem. There is a constant-factor approximation
algorithm for MWCDS in unit disk graphs.

Algorithm Sketch:
First, compute an O(1)-approximate MWDS D.

Build auxiliary graph H with a vertex for each
component of D, and weighted edges corresponding to
paths with at most two internal vertices.

Compute a minimum spanning tree of H and add the
disks corresponding to its edges to D.

We can show: The total weight of the disks added to D is at
most 17 · OPT, where OPT is the weight of a minimum
weight connected dominating set. The overall
approximation ratio is then 72 + 17 = 89.
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Further results on MDS and MWDS

Theorem. [E, van Leeuwen 2006] For disk graphs with
bounded ply, there is a (3 + ε)-approximation algorithm for
MWDS.

Theorem. [E, van Leeuwen 2006] For rectangle
intersection graphs, MDS is APX-hard.

Theorem. [E, van Leeuwen 2006] For intersection graphs
of “squares with bumps” (or even for similar, convex
objects), MDS cannot be approximated with ratio o(log n)
unless P = NP .
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Open Problems
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Disk graphs

Improve running-time and/or approximation ratio for
MWDS in unit disk graphs.

Is there a PTAS for MDS in disk graphs with bounded
ply?

What is the best possible approximation ratio for
minimum dominating set in general disk graphs:

Is there an O(1)-approximation algorithm or even a
PTAS?
Is the problem APX-hard?

What is the complexity of the maximum clique problem
in disk graphs?
(polynomial for unit disk graphs [Clark et al., 1990],
NP-hard for ellipses [Ambühl, Wagner 2002])
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Rectangle intersection graphs

What is the best possible approximation ratio for
maximum independent set?

Known: For every c > 0, there is an approximation
algorithm with ratio 1 + 1

c
log n. [Berman et al., 2001]

Known: If all rectangles have the same height, there
is a PTAS. [Agarwal et al., 1998]

Can we achieve approximation ratio o(log n) for MDS
and MWDS?

Can rectangle intersection graphs be colored with O(ω)
colors, where ω is the clique number?
(best known upper bound: O(ω2) colors [Asplund and
Grünbaum, 1960])
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Thank you!

T. Erlebach – Approximation algorithms for geometric intersection graphs – NHC Autumn School on Discrete Algorithms – Sunparea Seto, Seto, Aichi, Japan – November 15-17, 2006 – p.81/81
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Approximation Techniques 

for Coloring Problems

Magnús M. Halldórsson

University of Iceland

NHC Autumn School, 16 Nov 2006 2

Focus

How well can we color graphs?

How can we color graphs reasonably 

well?

What are the techniques that we know?

NHC Autumn School, 16 Nov 2006 3

Philosophy / Motivation

Illustrate the wide span of coloring questions

Introduce results ready for improvement

Some classical results

Some recent work

NHC Autumn School, 16 Nov 2006 4

Topics

1. (Ordinary) Graph Coloring

2. Color Saving & k-Set Cover

3. IS in Hypergraphs

4. Scheduling with Conflicts

5. Coloring Bounded-degree Graphs

NHC Autumn School, 16 Nov 2006 5

Techniques

Greedy algorithms

Local search & Semi-local search

Semi-definite programming

Partitioning & Randomized partitioning

Other

NHC Autumn School, 16 Nov 2006 6

Part I:  

Classical Graph Coloring

A blast from the past
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Graph Coloring

NHC Autumn School, 16 Nov 2006 8

Chromatic Number

(G) = 3

NHC Autumn School, 16 Nov 2006 9

Notation

(G) : Chromatic number, minimum number 

of colors needed to color graph G

(G) : Maximum degree of a vertex in G

n : Number of vertices in G

NHC Autumn School, 16 Nov 2006 10

Performance ratio

We are interested in algorithms that have 

guaranteed good behavior. 

Want the number of colors used to be �close�

to the optimum number.

Performance ratio of algorithm A is the 

function

A(n) = maxG on n vertices (G)/A(G)

NHC Autumn School, 16 Nov 2006 11

General graphs : Trivial bounds

G is 1-colorable :  Easy

G is 2-colorable : Easy  (linear time)

So, we may assume (G) 3.

But,  A(G) n,  for any algorithm A

n/3-approximation, if we test for 2-

colorability

NHC Autumn School, 16 Nov 2006 12

Bounded-degree graphs: Trivial bound

No algorithm needs to use more than +1

colors

( +1)/3 � performance ratio
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First-Fit Algorithm

Not good performance:

Online algorithm

First-Fit:
Process the vertices in arbitrary order:
Assign each vertex the smallest possible color

FF
n/2

2
= n/4

NHC Autumn School, 16 Nov 2006 14

Coloring & Independent Sets

Observation: Each 
color class is an 
independent set

NHC Autumn School, 16 Nov 2006 15

Coloring by Finding Independent Sets

A natural approach to coloring is to focus on 

finding large independent sets

Coloring-by-Excavations (schema):
While the graph is not empty do

Find a large independent set 
Use a new color on those vertices

NHC Autumn School, 16 Nov 2006 16

How Good is Excavating?

log n �approximation for coloring 

Remember, IS 

problem is also NP-

hard

exact IS algorithm for excavating

NHC Autumn School, 16 Nov 2006 17

Excavation for Weaker Approximations

O(f(n)) �approximation for coloring

f(n)-approximation for IS, f(n) = ( n)

NHC Autumn School, 16 Nov 2006 18

Proof of excavation lemma

Count how many colors we need to halve the size of 
the graph

f(n) colors needed to reduce vertices to n/2

There is a color of size at least (n/2)/

IS algorithm finds one of size (n/2)/( f(n))

f(n/2) needed reduce vertices to n/4

�..

Total of (f(n) + f(n/2) + � + f( n)) colors

Geometric sequence, equals O( f(n)),
since f(n) = ( n)
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Modified goal

Finding large independent sets in k-colorable 

graphs

NHC Autumn School, 16 Nov 2006 20

Greedy IS (Johnson �74)

Claim: There is always a vertex v with at least n/ -1
non-neighbors

GreedyIS :
While the graph is not empty do

Add a vertex of minimum degree to solution
Remove its neighbors

G

NHC Autumn School, 16 Nov 2006 21

Greedy IS (Johnson �74)

Claim: There is always a vertex v with at least n/ -1
non-neighbors

GreedyIS :
While the graph is not empty do

Add a vertex of minimum degree to solution
Remove its neighbors

G

=4v

NHC Autumn School, 16 Nov 2006 22

Greedy IS (Johnson �74)

Claim: There is always a vertex v with at least n/ -1
non-neighbors

GreedyIS :
While the graph is not empty do

Add a vertex of minimum degree to solution
Remove its neighbors

Claim: After t iterations, at least n/ t vertices remain 

GreedyIS finds at log n size IS

Performance ratio: / log n n lglg n/lg n

NHC Autumn School, 16 Nov 2006 23

Equivalent Greedy 

Coloring Algorithm
Pick vertex with fewest 

uncolored neighbors 

and color it with 

smallest available color

1 2 3 4

NHC Autumn School, 16 Nov 2006 24

Wigderson: 3-colorable graphs

v, d(v) n

Apply First-Fit on G 2-color N(v)

NoYes

n colors on G n-sized IS

Progress towards n-approximation
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Wigderson: k-colorable graphs

v, d(v) n(k-2)/(k-1)

Apply First-Fit on G (k-1)-color N(v)

NoYes

n(k-2)/(k-1) colors on 

G

Progress towards 

|N(v)|(k-3)/(k-2)

approximation

Progress towards n(k-2)/(k-1) -approximation

NHC Autumn School, 16 Nov 2006 26

Berger-Rompel

Claim: There is always a vertex set S with 

N[S] |V|/

True for any set in I, the largest color class

Progress towards |S| log n-approx.

