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* Gehring & Homberger D N2F I — [ REH]
(Solomon® R REFI LR D E AL, KYKXKIRIE)

- BRI HIN A= HIH0: T HIR

« Z3: 200, 400, 600, 800, 1000

o BH A X3t L T60R (£ 58 T300/)

HEIRIBEEER AL
« C §i&; PC (Pentium IV 2.8GHz)
« HEHIF > RFILTBEE; BICHEAFE
« B9 58 g ibi-78#
B BRAMOREME(E 1)

number of best MB GH LC

customers known  (2003)  (2002) (2003 °wIS
CNV 692 694 696 694 694
200 CTD 169281 168537 179328 173061 170331
time (min) 5.88 3.83 21.66 333
CNV 1386 1389 1392 1390 1384
400 CTD 392444 390386 428489 408281 401285
time (min) 12.49 12.95 4332 66.6
CNV 2076 2082 2079 2088 2070
600 CTD 799355 796172 890121 836261 827192
time (min) 29.39 23.53 64.97 100
CNV 2754 2760 2765 2766 2750
800 CTD 1429914 1535849 1361586 1475281 1426133
time (min) 4232 106.53 86.63 133.3
CNV 3438 3446 3446 3451 3434
1000 CTD 2106125 2078110 2290367 2225366 2169452
time (min) 440.82 3612 108.29 166.6

MB: Mester and Bréysy

CNV: cumulative number of vehicles GH: Gehring and Homberger

CTD: cumulative total distance

LC: Le Bouthillier and Crainic
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— O(A%)E5F.fB[Uno03] ( A [FBARE)
- LnLFEE(O(3m3)){E FFE[Moon, et al. 65]

Why Cliques?

* Inside: Densely connected.
* Inside-Outside: Sparsely connected.

Isolated cliques

* Let ¢>0 be a constant. A clique S< V with k
vertices is an c-isolated clique if
|E(S)|<ck. (E(S)={edges between
S and V-S}.)

 1-isolated cliques = isolated cliques.

Related work

» Flake, Lawrence, Giles (2000)
— Community SC V: |E(v,S)[>|E(v,V-S)| V v€ S.

Community of Flake, et al.

Isolated clique

Preliminary Result

» Theorem 0.1. All isolated cliques can be
enumerated in linear time.

» Corollary 1. The # of isolated cliques is
O(m) for any graph.
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Observation for Proving
Theorem 0.1

* Lemma 1. An isolated clique has a vertex
(called a pivot) that has no outgoing edge
from the clique.

pivots

k
k-1
* If vis the pivot of S, then S=N(v) U {v}.

Strategy of enumeration

» Check each vertex whether or not it can be a
pivot.

Sort and renumber all vertices as

d(v4)= d(vp)=...= d(v,).

If 3j>i, v.€ N(v,) (adjacent vertices of v,), v,
can be ignored (we can consider that the
vertex having the minimum index in a
isolated clique is the pivot): Test (a).

Observation 2

* Lemma 2. If Sis an isolated clique and v

is the pivot, then 2 es
d(w) < (d(v)+1)%. (1)

« Proof. Let k=|S|=d(v)+1. 2 e
s d(w)<k(k-1)+k=k2 =(d(v)+1)2

d

Observation 2

Lemma 3. If v has the minimum indices in
S=N(v)U {v} and S satisfies (1), then
d(w)<2d(v)+1 VweS.

* Proof. Let k=[S|=d(v)+1. If d(w)=
2d(v)+1=2k-1 foraweE S, Z wes
d(w)= (k-1)>+2k-1=k? =(d(v)+1)?,

contradiction. O

Strategy 2

* If v passes Test (a), we check whether
S=N(v) U {v} satisfies (1): Test (b). (This can
be done in O(d(v)) time.)

* If N(v) passes this test,
d(w)<2d(v)+1=0(d(v)) VWE N(v)
Lemma 3.

from

Observation 3

* Lemma 4. If S={v=w,, ..., w,} is an isolated
cliqgue and v is the pivot of S (d(w)=...=
d(w,)), then S={w,, ..., w} has at most i-1
outgoing edges from S.

Proof. Assume that |E(S;,V-S)|= i. Then
d(w,)= d(v)+1, and hence d(vj)= d(v)+1 for all
j=i+1, ..., k. Therefore >
sdW)= 2 e gd(W)* 2 cg5d(W)

= i+(k-i)=Kk, contradiction.

we
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Strategy 3
» Assume that v passed Tests (a) and (b)
( )-
* Let S=N(v) U {v}={v=w,, w,, ...
(d(wy)=d(wy)=...=d(w)).
: From i=1 to k,
— check whether (1) w; is adjacent to wy, ...
(i.e., S={wy, ..., w;} is a clique) and
—(2) S; has at most i-1 outgoing edges from S.

—If not, vis not a pivot and then skipped (finish
checking v).

, Wik

» Wiq

Running time

» Sorting vertices by their degrees: O(m).
: O(d(v)) foreach veV, i.e., O(m).

: Assume the test breaks at Wp,-
d(w,)+d(w,)+.. .+d(wp)=O(Wp2)—> O(m32)?

— More precise estimation!

Running time (Cont.)

* Assume the test is done until w,. (k=d(v4)+1)

L] x LN

(V=)wy W, Wy Wp-1) Wp
| |
I

|
S I I Iooc

at most p-2
By v: O(d(wq)+d(wy)*+... d(w,))=O(pk) O(pK)
By other pivots: O((p-1)d(w,_))=O(pk)

— Amortize as O(k)=d(w;) for each vertex in S.

Running time (Cont.)
+ Sorting vertices by their degrees: O(m).