G

S

NHC Autumn School, 16 Nov 2006 27

Berger-Rompel

The number of k-sets S in I is at least

G

S

k

n /

NHC Autumn School, 16 Nov 2006 28

Berger-Rompel

The probability that a random k-set is in I: 

This is 1/poly(n) when k = log n

In polynomial time, find a good log n-set.

G

S

k

k

n

k

n

1

/

NHC Autumn School, 16 Nov 2006 29

Berger-Rompel

In polynomial time, can find a good log n-set S:

- S is independent 

- S has at least n/ non-neighbors

Recursively apply the search on G[V ¥ N(S)]

G

S

NHC Autumn School, 16 Nov 2006 30

Berger-Rompel

Size of solution:

f(n) = log n + f(n/ ) [Actually, f(n/ -log n)]

Or, f(n) = (log n)2/2

G

S
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Another view of Johnson�s method

We can find a vertex that behaves like a 

vertex in a maximum IS

Property: The vertex has many non-neighbors

Because the graph is -colorable, we can 

apply this property recursively

Gives a log n size solution

NHC Autumn School, 16 Nov 2006 32

Another view of the B&R method

We can find a log n -vertex set that behaves 

like a subset a maximum IS

Property: The set has many non-neighbors

Because the graph is -colorable, 

we can apply this property recursively

Can do log n rounds.

Gives a (log n)2/2 size IS

At least 

n/

NHC Autumn School, 16 Nov 2006 33

Performance ratios for Graph Coloring

lg n lg2 nlg n/lglg nlg n

lg n/(lglg n)2

n lglg3 n/ lg3 n

n lglg2 n/ lg2 n

Johnson

Wigderson

B&R

NHC Autumn School, 16 Nov 2006 34

Overview of Upper Bounds

Johnson 74 n/lg n

Wigderson �81 n (lglg n/lg n)2

Berger&Rompel �90 n (lglg n/lg n)3

Halldórsson �91 n lglg2 n/lg3 n

Best possible: n / polylog n ?

NHC Autumn School, 16 Nov 2006 35

Improvement in [H �93], =lg n/lglg n

We can find a log n -vertex set that behaves like a 

subset a maximum IS I

Property: The set has at least n/ non-neighbors

If it has << n non-neighbors, then we can use an 

approximation algorithm for IS

G

S

N(S)

I

NHC Autumn School, 16 Nov 2006 36

Improvement in [H �93], =lg n/lglg n

We can find a log n -vertex set that behaves like a 

subset a maximum IS

Property: The set has at least n/ non-neighbors

If it has << n non-neighbors, then we can use an 

approximation algorithm for IS

Because the graph is -colorable, 

we can apply this property recursively

Can do log n rounds

Gives a log n (log n)2/2 size IS
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Clique Removal:  Case (G) > n/3

v, d(v) < n

Is G[N(v)] 

independent?
Color G with n

No
Yes

Found n-sized IS

Yes

Found a K3

No

Remove it

NHC Autumn School, 16 Nov 2006 38

Clique Removal:  Case (G) > n/k

v, d(v) < n1/(k-1)

Ramsey(G[N(v)], k-1)Color G with 

n1/(k-1) colors

NoYes

Found n1/(k-1)-sized IS Found a Kk

Remove it!

Ramsey(G, k)

Eventually finds a 

O(kn1/(k-1))-sized IS
n/log2 n

NHC Autumn School, 16 Nov 2006 39

Performance ratios for Graph Coloring

lg n lg2 nlg n/lglg nlg n

lg n/(lglg n)2

n lglg3 n/ lg3 n

n lglg2 n/ lg2 n

Johnson

Wigderson

B&R

n lglg2 n/ lg3 n

H

NHC Autumn School, 16 Nov 2006 40

Lower Bounds

Sequence of impressive and often seminal 

work on interactive proof systems

Current best lower bound:

[Khot, Panduswami �06; Zuckerman �05]

Relates to approximability of LabelCover

The most promising approach:

Lovasz� theta number & SDP

4/3)(log2/ nn

NHC Autumn School, 16 Nov 2006 41

Open questions

Improve the long-standing upper bound

I have no special suggestions

Core issue: log n-colorable graphs

Is the (n/polylog n) conjecture for the best 

possible performance ratio of Graph Coloring 

true?

True for some restricted variants, like online 

coloring

NHC Autumn School, 16 Nov 2006 42

Part II:  

Color Saving

Coloring as a SetCover problem

Pushing the �local� in �local search�

[Duh, Furer, 1996]
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Color Saving: Maximizing the number of 
�unused� colors

If a coloring uses ALG colors, there are 

n-ALG �potentially unused� colors saved.

Optimization identical to Graph Coloring

Differential approximation ratio

(n- )/(n-ALG)

NHC Autumn School, 16 Nov 2006 44

Easy 2-approximation

Use at least 2 vertices per color, when 

possible

If A1 = # color classes with a single vertex

A1 (G) (G)

Performance analysis

#colors used A1 + (n- A1)/2

2
2/)(colors# 11

1

AnAn

An

n

n

NHC Autumn School, 16 Nov 2006 45

Better Ratios for Color Saving

We want 3-sets!

Suppose there are no 4-independent sets.

Our problem now reduces to the following:

Find the smallest collection of independent 

sets of size 1, 2, 3, that covers all vertices.

Form a set system S over the ground set V:

S contains a set for each independent set in V

We seek a minimum set cover of S

k-Set Cover: Sets of size at most k.

NHC Autumn School, 16 Nov 2006 46

Graph & System of 3-ISs

V={a,b,c,d,e,f,g,h}

S={acf,acg,afh,

bdh,bfh,cde,cdg,

cef,deh,efh}

& its subsets

a b

cd

e

f

g

h
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Graph & System of 3-ISs

V={a,b,c,d,e,f,g,h}

S={acf,acg,afh,

bdh,bfh,cde,cdg,

cef,deh,efh}

& its subsets

a b

cd

e

f

g

h

NHC Autumn School, 16 Nov 2006 48

Disjoint Set Cover

It is convenient for us to assume that the set system 
is monotone:

If set S is in E, then S� is also in E, for S� S.

E.g. if abc={a,b,c} E, then a, b, c, ab, ac, bc E

Whenever one of the new set is used, we can 
replace it in the actual solution with a superset

Increases instance by a factor at most 6

Now, may assume the solution is disjoint, i.e.

a partition of S.
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Minimum 3-Set Cover

Given:

Set S of base elements

Set E of subsets of S, each of size at most 3

Example:  E={ abc,def,ghi, adg, be, cf, hi} 

a

b

c

d

e

f

g

h

i a b c d e f g h i

NHC Autumn School, 16 Nov 2006 50

Greedy for 3-SC

Greedy has approximation ratio 

H3 = 1 + ½ + 1/3 = 11/6

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i
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2-Set Cover  (= Edge Cover)

If the sets are of size at most 2, then what we 

have is a graph with self-loops

A 2-set is an edge, a 1-set is a self-loop

Solve by reduction to maximum matching:

Select edges of a maximum matching

Cover other vertices using self-loops or add�l

edges

NHC Autumn School, 16 Nov 2006 52

Using exact solution of 2-SC to help 
solving 3-SC

Suppose we have fixed the 3-sets that we 

use in a solution. 

Then, we can find an optimal collection of 1-

sets and 2-sets to cover the remaining 

elements.

NHC Autumn School, 16 Nov 2006 53

Generic local improvement method

S initial starting solution  (obtained elsewhere)

while ( small improvement I to S) do

S solution obtained by applying I to S

output S

A solution that has gone through local search is said to 

be locally optimal (with respect to the 

improvements applied)

Issues:

- What is an improvement?    (Problem specific)

- How do we find the improvement? (Search)
NHC Autumn School, 16 Nov 2006 54

Semi-local optimization for 3-SC

Only the 3-sets in the solution stay fixed.

A (s,t)-change consists of:

Adding up to s 3-sets

Removing up to t 3-sets

Finding an optimal 2-set cover of the remaining elts

Objective function:
A) Minimize the number of sets in solution, or

B) Minimize the number of 3-sets in the solution

(s,t)-improvement: An (s,t)-change with improved 
objective

Fewer A), or equal A) and fewer B)
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Main result for 3-SC

Theorem [Duh,Furer]: 

no (2,1)-semi-local improvement

4/3-approximation

NHC Autumn School, 16 Nov 2006 56

Notation

A :  Algorithm�s (2-opt) solution

B :  �Best� (optimal) solution

Ai : �The collection of i-sets in A, for i=1,2,3

Bi : �The collection of i-sets in B, for i=1,2,3

ai = |Ai| , bi = |Bi| 

B

B1 B2 B3

A

A1 A2 A3

NHC Autumn School, 16 Nov 2006 57

Proof outline

We will derive a few bounds on the sizes of 

the solution parts.

Obs 1: a1 + 2 a2 + 3 a3 = b1 + 2 b2 + 3 b3 = |S|

Lemma 2: a1 b1

Lemma 3: a1 + a2 b1 + b2 + b3

By adding the inequalities, 

3 a1 + 3 a2 + 3 a3 3 b1 + 3 b2 + 4 b3

we get the theorem:

|A| 4/3 |B|

NHC Autumn School, 16 Nov 2006 58

Observation 1:

a1 + 2 a2 + 3 a3 = b1 + 2 b2 + 3 b3 = |S|

Count the number of elements in each set

Each solution is a disjoint set cover

a

b

c

d

e

f

g

h

i
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Comparison graph

A bipartite graph (A, B, X), where

the vertices on either sides correspond to the 
sets in A and B, respectively

Edge between two sets that overlap (multiple 

edges if they overlap in many elements)

a

b

c

d

e

f

g

h

i

A B

abc

def

ghi
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A component of comparison graph 

containing an A1 �node:

We shall show that it must have some 

restricted properties

Cannot contain an A3 node or another A1

Must have a matching A1-node
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Component containing an A1 �node 
cannot contain an A3 �node

A path from A1 -node to A3 �node via B2, B3, A2

Uses only 2 elements from each B3 -node

Replace:
A1 & A2 B2 
A3 A2

Reduces 3-sets (0,1)-improvement

A1

B2

A2

B3 B2

A2 A2 A3A2

NHC Autumn School, 16 Nov 2006 62

Component containing an A1 �node 
cannot contain another A1 �node

A path from A1 -node to another A1-node.

Replace: 
A1 & A2 B2 

Covers the same 

Fewer sets

(0,0)-improvement

A1

B2

A2

B3 B2

A2 A2 A1

NHC Autumn School, 16 Nov 2006 63

Component containing an A1 �node is a tree.

Root: The A1 �node

Internal nodes of degree 2: A2 & B2 �nodes

Internal nodes of degree 3: B3 �nodes

Leaves: B1 �nodes

Therefore,

a1 b1

Lemma 2:

A2

A1

B2

B1

A2

B3

B1

A2

NHC Autumn School, 16 Nov 2006 64

Auxiliary graph

Graph G= (B, A-A3)

Vertex for each set in B

Edge for each set in A - A3 = A1 + A2

Thus, there is an edge between two sets in B, 

if there is an A2-set that contains elements 

from both of them

NHC Autumn School, 16 Nov 2006 65

Binocular

A binocular is a subgraph that contains more 

than one cycle

NHC Autumn School, 16 Nov 2006 66

Lemma 3

Auxiliary graph with a binocular 

(2,1)-improvement

# edges in each component  #vertices

Namely, 

a1 + a2 b1 + b2 + b3
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Proof summary

We derived 3 inequalities:

Obs 1:  a1 + 2 a2 + 3 a3 = b1 + 2 b2 + 3 b3

Lemma 2:  a1 b1

Lemma 3:  a1 + a2 b1 + b2 + b3

Adding the inequalities, 

3 a1 + 3 a2 + 3 a3 3 b1 + 3 b2 + 4 b3

we get a strengthening of the theorem:

3|A| 4 |B| � b1 � b2

NHC Autumn School, 16 Nov 2006 68

Back to Color Saving:
Assume G contains no 4-independent set

Here: 

|S| = n = b1 + 2 b2 + 3 b3

B = , A = #colors (used by algorithm)

We have:

5n-5b = 2(3n-4b+b1+b2) + (3b-2b1+b2 -n)+ b2

2(3n � 3a) + 0 + 0

So,

(n-chi)/(n-#colors) = (n-b)/(n-a) 6/5

NHC Autumn School, 16 Nov 2006 69

Color Saving

For graphs with 4-IS and larger

We greedily color 4-sets as possible.

For each such set

Algorithms saves 3 colors

Optimal solution saves at most 4 colors

Ratio of 4/3.

Refined analysis of Duh/Furer:

Ratio 360/289 1.246

NHC Autumn School, 16 Nov 2006 70

Summary

Semi-local search: Matching + LS

4/3-ratio for 3-Set Cover

Hk � ½ for k-Set Cover, using greedy rounds

360/289-ratio for Color Savings

Open questions

Improve the ratio Hk � ½
Combine Greedy rule with local search

NHC Autumn School, 16 Nov 2006 71

Part III:  Independent Set in 

Hypergraphs

How good is greediness for another 

SetCover equivalent

[H, Elena Losievskaja, 2006]

NHC Autumn School, 16 Nov 2006 72

Definitions

A hypergraph H is a pair (V,E):  

V is a discrete set of vertices,

E is a collection of subsets of V, 

or (hyper)edges.