: O(d(v)) foreach veV, i.e., O(m).
: O(d(v)) for each veV, i.e., O(m).

— O(m). === Theorem 0.1 is proved.

Extension

* Theorem 0.1. All isolated cliques can be
enumerated in linear time.

* For general c-isolated cliques?

1.1-isolated clique

3.1-isolated clique

* Maximal ones are im}?ortant.

Results

* Theorem 1. All maximal c-isolated cliques of a
graph with n vertices can be enumerated in

0O(c522°m) time.

» Corollary 1. For any constant c, all maximal c-
isolated cliques can be enumerated in linear time.
» Corollary 2. For any c=0O(logn), all maximal c-

isolated cliques of a graph with n vertices can be
enumerated in polynomial time.
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Results (cont.)

* Theorem 2. Let c, x, and y are functions of n s.t.
c=xy. There is a graph with m edges for which the #
of maxmal c-isolated cliques is Q ((2x¥/c2)m).

Cor. 3. If c=w(1), there is a graph with n vertices
consisting of super-linear # of maximal c-isolated
cliques.

Cor. 4. If c=w(logn), there is a graph with n vertices
consisting of super-polynomial # of maximal c-
isolated cliques.

Results (cont.)

Cor. 1. If c=0(1) , all maximal c-isolated cliques can
be enumerated in linear time.

Cor. 3. If c=w(1), there is a graph consisting of
super-linear # of maximal c-isolated cliques.

<

c=0 (1) is the tight bound for enumerating all
maximal c-isolated cliques in linear time.

Results (cont.)

Cor. 2. If c=O(logn), all maximal c-isolated cliques
can be enumerated in polynomial time.

Cor. 4. If c=w(logn), there is a graph consisting of
super-polynomial # of maximal c-isolated cliques.

c=0 (logn) is the tight b@d for enumerating all
maximal c-isolated cliques in polynomial time.

Proof of Theorem 2

» Theorem 2. Let c, x, and y are functions s.t. c=xy.

There is a graph with m edges for which the # of
maxmal c-isolated cliques is Q2 ((2x¥/c2)m).

Y

. ©
©

y

completely
connected

independent
/ set

c-isolated clique

Proof of Corollaries 3 and 4

s Ife=w (1), then by
letting x=2, y=c/2 (2x¥/c?)m becomes
super-linear.

* If c=w (logn), then by

letting x=c/logn, y=logn (2x¥/c?)m is
super-polynomial.

Other Results: Pseudo-
Clieques
* Let a(k) and B (k) are functions.

Pseudo-Clique PC(«, B)is a vertex-
proper-subset SCV (|S|=kK) s.t.

* av,cs dgs)(v)Z @ (k) and
* min,cg dgs)(V)= B (k).
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Results for PC

Theorem 3. Suppose f(k)=Q (1) and 0<€ <1is a

constant.

— There is a graph including super-poly. # of
maximal isolated PC(k-f(k),k¢).

— There is a graph including super-poly. # of
maximal isolated PC(k-k ¢ ,k/f(k)).

Proposition 1. All maximal isolated PC( « ,c,k) and

PC(k-c,,k¢) are enumerated in poly. time for

constant ;<1 and c,= 1.

Results for PC (Cont.)

» Theorem 4. There is a graph including

super-poly. # of maximal isolated PC(k-
(logk)'¢ k/(logk)'*¢) for any O< ¢ .
* Theorem5. All maximal isolated PC(k-

logk,k/logk) can be enumerated in poly. time.

Summary
Introduce f-isolated cliques with parameter
function c.
All c-isolated cliques can be enumerated in
linear time for any constant c.
c=0 (1) is the tight bound of linear time
enumeration.
All c-isolated cliques can be enumerated in
poly. time if c=O(logn).
c=0 (logn) is the tight bound of poly. time
enumeration.

— 368 —




RO HERR &4 2005/06/17
Compact Encoding of Plane Triangulations
with Efficient Query Support
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BRFEEIT STDAVININEFFEE

WA OhFE—
BEREXF

‘ % 2mbit +4L
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HBRIBIELT 57/
B#ETH n2 bit
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1&4
MRS 2mlogn bit +(FRAU%)

1 =23 [P 4[PNIL
2
1&4

HBEL:
2mmIC
AHB?
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1 1
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1 1
1 1
1 1
1 1

2 > 1]${3 [P 4 [NIL
(2 [P{4 [P 1 [FNIL
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B#HTd
ADYAME?
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25— IrDT 5T

« BSTRINF— 3DETIL
(REMTEVIZEHIER)
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(+Hx) DEHERBYHR—F)

A11ORKIE? BR3ESDMIC
o WEE? R=UVTREL?
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EXRNDFERZ D1

HL/HERDTZTHHEH NI,
THOFERIE logtbit LA EHE
-EIRERGE TR =logt
BATEERIZ705E
1.08 m bit [Tutte 62]
ADIZFE  2m - o(n) bit
FEEDHETFILITIALEFRALTHSILETES
kBEDTS7% KO2EMREICHEILTS
f=f2L. S-S LI HEHAN N D

EXRNDEERZ D2

HIT)HR—kEL

-—ROFEI T 4mbit [Turan 84]
—RDFEES ST 3.58mbit  [Keelerfth 95]
BREERT ST 1.53m bit  [RlL]

EAFEES ST 1.33mbit [Hefth 99]
BREEI ST 1.33m bit  [Poulalhon 03]
ICALP 2003
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JS50EFELTEY. HEELTER

BEORRZD3

T HR—kHY
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FOCS 97

—HFEmS ST 2m+2n+o(n)bit [Chiangfth01]
SODA 01
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Bixflzn4

B{K5ZdD3
mr 11 m o1 tm omi1miouoonrmirm
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£I7099(ET1TEDD
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BAEOER(ZEOT—TILEFR)
[Munrofth 97 + Chiangfth 01]
bitFIMEZ SN T=EE, o(n) bitD#HENT—T ILEFIALT
rank(p), select(i) & TEFEITEIHETES,

- NTGURSNERBIMDFNEZ SN T-EE. o(n) bit DHFHEN
T—IILEFALT findclose(p), findopen(p), enclose(p),

wrapped(p) ZE i FFHTHETE S,

/T
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R DR

« BESADYRANEO(V)) BRI TERTES

B&

FEH

EEEI D AR (O TYHR—FDZF)
BRIE@ETZ7 2m+n+o(n)bit  [Chuanefts 1cALPIS]

SEIDHER
BXE®EmYI ST 2m+o(n)bit [ 05]

EHRTATAT
U754 FD3ERDK%E
1K + 2K EHETE

BLENTT

« HEBEHYNESITETVFET,

 BEE-aAVMTRNARETLLETS,

. IL\Fﬁ?

hHE—(BFREXF)
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o1700 0o goon

00 00170110210 (0),220 (0)
00 00000 000000000 /IBO0O0OOO OO0 IBOOOO

goood

110210 (0)
10:30 — 12:00

12:00 — 13:30
13:30 — 15:50
16:00 — 17:30

110 220 (0)
10:15 — 11:00

11:10 — 11:55
13:30 — 14:15
14:30 — 15:15

15:30 — 16:15

16:30 — 17:30

goooooooon
Domain-Specific Image Segmentation and Shape Matching
0000 (o000 0ooooooon)
goooooooon
0000 (000000000 ooon)
oooooooo
0000 (0000)
000000 (Do)b0oo0o0ooOoUoooooDOoUooooo
ooo
0000 (0000)
gooooooboooooooooooooobooooao
0000 (000D00000)
gooooooobooooooonooooon
o000 (oooo)
goo
gooooooooooooon
ooon

00000000

0000 (QOOO) oot
0000000000000

000 (OOOO00) ottt
RNAOODOOOOOOOOO

000 (DOOO) ttiti e
30000000000040000000000000000000

0000 (OO0000000) ottt
000000000000000000000000000000000
ooooo

00000 (QOO0) o0
0000000000000000
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EIBH T — 2 EHE

Transparent Data Compression

K. Sadakane and R. Grossi: Squeezing Succinct Data Structures into
Entropy Bounds, Proc. ACM-SIAM SODA 2006, to appear.

R KED R T LIEHREEHAER
T3 HE
2005411 H22H

de 2
Sk

- TREROBH GBE)
~- TARVBEDHEH
- BIEIRMHE, FeRE)DHIR
- TRERO B GRTE)
-7 EADEREIL (CPURE > T RVEE)
- ERETIERIZRLONS
s IVELTIEAMNTERLE SRS M

BB T — S EHE

LLERT —20REERIEERICETTENL
s TREEMLI-FFERETED

- TARIBREDHEHH

- BEGT IR AHE
s EfEENTOHIEEEHLGECTLLWY

AAEDHEE
s REn OXFI S EEME (TILI7RYMH A Xo)
« Y4 X: LZ78 [Ziv, Lempel 78] &ERARIIZEIL

ni, +o[n(logo-ﬂoglog(T n+k)J bits
log, n

(Hy: S D k REFFFHITObOE—)
c SO iXFEIMDERRT B log, n XF
(log n E'vb) & E B TEITATBE (decode(S.i))
GtEETI/L: word RAM (ZBE logn Ewh))
s COT7VEABFRIIREMDIZEELREL \

I D BNt
* SuccinctT —2EEZEICEMmLILY

— bit vector

- BREK
-J37

- EfEEEEXK

SuccinctT —2 &

s HET—IEE DERMTHT—EE

s T—AREDTAX: FHREHUTRIZEL
— [ERIERA TR L = log (D DIHEDE)

- BRGEEE AR
~ BT —2EE (R #EA
— YA X #HHERIZEIR TES (o(L) bits)
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& A DSuccinctT—31E &

s EB D {1.2,..n) TN

- B&E (EHERE)
— member(D,i): D HIZ i MEETBHH
— rank(D,i): D B0 i UTDEZRDH
—select(Dj): D F T FBITINSVWER

o B A X: n+o(n) bits [J89] [M96]

1 i n
S:01000110001001000001

AR®DSuccinctT—21E1&

- n BTRDIEFK TZHEHH

— BEDT—HHEEI O(n log n) bits
. TIE nL[}ﬂQ““"iﬁUﬁE (Catalany)

— (BRI TR = 21 — O(log n) bits
- B&E(EHEM)

- KRB, BB, #H, FS, preorder, FROBLE
« AR 2n+ n) bits [MRO1] [GRR04]

@00 @ (@
SCCO0)0)

@ (@
rank(D,i) = 3 REFFS S TRE
: o10 :

R: SuccinctT—42#E &I
TNLLEEHETEELD?
« B BAICKoTIEAIRE
« Fl: EE D {12,..n) DERENDLENEGE
- BREH m DS [Z &Y

B<m,n>:log[:1]zmlog%(nfm)log " bitsTRETESET

n—m

s B(m,n)+O(nloglogn/logn) bitsD T —3¥&1& Tmember,
rank, select? T $ B TR 3£ D A 7FTE [RRRO2]