Graphs are hypergraphs 

with all edges of size 2. 

Degree of a vertex v is the 

number of incident edges:

d(v) = |{ e E : v e }|
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Independent Set

A (weak) independent set in a hypergraph is a subset of 

vertices that contains no edge.

NHC Autumn School, 16 Nov 2006 74

Independent Set

A (weak) independent set in a hypergraph is a subset of 

vertices that contains no edge.
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Independent Set

A (weak) independent set in a hypergraph is a subset of 

vertices that contains no edge.
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Independent Set

A (weak) independent set in a hypergraph is a subset of 

vertices that contains no edge.
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Independent Set

A (weak) independent set in a hypergraph is a subset of 

vertices that contains no edge.

NHC Autumn School, 16 Nov 2006 78

Independent Set
The problem of finding maximum independent set is strongly 

related to several other important problems:

Hitting Set Independent Set

Hitting Set problem: 

given a hypergraph,

find the smallest subset of vertices that covers every edge

Hitting Set

Independent 

Set
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Hitting Set Set Cover
Set Cover problem: 

given a universe of elements and a collection of sets,

find the smallest subcollection of sets that covers every element in 
the universe

In terms of exact optimization all three problems, Independent Set, 

Hitting Set and Set Cover, are equivalent.  

HS SC

edge element

vertex set

HS SC

NHC Autumn School, 16 Nov 2006 80

1. Select a vertex of maximum degree

NHC Autumn School, 16 Nov 2006 81

2. Add the vertex to the cover S

NHC Autumn School, 16 Nov 2006 82

3. Delete the vertex along with all incident edges

NHC Autumn School, 16 Nov 2006 83

3. Delete the vertex along with all incident edges

NHC Autumn School, 16 Nov 2006 84

3. Delete the vertex along with all incident edges
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3. Delete the vertex along with all incident edges

NHC Autumn School, 16 Nov 2006 86

Iterate until all edges are deleted

NHC Autumn School, 16 Nov 2006 87

Iterate until all edges are deleted

NHC Autumn School, 16 Nov 2006 88

Iterate until all edges are deleted

NHC Autumn School, 16 Nov 2006 89

Iterate until all edges are deleted

NHC Autumn School, 16 Nov 2006 90

Iterate until all edges are deleted
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Iterate until all edges are deleted

NHC Autumn School, 16 Nov 2006 92

The vertices in S form a hitting set (cover)

NHC Autumn School, 16 Nov 2006 93

The independent set I found is V-S, 
the vertices not in the cover S

NHC Autumn School, 16 Nov 2006 94

The independent set I found is V-S, 
vertices NOT in the cover S

NHC Autumn School, 16 Nov 2006 95

(Vertex set, edge element)  GreedyMAX = GreedySetCover.

The GreedySetCover algorithm:

iteratively selects a set that covers the largest number of uncovered elements. 

NHC Autumn School, 16 Nov 2006 96

Results on the greedy set cover algorithm:

Performance ratio Hn ln n + 1 (Johnson; Lovász) 

The best possible approximation algorithm for the Set 

Cover problem (Feige 1998), within lower order terms

The best possible for various related problems:

Weighted Set Cover [Chvatal 1979]

Sum Set Cover [Feige,Lovasz,Tetali 2004]

Test Set []

Entropy Set Cover [Cardinal,Fiorini,Joret 2006] 
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Differential approximation ratio of GreedySetCover:

(i.e. we measure how many sets are not included in the cover)

Approximation ratio of GreedyMAX:

where I*, I � an optimal and greedy independent sets

S*, S � an optimal and greedy covers

Bazgan, Monnot, Paschos and Serrière[1]: 

GreedySetCover:  

Local search:

4
1

365.1

2
1

||
|*|max

||
|*|max

Sn
Sn

HI
I

H

||
|*|max

Sn
Sn

H
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Bazgan, Monnot, Paschos and Serrière 2005: 

Main algorithm: GreedyMAX a greedy cover;

Post processing: exclude redundant vertices from the cover 

a maximal greedy cover; 

Analysis: 

compare how optimal and greedy vertices cover the 

edges in the hypergraph               

S

S*

S* S
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We started by extending the analysis of Bazgan et al: 

Count incidences of all vertices from           ,           ,   ,             

in all edges, obtaining edgesets E1, E2, E3

Use variables k, l [0,1] and average degree of vertices to 

express the dependence between           ,           ,          ,          

Bound the approximation ratio by a single multivariable function:

*\SS SS \* SS* SS*

*\SS SS \* SS*

r
d

b
dlkf

lEE

r
d

k
b

lEE

r
d

k
lEE

k
ElE

b
db

,,,

231

231231

1
3

)1(
1

SS*
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Find the maximum of                   by

using variables x, y, s [0,1] to bound the 

dependence between E1, E2, E3

expressing                ,

taking partial derivatives      ,      ,      ,     ,
k
f

l
f

r
d

b
dlkf ,,,

g
b
d hrd

x
f

y
f

s
f

Eventually, we obtain a tight ratio of
2

1

Weaknesses:

� Proof too long and complicated

� Requires post-processing phase to ensure maximality of IS 
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A much simpler proof:

1. The �hardest� hypergraphs for GreedyMAX are ordinary graphs.

2. GreedyMAX in graphs has ratio              .
2

1
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We �shrink� the hypergraph H to a graph G

H    G 

GreedyMAX
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H   G

V(G) = V(H) and |E(G)| = |E(H)|

GreedyMAX

We �shrink� the hypergraph H to a graph G

NHC Autumn School, 16 Nov 2006 104

1. An optimal cover in G is at most of the same 

size of an optimal cover in H

2. GreedyMAX constructs the same greedy cover 

for H and G

H   G

Shrinkage properties
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Proof by induction on s, the number of iterations of GreedyMAX: 

Base case s = 0 trivial. 

Let u1 = the first vertex chosen by GreedyMAX,

E1 = the set of edges incident on u1

H1 = the remaining hypergraph after removing u1 and E1

u1

E1
H1

Proof of shrinkage properties
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To truncate a hyperedge e E1:

u1 pick an arbitrary vertex v in e

u1 S pick a vertex v in e such that v S*

SS*

u1

u1

Rules for shrinking

Add u1v to G
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To truncate a hyperedge e E1:

u1 pick an arbitrary vertex v in e

u1 S pick a vertex v in e such that v S*

SS*

u1

u1

Rules for shrinking

Each edge 

contains a 

vertex in S*

S* is still

a cover
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To truncate a hyperedge e E1:

u1 pick an arbitrary vertex v in e

u1 S pick a vertex v in e such that v S*

SS*

u1

u1

Rules for shrinking

Degree of u1

does not 

change

Greedy 

still picks 

u1 first

521



NHC Autumn School, 16 Nov 2006 109

Inductive hypothesis: G1 H1 with greedy cover S/{u1} and is 
still covered by S* 

Have: G H, with V(G) = V(H) and E(G) = E(G1) truncated E1

G1                         +                 E1                                    =                       G

S* covers all edges of G   SC(G) SC(H)

The edge shrinkage doesn�t decrease the degree of u1
GreedyMAX still selects u1 first and 
outputs the solution {u1} S/{u1} = S

Corollary: Any hypergraph H can be shrunk to a graph G, for which 
GreedyMAX has no better performance ratio. 