FID (Fully Indexable Dictionary) &FEIEN 3

9

FIDZ AL =KL 2D £

H5 n EVhDT—REEEYRINADKRAE miE
TRMNT HIEE

s IRAVADIE i % S[i]=1 TKRE

» SEFIDTEME. RA2REselect TERED

« m=0(n/log n) DEE, FIDDH A XE

Jog n ol Jog n +0 nloglogn -0 nloglogn
O(n/logn) logn “n/logn logn logn

S0 &

S 000000010000000000001000000000001000000000000100000000

RS: KD SuccinctT —2¥E & (&
[EHETEDH?
« FIDTIZA A HE
- (&) BREI%EHD = B(n,2n) = 2n bits HLE
— 2n + O(n log log n/log n) bits [GRR04]

s TABDHEBEEETIVLENHS
—FIDTIX 0 RO OF—FETEHE

B(m,n)=m logl +(n—m)log "
m

=nH,

—kROIUFAE—FTEMLIL

AAEDEREDE A

« £8 Dc {1.2,..n} |29 Bmember, rank, select
FEHHFRTRY T—2EE&
« YA X: nH,+0(n log log n/log n) bits (k=0(log log n))
_HJE DERF0,151 S O k SEEBRIT A OE—
+ EID (Entropy-Bound Indexable Dictionary) &FE.5R
« FID &YdEnlz/phaiy
nH, <nH, , <---<nH,~ B(m,n)
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EIDDT—3E&EET7ILTY X L

. T—HAEE
-D%HEXRT0,15] S EEMELI=ED n#+0( log log nflog n) bits
(EEDEHT S log n EvbE EHERTETE)
—~ FIDD#HBIT—24E1E 0(1 log log n/log ) bits
° Fnﬁé"'ﬁ'?)l/j")x.l-\
—FID&EIFIFRIC (S[i,itlog n—1] ~DAEYSHEE
decode(S,i))|ITEEHZ B)
s EALGRIEEDEEELEFEMNICIZRELC

AR®DSuccinctT—2E&ED I Ha

« FIDTIEA I8

—2n+ O(n log log n/log n) bits [GRR04]

« EIDTIX &g

~ KERIBETB$EMG| S O H, EFTEHEA (k=0(log log n))

— 2nH, + O(n log log n/log n) bits

-HEENHEERERIERC

- BEMNRLCHAARDHDE H, [F/IhNEK4D
(BEEBEATHIZED)

EIDDE#EH A XDER

+ §=010101...010101 ZEHET 25HE
— FID: nH, = n bits (+ O(n log log n/log n))
— EID: nH, = O(log n) bits (+ O(n log log n/log n))
o IURAE—AVNSWNEE2IEMNEIFTEH
« rank EEHFETRT T —2HEED YA XX
Q(n log log n/log n) bits [Miltersen 05]
DFEYEIE I HKE

kD IEHEE

K D IEfiEE
R B

PPM][Cleary, Witten 84]
PPMD [Howard 93]
PPM*[Cleary, Teahan, Witten 95]

block sorting

BHEXETHEE
LZ77 [zZiv, Lempel 77]
LZ78 [ziv, Lempel 78]
LZW[Welch 84]

compress
LZSS [Storer, Szymanski 82] [Burrows, Wheeler 94]
gzip BEMER. PPM&YEIE (bzip2)

context tree weighting

[Willems, Shtarkov, Tjalkens 95]
PPM &Y & [EHEER 7

LZ77 %53

« XFHNEFENDRAVATESH]ZS
- #E =9 TICEMRLEXFS

! |

....a compressed suffix tree consists of a compressed suffix
array, a Pat tree and edge-length information.

....a compressed suffix tree consists of [1=19, d=36]

array, a Pat [1=4, d=51] and edge-length information.

EMHEBIXFHOIUAOE—IZIE
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PPM

 XFZEIXFIOHEIE

s EXFORBIEXRMNORES
- Xk ST EXFDERD k XF

= RIEHED EE R

c kK ROIVMOE—DEMEEZZERT BIZIXEEE
TEHEXFEINDEREZRANTERT I2HELDHS
s —HREERTHEELEREETILITHSD

. FHEHAX: nHk:anZpL,logL k=4
by leJojmlp|rfe]s|s|i]o]n]
N
XD EMEED LR
BHABEHEE | logn EVRDESHRE
LZ77 [ZL77] nHy O(n) %ﬁE%ﬁ :f 0) *EE%
iMA 7
LZ78 [ZL78] nH, 0(n)
PPM [CW84] nH, 0(n)
CTW [WST95] nH, o(n)
Block Sorti H, og’n .
[3%394]0mng nHy o[l;gign +10gn~logo‘) [GGV03] LZ78DR BB T — ks
KR nHy O(1)

21

22

L1778 [E#&;

s XFHEFHEFDOIL—XIZHE

* BFICESHRATHSIE

- BEEEH

20006 ® @ ®
HH ©0a@adb@b®@adbdb

23

LZ78MDEHEEE  (Ziv. Lempel 78]
REn ODXFH SERELIZIL—ADH ¢ [T

Jn<e< " (0: PILIFARIRFAR)
log, n
. EfEEDOYAX: clloge+logo)bits
s SHAEEIIILIT—FERR (TbOE— H) DB
ERINDED cloge
n

—->H (n—>»)

« SOk RFERMTPOE—H XL

cloge<nH, +clog L O(kc+c)  [Kosaraju, Manjini 99]
c

24
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ARRDT—24EE

IL—XDFRFEEMH
HRFH T Dpreorderé—E
95 KIIFFEZS
IL—XDRAIR L E Z &

decode7 JLI ) X Ls
Sli,itlog n-11 #1859 556
1. S[]Z&LTIL—X pERDHD
2. pERILZtrieD/—FvERDD
3. vHOLIRICAMNINALEDSNILEES