GreedyMAX
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Theorem: GreedyMAX in graphs has ratio

Proof:  We prove a slightly weaker bound.

An optimal cover satisfies: 

where n, m are the number of vertices and edges, 

and     are the maximum and average degrees

GreedyMAX attains the Turán bound on graphs 
[Chvatal,McDiarmid]:

2

1

2
* ndmS

d

Performance of GreedyMAX

1d

n
I
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Combining

The performance ratio is at most

which is maximized when                 , for the 

performance ratio

1d

n
I

)2/1)(1(
)1/(

2/

||

|*|
max dd

dn

dn

I

Sn

G

8/1
2

1

Performance of GreedyMAX

2/1d

2
* ndS
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To get tight bounds, we need two refinements.

We introduce a parameters k [0,1] and              so that

Also, we use an extension of the Turan bound, due to 

Caro & Wei, and proved for GreedyMAX by 

Sakai,Togasaki,Yamazaki 2003:

This results in ratio 2

1

')1( dkkd

1'd

Tight bounds on GreedyMAX

1'

)1(

11)(

1

d

nkkn

Vv
vd

I
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The performance ratio of GreedyMAXis at least            :

OPT = + 1

Greedy =2

Lower bound for GreedyMAX

NHC Autumn School, 16 Nov 2006 114

Summary

The performance ratio of GreedyMax for IS in 

hypergraphs is ( +1)/2

Obtained by shrinking the hypergraph to a 

graph, where GreedyMAX does no better

Equivalent to differential performance ratio for 

Set Cover

One possible lesson: Once you have a proof, 

find a better proof.
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Open problems

Improve the best known bound of ( +1)/2

SDP?  Gives about /lg ratio for graphs

Greediness combined with local search?

Good lower bounds still missing

Problem is easier in k-uniform hypergraphs
1/(k-1) ratio, obtained by GreedyMAX

What other hypergraph properties help?

NHC Autumn School, 16 Nov 2006 116

Part IV:  

Scheduling with Conflicts

Coloring is a scheduling problem

[Guy Even, H, Lotem Kaplan, Dana Ron 2006]
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Scheduling problems

Given a fixed set of machines

and a set of jobs to be run on the machines

Normally, the scheduling problem is an allocation 

problem, deciding which jobs to allocated to each 

machine
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When Coloring meets Scheduling

Scheduling dependent tasks
Jobs conflict in that they cannot be executed 
simultaneously.

Resource-constrained scheduling
Large class of dependent task scheduling

Resource: 

Dedicated processors

Bandwidth, (e.g. session scheduling on a LAN)

Memory, semiphores, etc.

NHC Autumn School, 16 Nov 2006 119

Resource Constrained Scheduling and 
Conflict Graph

2

4

3

5

1
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Resource Constrained Scheduling and 
Conflict Graph

2

4

3

5

1
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Main Differences from Coloring

Correspondence:

time step - color

job/task - vertex

task conflict - edge

Jobs have lengths

Lengths can be different

Jobs are run uninterrupted (non-preemptive)

Fixed number m of machines

At most m vertices with each color
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Problem Definition

Given: Graph G, and vertex/job lengths pv

Number m of machines 

Find: A schedule of the jobs so that at any 

given time,

- at most m jobs are scheduled,

- no conflicting jobs are scheduled

Minimize: The makespan of the schedule, 

maxv xv + pv
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Example with m=3 machines

Non-preemptive 
schedule

6
5
4
3
2
1T

im
e 

st
ep

s

Machines

3

1

A Conflict Graph

2

3

1

2

2
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Unit case == Each job of length 1

Equivalent to a version of the k-Set Cover

problem

Each item v to be covered pv times

Make pv identical copies of each element 

(vertex)

Each set of size k=m

Exercise: Show equivalence, assuming pv

constant
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Example with m=3 machines

Compact schedule

6
5
4
3
2
1T

im
e 

st
ep

s

Machines

3

1

A Conflict Graph

2

3

1

2

2
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A Greedy Algorithm

Among the remaining jobs, pick the one that 

can be scheduled earliest

And fix its schedule
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Tetris-like view

33

2
1

2

1
2

7

6

5

4

3

2

1T
im

e 
st

ep
s

Machines
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Tetris-like view

33

2
1

2

1
2

7

6

5

4

3

2

1T
im

e 
st

ep
s

Machines
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Performance Evaluation

Any non-trivial algorithm has ratio m.

The greedy coloring achieves a (m+1)/2 ratio

And this is tight

Idea of the analysis:

Show that in most time steps, the algorithm

schedules at least 2 jobs

Optimal solution schedules at most m jobs in 

each time step  

NHC Autumn School, 16 Nov 2006 130

Analysis

Count the time steps 

spent by algorithm

ALG = A1 + A2

A1 = #time steps with 

only one job scheduled

A2 = #time steps with 

at least two jobs

7
6
5
4
3
2
1

OPT = #time steps in optimal solution

Ops = total # operations = v xv

OPT Ops / m.

(13)
(13/3 )

(5)

(2)
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Analysis cont.

Notice: 

ALG A1 + (Ops - A1)/2 (A1 + Ops)/2

Need to show that A1 is not too big

At least 2 non-A1

operations in each 

A2 step

NHC Autumn School, 16 Nov 2006 132

Analysis cont.

Claim: Any two jobs in A1 must conflict

After one of them was fixed, the other was one 

NOT scheduled alongside the first one

Thus, OPT A1

Conclusion:

ALG (A1 + Ops)/2 (OPT + m*OPT)/2

OPT performs at 

most m operations 

in each step
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Open questions:

Improve the (m+1)/2-approximation

Is there a (nearly) linear lower bound?

Applies to many multicoloring questions

NHC Autumn School, 16 Nov 2006 134

Part V:

Bounded-degree graphs

Simple partitioning

[H, Lau, 1995]
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Coloring of bounded-degree graphs

Simple algorithm gives ( +1)/4 ratio

Partition graph into subgraphs of degree 3

Solve each subgraph optimally

Asymptotically better algorithm using SDP

Semi-definite programming

O( 1/( -1) log n) ratio
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Coloring General Graphs

NHC Autumn School, 16 Nov 2006 137

Easy coloring of bounded-degree graphs

G bipartite?

Color G optimally Use +1 colors

No: 3Yes : 2

= 1 ( +1)/3

( +1)/3
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Simple Partitioning Argument

Suppose we break a graph (partition the vertices) 

into t parts, and solve each part optimally.