R 0000 @ ® ®
P 1245 7 10 12

Long phraseDE&
+ Long phrase: K& w="Y:log, n A EDTL—X

branching node (AR~ D/ \RZEH&HA)
B nELERERTES)

\

27

jump node (FFzEw/2{ELL_EHFD)

micro tree (jump node®D F k)
AAE%&%F&?’GE%‘E

Short phraseDE &

Short phrase: £& w =% log, n RimDIL—X
SDEE Y log n DERS Il (Fshort phraseF O(log 1)
BT aEMHY > EHERTESTEGN
r> 1 {8 0:&EHE 9 SHshort phraseZZ D F EHEHK

— %Y D R EHEHLAL
T—AEEDY A XML

— RZEH&INT BI5E: r log c bits

~ ZDFEFEMNT HI5E: 4 log n bits

—Ylogn<rloge (""n<ec)

F&H
FEMREEDRE
c FEOXFIEERIVMAE—BRETER
s BN HDEHEFEES (REMER L)
It A
s BREORSIBEDHAXEHE
« RERELRIL
« BRORSICEIZEMBEEEEZDDBEHL
s XFIIDEH
s LZTTIREDHRER

29
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Nov. 22, 2005

W

HERR
ek L 2 On[fEtc OV T
HEL (TR
EN=[0F7:]
1.l (Belief Propagation Method)

2. Avb—YVEHT7 VT XLOR#EAREEIZ DL T
3. 70TV XLO TN OE TV (Planted Solution Model)

BlE LT 2 757 D558 Graph Bisection Problem

7 A VEREIA R LT LE Y 7— 2 a YR 7 AV A AR LI 60T, R%4
STV D EEMTMF FE L.

1

1. Be{aHEE (Belief Propagation Method) IZDWT

WD Xy, Xy (BRI Ay, A, ET5) LEDRESR C BT, X
D& S BRBLIAERS S HETHS.

pa) = PN -[@ - ¥

axEda, oy

fefel
R Z R ORISR HAT, FIRFERD 2L TRDT T LA TEBHAIR
B = ANAITYxy bT—Y

B

o AL D5MFC Pearl 4% 1082 FHICHIBLIE 0.

o HEIFEOBIFE MacKay 5AY LDPC {HSOBSIEICHER L CiEHZ RS, £
N, Rt & R R ISR EA TV 5.

o IR TId survey propagation 2% L DL LTS,

LidOMUMRE D&, &0 b —RMNICIERDO X S Rz RDZ CRDI2V) Teh
L
Prg[ X, =a| X, = 1]

Pr{X, ~ [@AX; —az A X, 0]

@ 1EAL

PiX; = a A Xy = az A X, = 0]

@1EAL, 0aEAL, . a1 Edumy

NAITY 2y bI=5
[FIRHfE 5 A Doy LR L T ek R Otkts 7 57

plar, as, a5, a1,05) = plar)plaz)plas|ar)p(as|ar, a2)p(as|as, as)
ffZU, Tl AERDEK S ICHEET S ¢

Pro| Xa = a2 & Xy = ai] = plaz,az)
ERE ! CREAROVBIGRIE § XTI

play,az a5, a1,05) — playp(az)p(aslar)p(aslar, az)p(asas, i)
= plas)p(ar. az)p(aslay, az)plas|as, as)
= play, az, as, as)p(as|as, as)

= play,az, a5, a4,05)

BP OHEAE:
2RO R v L — DRI & D BRI belief M9 %,
v =t i)

1 sizee

Ll
ATy 7, BEMCBOT, ROK S HIHTETS ¢
Y1 L. Y OHD S B o ICHEH.

o @) = S PrlYi = aX = b (Mo, (50) * Togeons (82) - Ty, (B5) ).

® Mi(0) = Azon () - Azyi(a)
(R L—YOiT)
BN By — 200 w2 (a) = mi(0) - Azeei (a).
FN WY - XD Ay (D) = P X, =b] O

¥y A X DSAOHIC X 5N B 1D

HTO Vi = a ISHT B belief OFFHED
Bely, (a) = a -y, (a)my, (a).

TNETIKDADTVATE !

EE.
1 AKEET T 7B R T AUEIE L < LR ZETET 5.
2. TOBEOFRINE O(n) (0 EFHME) THB.

= L " s
- n Faman
- \ -
» =% oy i
HEd b PHEs7E L

Th, BRI,  [MHEDD > CHAIES SV IANDS | |
1. LDPC 5 (Gallager 773) OWBIE
2. Turbo FFSOEHE
3. BRESHL Bl IR
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2. BP (Avt—IicHif) ORFEEmTEEN
FLOER :
ERnifiE — EURRARET VT XL
e
o SURRARAET LAY ZLICB VAW EHD, TONMEAREL ®i55. Lidoxt
I T IS T B 0. (55 LIRS, WIS Y X LR ANTESY
THELsm.)

o HESUCERIEL CRMRAEL B> TLE S At H 5.
L 15 @A TR RT A 15 OIET, 38T 3 ANBHEE Py

= 7 = Lo
AHRTRE BROY > TIDLE

o TEEE] DHEMEEAICER S 7 WCRIESEVEE)

o LBBA (7)) REMZX R, THICEY = TR

3. FYRHERITOA
B : 557 D5 HIRE Graph Bisection Problem

Graph Bisection Problem
Input: An undirected graph G = (V, E), where [V = 2n for some n.
Task: Find an equal size partition V and Vi of V with min. # of cut edges.

Remark. Find one of them if there are several solutions.

H5hTWBZLE:
o COREIEN P-HH.
o TTLHEARROT VT XLHSHENTVS.