Then, the combined solution is a t-approximation for 

coloring the original graph
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Lovász� Partitioning Lemma

NHC Autumn School, 16 Nov 2006 140

Exact coloring of degree-3 graphs
G bipartite?

Color G optimally

Color using 

Brooks theorem

No: 3Yes : 2

G has a 4-

clique

Yes : = 4
No: = 3

Color optimally 

using FF

NHC Autumn School, 16 Nov 2006 141

Corollary:

Linear time ( +1)/4 approximation

Can be reduced to ( +3)/4
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Fast matrix multiplication

and graph algorithms

Uri Zwick
Tel Aviv University

NHC Autumn School on Discrete Algorithms

Sunparea Seto, Seto, Aichi Nov. 15-17, 2006

Overview

� Short introduction to fast matrix multiplication

� Transitive closure

� Shortest paths in undirected graphs

� Shortest paths in directed graphs

� Perfect matchings

Short introduction to
Fast matrix multiplication

Algebraic Matrix Multiplication

=( )
i j

A a ( )
i j

B b ( )
i j

C ci

j

Can be computed naively in O(n3) time.

Matrix multiplication algorithms

Coppersmith, Winograd (1990)n2.38

Strassen (1969)n2.81

(by definition)n3

AuthorsComplexity

Conjecture/Open problem: n2+o(1)   ???

Multiplying 2 2 matrices

8 multiplications

4 additions

T(n) = 8 T(n/2) + O(n2)

T(n) = O(nlog8/log2)=O(n3)

C11 = A11B11 + A12B21
C12 = A11B12 + A12B22
C21 = A21B11 + A22B21
C22 = A21B12 + A22B22
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Strassen�s 2 2 algorithm

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

C A B A B

C A B A B

C A B A B

C A B A B

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

( )( )

( )

( )

( )

( )

( )( )

( )( )

M A A B B

M A A B

M A B B

M A B B

M A A B

M A A B B

M A A B B

11 1 4 5 7

12 3 5

21 2 4

22 1 2 3 6

C M M M M

C M M

C M M

C M M M M 7 multiplications

18 additions/subtractions

Subtraction!

Strassen�s n n algorithm

View each n n matrix as a 2 2 matrix 

whose elements are n/2 n/2 matrices. 

Apply the 2 2 algorithm recursively.

T(n) = 7 T(n/2) + O(n2)

T(n) = O(nlog7/log2)=O(n2.81)

Matrix multiplication algorithms

The O(n2.81) bound of Strassen was 

improved by Pan, Bini-Capovani-Lotti-

Romani, Schönhage and finally by 

Coppersmith and Winograd to O(n2.38). 

The algorithms are much more complicated�

We let 2 < 2.38 be the 

exponent of matrix multiplication.

Gaussian elimination

The title of Strassen�s 1969 paper is:

�Gaussian elimination is not optimal�

Other matrix operations that can 

be performed in O(n ) time:

� Computing determinants:  detA .

� Computing inverses:  A 1

� Computing characteristic polynomials

Rectangular Matrix multiplication

Coppersmith (1997):

Complexity  n1.85p0.54+n2+o(1)

For p n0.29, complexity = n2+o(1) !!!

=n

p

p

n

n

n

A B C TRANSIVE CLOSURE
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Transitive Closure

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 

which (u,v) E* iff there is a path from u to v.

Can be easily computed in O(mn) time.

Can also be computed in O(n ) time.

Boolean Matrix Multiplication

=( )
i j

A a ( )
i j

B b ( )
i j

C ci

j

Can be computed naively in O(n3) time.

Algebraic 

Product

O(n2.38)
algebraic 

operations

Boolean 

Product

?

Algebraic 

Product

O(n2.38)
algebraic 

operations

Boolean 

Product

or ( )
has no inverse!

Algebraic 

Product

O(n2.38)
algebraic 

operations

Boolean 

Product

But, we can work
over the integers!

Algebraic 

Product

O(n2.38)
algebraic 

operations

Boolean 

Product

O(n2.38)
operations on 

O(log n) bit words

530



� Can you use Strassen�s algorithm or the 

Coppersmith-Winograd algorithm to 

compute Boolean matrix multiplications?

� No, as these algebraic algorithms use 

subtractions and the Boolean-or ( ) 

operation has no inverse!

� Still, we can run the algebraic algorithms 

over the integers and convert any non-zero 

result to 1.

Adjacency matrix 

of a directed graph

1

3
2

4

6

5

Exercise 0: If A is the adjacency matrix of a graph, 

then (Ak)ij=1 iff there is a path of length k from i to j.

Transitive Closure 

using matrix multiplication

Let G=(V,E) be a directed graph.

The transitive closure G*=(V,E*) is the graph in 

which (u,v) E* iff there is a path from u to v.

If A is the adjacency matrix of G, 

then (A I)n 1 is the adjacency matrix of G*.

The matrix (A I)n 1 can be computed by log n

squaring operations in O(n log n) time.

It can also be computed in O(n ) time.

D* GBD*D*CE

EBD*(A BD*C)*

DC

BA

HG

FE

X =

X* = =

TC(n) 2 TC(n/2) + 6 BMM(n/2) + O(n2)

A D

C

B

Exercise 1: Give O(n ) algorithms for 

findning, in a directed graph,

a) a triangle

b) a simple quadrangle

c) a simple cycle of length k.

Hints:

1. In an acyclic graph all paths are simple.

2. In c) running time may be exponential in k.

3. Randomization makes solution much easier.

SHORTEST PATHS

APSP � All-Pairs Shortest Paths

SSSP � Single-Source Shortest Paths
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An interesting special case

of the APSP problem

A B

17

23

Min-Plus product

2

5

10

20

30

20

Min-Plus Products

125

703

48

528

5

731

571

252

1036

Solving APSP by repeated squaring

D W

for i 1 to log2n

do D D*D

If W is an n by n matrix containing the edge weights

of a graph. Then Wn is the distance matrix.

Thus: APSP(n) MPP(n) log n

Actually: APSP(n) = O(MPP(n))

By induction, Wk gives the distances realized 

by paths that use at most k edges. 

D* GBD*D*CE

EBD*(A BD*C)*

DC

BA

HG

FE

X =

X* = =

APSP(n) 2 APSP(n/2) + 6 MPP(n/2) + O(n2)

A D

C

B

Algebraic 

Product

ij ik kj

k

C A B

c a b

O(n2.38)

Min-Plus 

Product

min operation 
has no inverse!

min{ }ij ik kj
k

C A B

c a b

?

UNWEIGHTED
UNDIRECTED

SHORTEST PATHS
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Directed versus undirected graphs

x
y

z

(x,z) (x,y) + (y,z)

x
y

z

(x,z) (x,y) + (y,z)

(x,z) (x,y) � (y,z)

(x,y) (x,z) + (z,y)Triangle inequality

Inverse triangle inequality

Distances in G and its square G2

Let G=(V,E). Then G2=(V,E2), where 

(u,v) E2 if and only if (u,v) E or there 

exists w V such that (u,w),(w,v) E

Let (u,v) be the distance from u to v in G.