FDANY 5T DEFIVE LT planted solution model HHAZT N7z,
(Boppana, 1987): deterministic polynomial-time but not so simple
(Jerrum and Sorkin, 1998): randomized O(n?) time
(Condon and Karp, 2001): randomized O(n + m) time

>
>
>
> (F. M“Sherry, 1999, etc): simplified spectral method

BPIck37IVTY XLDEH

il 252
Cr(1<i<2n): B o M Vo, Vi DEBBIETEN?
Ey (1<i<j<2n): By =16 v, v MSUNEET 5.

FIEEIDEL ]
HA6NIY57 G, BPEHAVTROMLIERZRDS.

pio= PC=1|Ci=1 A \E;=e;]

4
LG @il (u,0) O,

SR ey =
REL. {u. G W3l (ui,vy) BRI,

ZD p; > 0.5 HEMNT C; ZikDB.

"AVTY -

v hI=Y
i o— Sz ey e ex

[V
e E12 EM ER
=1 =0 =i

/SNTIVT) XL
ISR A v L — Vil LT XL

program PseudoBP(G = (V, E). p, r);
set all z; to 0;
repeat MAXSTEP times do {
Ty — +00;
for eachi €V,
o= 3 fla)+ X o)
NG JEN)
if all beliefs are stabilized then break;

}

output(zy, ... v2,); // Classification is (sign(z.)

end-program

B
" -
e )
L B fo, fi DiE#H .1
B0y, 0 <z, —hg-0y, i<z,
Sz =4 hy-z, if-61<z2<6, folz)=1 —ha-2, if =6y < z < 6,
hy- (=), ifz< -6y —hg - (=6p), if 2 < —f,
rEL,
Cl-p o p w1 ja—1 B
R e h”“anﬂ' ‘7‘u.+1' b _

2. AYDB PTIEA&EN !
o PriC; 1] & PHC, - 0] DIOMEERD B T LI Lz,
o Ay b—YOEHTREAMEHLE 1 Dff o7,

FFRWP LTS L

S5 F LML (LG LI !
ZZT

o 7Y ZLOTEFEH — Planted Solution Model
* MAXSTEP — 2 « THhTEAMK <<
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TRHEEOETIV

Planted Solution Model = |ANY 57 &4KT % Fik

7N TN XLO TR OET IV & LT HERD ?

HIW 7z Planted Solution Model

I8 A=% n (FH# 20), p,r,0<r<p<lITHL,
RDEIETFT G = (V,E) BERT .

L Vo={lLn} Vi={n+1,..20}, and V =V, U Vs
2. Put an edge (i, j) into E
with probability p if C; = C;, and
with probability r if C; # C;.
where G; =0 <= i€ Vaand Ci=1 < i€V

B3Ik S
HAEMED, TNETTCHEE (52 H NI (FRT 5 /i

FE. RFA—Zn,pr O

LWSMFENSH B L&, HBAATMRE (planted solution) A, KLY T 7IHT B
Bisection Problem OME—0f# ¥ 5%,

13

Planted Solution Model D& & T, 73V XLOIELMER, ERLETT7ICHL,
HDAATERAE L < S B I S ERASNUE K.

9

/oNfER

FEE. Planted Solution Model D% & T7 VA ) ALEFHTE LI L &,

anl=pt
Pi] the algorithm yields the planted solution | > 1—2n-¢ “*"F

.
Forany 6 >0 and any pand r, cp <7 <p < 1,

p—r 2 e log(1/(5(p — 1))
= the algorithm answers correctly with probability > 1 4.

INETO7 V) XL EDLE
(Boppana, 1987) p o =9n Y?) (almost!?)
(Dyer and Frieze, 1980)  p—r = Q(n ¥2) when p is large, eg., (1)
)

(Jerrum and Sorkin, 1998) p —r = Q(n="/5
(Condon and Karp, 2001)  p 7 =Q(n Y*)

ZOMUCE...

o Most Likely Partition [ (with Onsjoe)
o MAX-2SAT RIS B DT Tr—F (with 1LA)
o 2RSS FECTEEOD?

REBRRE  FLOBPOZLE?

BEXHR

R. MecElicce, D. MacKay, and J.F. Cheng, Turbo decoding as an instance of Pearl’s “Belief
Propagation” algorithm, IEEE J. on Selectead Areas in Communications, 16(2):140 152,
1998.

— 389 —




RNAESIDEE 7 LT X L

1. RRERPZRPGR BRI R 2 ZE R
2. EXENRAHRFESERHERE L2~
EH R

B
Aspergillus oryzaeiB{EFFRR /1TS54

Contig sequences
[

ALN

training set )

cDNA sequences
Mapped cDNAs

GlimmerM

RepeatMasker

check / translate
predicted genes

BB EYMRNA)DKER ST [LIFa—FELE !

Saccharomyces cerevisiae Caenorhabditis elegans

2%
46%| 55%| 43%
\ \
68% &V 0% N

[l Protein-coding regions
[E Transcribed non-coding regions
[] Untranscribed regions

Escherichia coli
1%

Homo sapiens

1%

88%

Genome Biology 2004, 5:105

BAREAA4TDHEEMEIEa—FRNANH D

HEEMRNAYS /L EIZO—FEh TS
miRNADF R . RNAiI (RNATF#) DRAF
ncRNAIE. EERDOR YT —YDEELERD—D

B v‘ 3 OC\HHHHHHHHHqo {

i siRNA \ 4
miRNA /f

(O

S

B FOEE (E%EY)

BERIER EERIER
ToE—4 l Ixyy  THyy  Ixyy zxyy RUA
=== 5 [ T g
5 ¢ e E- PR AN - D AN @i 3
ary ary