Let 2(u,v) be the distance from u to v in G2.

(u,v)=5 2(u,v)=3

Distances in G and its square G2 (cont.)

Lemma: 2(u,v)= (u,v)/2 ,  for every u,v V.

Thus: (u,v) = 2 2(u,v) or

(u,v) = 2 2(u,v) 1

2(u,v) (u,v)/2

(u,v) 2 2(u,v)

Distances in G and its square G2 (cont.)

Lemma: If (u,v)=2 2(u,v) then for every 

neighbor w of v we have 2(u,w) 2(u,v).

Lemma: If (u,v)=2 2(u,v)�1 then for every 

neighbor w of v we have 2(u,w) 2(u,v) and

for at least one neighbor 2(u,w) < 2(u,v).

, , , , ,
( , )

( ) : deg( )u w u w w v u v u v
wv w E

c c a CA v c

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2

Even distances

Lemma: If (u,v)=2 2(u,v) then for every 

neighbor w of v we have 2(u,w) 2(u,v).

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2

Odd distances

Lemma: If (u,v)=2 2(u,v)�1 then for every 

neighbor w of v we have 2(u,w) 2(u,v) and

for at least one neighbor 2(u,w) < 2(u,v).

Let A be the adjacency matrix of the G.

Let C be the distance matrix of G2

Exercise 2: Prove the lemma.
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Seidel�s algorithm

1. If A is an all one matrix, 

then all distances are 1.

2. Compute A2, the adjacency 

matrix of the squared graph.

3. Find, recursively, the distances 

in the squared graph.

4. Decide, using one integer 

matrix multiplication, for every 

two vertices u,v, whether their 

distance is twice the distance in 

the square, or twice minus 1.

Seidel�s algorithm

1. If A is an all one matrix, 

then all distances are 1.

2. Compute A2, the adjacency 

matrix of the squared graph.

3. Find, recursively, the distances 

in the squared graph.

4. Decide, using one integer 

matrix multiplication, for every 

two vertices u,v, whether their 

distance is twice the distance in 

the square, or twice minus 1.

Assume that A has

1�s on the diagonal.

Boolean matrix 

multiplicaion

Integer matrix 

multiplicaion

Seidel�s algorithm

Algorithm APD(A)

if A=J then

return J�I

else

C APD(A2)

X CA , deg Ae�1

dij 2cij� [xij<cijdegj]

return D

end

1. If A is an all one matrix, 

then all distances are 1.

2. Compute A2, the adjacency 

matrix of the squared graph.

3. Find, recursively, the distances 

in the squared graph.

4. Decide, using one integer 

matrix multiplication, for every 

two vertices u,v, whether their 

distance is twice the distance in 

the square, or twice minus 1.
Complexity: 

O(n log n)

Exercise 3: (*) Obtain a version of 

Seidel�s algorithm that uses only 

Boolean matrix multiplications.

Hint: Look at distances also modulo 3.

Distances vs. Shortest Paths

We described an algorithm for 

computing all distances.

How do we get a representation of

the shortest paths?

We need witnesses for the 

Boolean matrix multiplication.

Witnesses for

Boolean Matrix Multiplication

Can be computed naively in O(n3) time.

A matrix W is a matrix of witnesses iff

Can also be computed in O(n log n) time.
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Exercise 4:

a) Obtain a deterministic O(n )-time 

algorithm for finding unique witnesses.

b) Let 1 d n be an integer. Obtain a 

randomized O(n )-time algorithm for 

finding witnesses for all positions that 

have between d and 2d witnesses.

c) Obtain an O(n log n)-time algorithm for 

finding all witnesses.

Hint: In b) use sampling.

[Shoshan-Zwick �99]Mn

AuthorsRunning time

All-Pairs Shortest Paths
in graphs with small integer weights

Undirected graphs. 

Edge weights in {0,1,�M}

Improves results of 

[Alon-Galil-Margalit �91] [Seidel �95]
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Exercise 5: Obtain an O(n log n) time 

algorithm for computing the diameter

of an unweighted directed graph.

PERFECT 

MATCHINGS

Using matrix multiplication

to compute min-plus products

11 12 11 12 11 12

21 22 21 22 21 22

c c a a b b

c c a a b b

min{ }ij ik kj
k

c a b

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

Using matrix multiplication

to compute min-plus products

11 12 11 12

21 22 21 22

11 12

21 22

' '

' '

a a b b

a a b b

c c

c c

x x x x

x x x x

n
polynomial 

products

M
operations per 

polynomial 

product

=

Mn
operations per 

max-plus 

product

Assume:   0 aij , bij M
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Trying to implement the 

repeated squaring algorithm

Consider an easy case: 

all weights are 1.

D W

for i 1 to log2n 

do D D*D

After the i-th iteration, the finite 

elements in D are in the range {1,�,2i}.

The cost of the min-plus product is 2i n

The cost of the last product is n +1 !!!

Sampled Repeated Squaring  (Z �98)

D W

for i 1 to log3/2n do

{

s (3/2)i+1

B rand( V , (9n lnn)/s )

D min{ D , D[V,B]*D[B,V] }

}

Choose a subset of V

of size (9nlnn)/s

Select the columns

of D whose 

indices are in B

Select the rows

of D whose 

indices are in B

Sampled Repeated Squaring  (Z �98)

D W

for i 1 to log3/2n do

{

s (3/2)i+1

B rand( V , (9n lnn)/s )

D min{ D , D[V,B]*D[B,V] }

}

With high probability, 

all distances are correct!

Sampled Repeated Squaring  (Z �98)

D W

for i 1 to log3/2n do

{

s (3/2)i+1

B rand( V , (9n lnn)/s )

D min{ D , D[V,B]*D[B,V] }

}

The is also a slightly more complicated 

deterministic algorithm

Sampled Distance Products (Z �98)

n

n

n

|B|

In the i-th

iteration, the set B

is of size n ln n / s, 

where s = (3/2)i+1

The matrices get 

smaller and smaller

but the elements get 

larger and larger

Sampled Repeated Squaring - Correctness

D W

for i 1 to log3/2n do

{

s (3/2)i+1

B rand(V,(9 ln n)/s)

D min{ D , D[V,B]*D[B,V] }

}

Invariant: After the i-th

iteration, distances that are 

attained using at most (3/2)i

edges are correct.

Consider a shortest path that uses at most (3/2)i+1 edges

1
2

3
2

i

1
2

3
2

i
1
2

3
2

i
at most at most

Let s = (3/2)i+1
3

/3
9ln

(1 )

s

n
n

s

Failure 

probability :
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Rectangular Matrix multiplication

[Coppersmith �97]: n1.85p0.54+n2+o(1)

For p n0.29, complexity = n2+o(1) !!!

=n

p

p

n

n

n

Naïve complexity:        n2p

Complexity of APSP algorithm

The i-th iteration:

n

n ln n / s

n n
 ln

n
 / s

s=(3/2)i+1

The elements are 

of absolute value 

at most Ms

0.54 3
1.85min{ , }

n n
Ms n

s s

0.68 2.58M n

Open problem:
Can APSP in directed graphs 

be solved in O(n ) time?