RN BIA—REEFOHRRE

s BRXNEEEYE DAL
- DB EDBEANE R F (DNA) CHRE TR R
- DBLMOEEEN A /OB THEMERE
— cDNA%4 / LADNAEZFIIZTBEY 4153 |
o LB/ L
— {R7E4EE (synteny) [(XEE |
e “abinitio” BIZFHFHR
— At EREAV B EFOERETIL
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RN BI—REEFOHRRE

- BIAEREEMED LIS
T oA AN KBES D EEE
FHIETE % (DP)
BLAST

o LB/ L
o “ab initio” BIZFHER
— WETRERER WV EGTFOEEETIL
ETIIZEBY /LDNAD BFFEER]

JFA—FRNA EIzFDOHERE

- BRAIESREEYEDELE

TIA A ML BERFID L
BIR9EHE % (DP)
BLAST? ? ? ?
° S However, is it OK to define
tl: EXb- /A the "cnnscrvetd 1‘egiton"' by
= %#’)&)'CE%(QRNA, RNAZ) sequence similarities ?
e “ab initio” IBIEFHKR
- AR ERERAV B FOREEET L
ETIVIZEBT / LDNADT HFTRER

RNABC S| [FER fiE AT DR E

o 7)) LERBHI DS DEEEIncRNAF R
o cDNABZFIASDncRNAFK R
o LhERYS/ LRTESEENSDncRNAF R

s BEEF—TIEHFDOncRNAFKR

BL 51 D ELE : 2R FTTDP

G K R F D C

F(i-1, j-1) + s(x;, y;)
F(i, j) =max | FG,j-1) —d
F(G-1,j) —d

0OmomRQ
I'4

¢ AE 0(L2)

FHERRE 0(LY)

b = N S
BEDTIAANE
| T s T T A Y A A = — -
GTTAACTGAGTAACG =B e
X X % | x || A L1 |27 |-12[-28
GCAAGCTGAGTTACG c|20]14|21]11

G|-11]-21] 14 ]-21
T|-27|-12|-26] 11

< BEBRIDOFMEN, ELDBET, ThTh
MIICHDEBEEADBERERCT EVSETIL
[ZEDTLNVS,

e ClustalW#irE

ZRIEEZLDORNAD AL

TTGTTCGAAAGAACG
| | XX === X X |
TTGACCGAAAGGTCG

o BENEDDIEEAT (I, EREFER DK
PR EBEMOLTT (KB ZT 5.

s SREN-2 A TOREDEIIRIITEL,

 EESIDHERIEMESGE > TLAEMREDT 51
AUNEIZIFENNGELAESTL D,
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seq.1 seq.2

GCUCAGCAAA-CUG
B CA  [@@E--ccaABGEUG
C A G A
G.C
A-U
C.G GCUCAGCAAACUG
U U B8 G cuvAGE U G
C G | ]

“RBETERELETIAAVE

seq.1
seq.2

seq.1
seq.2

seq.1 seq.2
A A cU
C A G U
G.C U.A
AU C -G
C.G G.C
seq.2

ZRiEEEBRELI-RT

seq.3

cA D

G A CAGCAAACUG seq.l
UxC GCUGCUUAGC seq.2
CxU GCUGCAACUG seq3
GXG

seq.1 seq.2
§eq.3 ~mEs

H oD HRNAFER S 1EER AR HT D EHE
RNAEZHI D L&}

s BEHDXFHELTORELME
- AT LERS IR E R LUE
- B E I ER S DECHIERLIE

* RNAD Z RIEEDFELUE
- ZRIEBENRELS

- ESHBTLHOMN?

- ZRBENDHLEND ESHERTEDMN?

RNA®D 2 X t&1& F Al

s BHIRILFX—&/ME(E EHEEE)
— Nussinov & Jacobson (“Nussinov Algorithm, 1980)
— Mathews, Turner & Zuker (MFOLD, 2000)

Secondary Structure Prediction of RNA

10 2 3
gcaccggclaac-ccnagcagc-claalacggggggtgc

/

231355e550e1e18508003 oS eo BIBaR 0103 S008S

Secondary Structure Prediction of RNA

/

/
/
/

7
7

&
25)333e33oe)erI3305003803800513001088103500803

10 2 4
gca.;lactccgtgcgagc-cgglaatacgg;ggglgc

o 7




Secondary Structure Prediction of RNA

gcaccggctaactc

Nussinov ZJL3 ) X L

* M(i,j) : maximum # of base pairs in (x;, ... x;)

% J
o — M(ij) = M(i+1,) =
Q i i+l J
Q = =
Q — M(i,j) = M(i, j-1) -
Q i Jlj
Q
t - M(i,j) = M(i+1, j-1) + 1 =
g | O=0;
@ — M(i,j) = max (M(i,k)+M(k+1,j))
(sis k
Q
ik k+l ]
Sk e s e SCFGDCYK 7ILTYR Ly
RNAZRiE:E T8
2 ={a,c,gu}, (xy=allgl =
larciean) = dchip Q 7 (i,j) : maxmum probability of ik
S=xS e o (xi, ... xj) is parsed by S S =5x
il S = xSy
S =Sx b b—e S=SS
i gl
¥(i + 1,7) + log p(z;S);
S =xSy ,’.”@j-l = y(i,j = 1) +log p(Sz;);
i 6=0) "hd) = MY 41,5 —1) + logp(:Sz;);
S =SS maxXick<;{7(i, k) +v(k+1,5) +logp(SS)}

i ko k+l

RNAZX{EEFRID
ATEEME

> Mley)Smax (MBS MR m

— AE: M(i,j) for all position i,j = L’
— ETE 0% Iterate for all ij,k = L3

Turner® TR JILF—/NTGA—42—

— 393 —




RNAFEZ S| L DR RE

o 2KEF|D
- RECRBEOREET /AU
- BRi7SAU AU (BER)
o BRAIBDIILFINTIAUArAE
o ESIFEQBE - REBETFA
o ZHEEMBEINNDEET A AVE
- BRi73A AV (BFR)
s “RIBEADEBETIAUAVE
— BT AN SR EETF—IRER)
o BHIHSRE)Y
o BHERNADETIL
- BRA7SA4 AV (HERNAKR)
o LES/ LRTEREEADLDIREERNAKR