Related result: [Yuster-Z�05]
A directed graphs can be processed in 

O(n ) time so that any distance query can 

be answered in O(n) time.

Corollary:
SSSP in directed graphs in O(n ) time.

The preprocessing algorithm (YZ �05)

D W ; B V

for i 1 to log3/2n do

{

s (3/2)i+1

B rand(B,(9n lnn)/s)

D[V,B] min{D[V,B] , D[V,B]*D[B,B] }

D[B,V] min{D[B,V] , D[B,B]*D[B,V] }

}

The APSP algorithm

D W

for i 1 to log3/2n do

{

s (3/2)i+1

B rand(V,(9nlnn)/s)

}

D min{ D , D[V,B]*D[B,V] }

Twice Sampled Distance Products

n

n

n

|B|

n

|B|

|B|

|B|

|B|
n
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The query answering algorithm

(u,v) D[{u},V]*D[V,{v}]

u

v

Query time: O(n)

The preprocessing algorithm: Correctness

Invariant: After the i-th iteration, if u Bi or v Bi

and there is a shortest path from u to v that uses at 

most (3/2)i edges, then D(u,v)= (u,v).

Let Bi be the i-th sample.    B1 B2 B3 �

Consider a shortest path that uses at most (3/2)i+1 edges

1
2

3
2

i

1
2

3
2

i
1
2

3
2

i
at most at most

The query answering algorithm: 

Correctness

Suppose that the shortest path from u to v

uses between (3/2)i and (3/2)i+1 edges

1
2

3
2

i

1
2

3
2

i
1
2

3
2

i
at most at most

u v

All-Pairs Shortest Paths
in graphs with small integer weights

[Zwick �98]M0.68 n2.58

AuthorsRunning time

Directed graphs. 

Edge weights in { M,�,0,�M}

Improves results of 

[Alon-Galil-Margalit �91] [Takaoka �98]

Answering distance queries

n

Query

time

[Yuster-Zwick �05]Mn2.38

Authors
Preprocessing 

time

Directed graphs. Edge weights in { M,�,0,�M}

In particular, any Mn1.38 distances 

can be computed in Mn2.38 time.

For dense enough graphs with small enough edge 

weights, this improves on Goldberg�s SSSP algorithm.

Mn2.38 vs. mn0.5logM

PERFECT MATCHINGS
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Matchings

A matching is a subset of edges 

that do not touch one another.

Matchings

A matching is a subset of edges 

that do not touch one another.

Perfect Matchings

A matching is perfect if there

are no unmatched vertices

Perfect Matchings

A matching is perfect if there

are no unmatched vertices

Algorithms for finding 

perfect or maximum matchings

Combinatorial 

approach:

A matching M is a 

maximum matching iff it 

admits no augmenting paths

Algorithms for finding 

perfect or maximum matchings

Combinatorial 

approach:

A matching M is a 

maximum matching iff it 

admits no augmenting paths
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Combinatorial algorithms for finding 

perfect or maximum matchings

In bipartite graphs, augmenting paths can be 

found quite easily, and maximum matchings

can be used using max flow techniques.

In non-bipartite the problem is much harder. 

(Edmonds� Blossom shrinking techniques)

Fastest running time (in both cases): 

O(mn1/2) [Hopcroft-Karp] [Micali-Vazirani]

Adjacency matrix 

of a undirected graph

1

3
2

4

6

5

The adjacency matrix of an 

undirected graph is symmetric.

Matchings, Permanents, Determinants

Exercise 6: Show that if A is the adjacency matrix 

of a bipartite graph G, then per A is the number of 

perfect matchings in G.

Unfortunately computing the 

permanent is  #P-complete�

Tutte�s matrix 
(Skew-symmetric symbolic adjacency matrix)

1

3
2

4

6

5

Tutte�s theorem

Let G=(V,E) be a graph and let A be its Tutte

matrix. Then, G has a perfect matching iff det A 0.

1

3

2

4

There are perfect matchings

Tutte�s theorem

Let G=(V,E) be a graph and let A be its Tutte

matrix. Then, G has a perfect matching iff det A 0.

1

3

2

4

No perfect matchings
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Proof of Tutte�s theorem

Every permutation Sn defines a cycle collection

1 2 10
3 4

6 5

7

9 8

Cycle covers

1 2

3 4

6 5

7

9 8

A permutation Sn for which {i, (i)} E,

for 1 i k, defines a cycle cover of the graph.

Exercise 7: If � is obtained from by reversing

the direction of a cycle, then sign( �)=sign( ).

Depending on the 

parity of the cycle!

Reversing Cycles

Depending on the 

parity of the cycle!

7

9 8

3 4

6 5
1 2

7

9 8

3 4

6 5
1 2

Proof of Tutte�s theorem (cont.)

The permutations Sn that contain an odd cycle 

cancel each other! Thus we effectively sum only 

over even cycle covers.

A graph contains a perfect matching 

iff it contains an even cycle covers.

An algorithm for perfect matchings?

� Construct the Tutte matrix A.

� Compute detA.

� If detA 0, say �yes�, otherwise �no�. 

Problem:
detA is a symbolic expression 

that may be of exponential size!

Lovasz�s

solution:

Replace each variable xij by a 

random element of Zp, where 

p= (n2) is a prime number.

The Schwartz-Zippel lemma

Let P(x1,x2,�,xn) be a polynomial of degree d

over a field F. Let S F. If P(x1,x2,�,xn) 0

and a1,a2,�,an are chosen randomly and 

independently from S, then

Proof by induction on n.

For n=1, follows from the fact that polynomial of 

degree d over a field has at most d roots
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Lovasz�s algorithm for 

existence of perfect matchings

� Construct the Tutte matrix A.

� Replace each variable xij by a random 

element of Zp, where p=O(n2) is prime.

� Compute det A.

� If det A 0, say �yes�, otherwise �no�. 

If algorithm says �yes�, then 

the graph contains a perfect matching.

If the graph contains a perfect matching, then 

the probability that the algorithm says �no�, 

is at most O(1/n).

Finding perfect matchings

Rabin-Vazirani (1986): An edge {i,j} E is 

contained in a perfect matching iff (A 1)ij 0. 

Leads immediately to an O(n +1) algorithm:

Find an allowed edge {i,j} E , delete it and it 

vertices from the graph, and recompute A 1.

Mucha-Sankowski (2004): Recomputing A 1 

from scratch is very wasteful. Running time 

can be reduced to O(n ) !

Harvey (2006): A simpler O(n ) algorithm.

SUMMARY AND 
OPEN PROBLEMS

Open problems

� An O(n ) algorithm for the directed unweighted

APSP problem?

� An O(n3 ) algorithm for the APSP 

problem with edge weights in {1,2,�,n}?

� Deterministic O(n ) algorithm for

maximum or perfect matcing?

� An O(n2.5 ) algorithm for weighted matching 

with edge weights in {1,2,�,n}?

� Other applications of fast matrix multiplication?
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