-SCARNA—
Marlet

PHMMTS —5%%

PSTAG 4,4

HB2RIBE T H

Sankoff (1985)

- 2(N)ARDRNAD I EH, OLN) time, O(L>N)space
Gorodkin, Heyer & Stormo (FOLDALIGN, 1997)

- 2KBFTES, DIREELL . EEFDZRAIE. OL?) time
- ZEE: r—FAUbE+ Greedy ZILTURX L
Mathews & Turner (Dynalign, 2002)

- BHIRILF—/IME+EEFI L E AR AT

- AT LREBEBEMELT OM3L3) time

Perriquet, Touzet & Dauchet (CARNAC, 2003)

- BRFEEHIELE + ITRILYF— + EENHE

2R DRNAEESI M D
HBZREEDFE

}/(l.];j]’ig;jzy) 14 ;XJTEGDDP'??EJ
(# of non-terminal is constant)

Y (ipjpings) =max ( y(ipkyink)+ 7 (ki+1,j,k+1,55) )
Kk, =
ik, kel

AE:O(LY
FTERR 0.9

Lix

i,k k+1h

RCO6RDHARERREEE?

BRH R 2F124 5 L0641 D FHE R
ERHIRA10MEIZ1EHE100HE ! !
19 D100FEIEH2F
Sankoff 7 )L ) XL TIlX, 150 EEK D2
B DHBE - RIEEDFEIZ105 U E
MHOYET ...

~-SGARNA=
Stem Candidate Aligner for RNA

* For each nucleotide sequences,
Extract stem candidates of a fixed length
— Decompose each stem candidates into two parts:
5’ and 3’ stem component (left SC and right SC)

— Sort all SCs as a sequence by their positions
» Pairwise alignment DP of SCSs
¢ Remove inconsistent stem matches
* Construct backbone of common secondary structure

¢ Alignment of remaining nucleotide

Stem Candidates
/ / Base-pairing probabili.ties are
/ calculated by McCaskill’s
Y W/ algorithm.
] 2 / Base pairs of low probabilities
/ A are not used
VRS /7
e
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Stem fragments of a fixed length

Stem candidates longer than the fixed length
is treated as continuous stem fragments

GUGUUAGACUUCUGACGC

-SGARNA=
Stem Candidate Aligner for RNA

For each nucleotide sequences,

— Extract stem candidates of a fixed length

— Decompose each stem candidates into two parts:

5’ and 3’ stem component (left SC and right SC)

— Sort all SCs as a sequence by their positions
Pairwise alignment DP of SCSs
Remove inconsistent stem matches
Construct backbone of common secondary structure
Alignment of remaining nucleotide

Decomposition of stem fragments
into stem components

m Component (xa)
position

gc sequence

distance

c()mp]cmcnlur}

( confidence score

(f) .9 stacking energy

3’Stem Component (Xb
(a)10

-SCARNA=
Stem Candidate Aligner for RNA

For each nucleotide sequences,

— Extract stem candidates of a fixed length

— Decompose each stem candidates into two parts:

5’ and 3’ stem component (left SC and right SC)

— Sort all SCs as a sequence by their positions
Pairwise alignment DP of SCSs
Remove inconsistent stem matches
Construct backbone of common secondary structure
Alignment of remaining nucleotide

8

Stem Component Sequence (SCS)

10 20 30 W
geaccggctaacteegigecageageecgeggtaatacggagggtec é = 32
™ 3accg 2
g Scgee 16
Q / 6 gget 14
I 11 acte 2
g 12cec 22
0§ Breg 20
8 ldccgt 10
g ldccgt 18
a 1Scglg g
ag| 15 cetg 16
03 / / o
0 8 16 gige 23
& 17 tgee 9
s 17tgee  —21
& 24agcc — 14
g / - ==
g . 27cgeg — 8
cr% 28gegg — 10
e / / i‘? cggt —22
ey Wgga — 9
o ..
8 & 3Stcg —16
& -
£ oS 36acgg —18
e 37cgga —20
a3 38ggag —2
"a 4lgget —26
g / 42ggg —36
= 22 —21
oe 43gge 38

43gige —23  gteel6

-SCARNA=
Stem Candidate Aligner for RNA

For each nucleotide sequences,
— Extract stem candidates of a fixed length

— Decompose each stem candidates into two parts:
5’ and 3’ stem component (left SC and right SC)
— Sort all SCs as a sequence by their positions

Pairwise alignment DP of SCSs

Remove inconsistent stem matches

Construct backbone of common secondary structure
Alignment of remaining nucleotide




Relations of two stem fragments

o overlap overlap

r-continous overlap

parallel

—l 1

nested

ill-confinous overlap

el

contradict overlap

Left-right consistency
of the SC match in SCS alignment

J‘T & o o=

] | | ]
T——®*—T@

Left-right consistency
of the SC match in SCS alignment

Dependencies in DP of SCSs

1-continous

=

elelc)ele elcle

Non-Overlap<}>Overlap

avYan
U

DOOEPOOGED
[ B I [ ] [ ] )
\ [ | | <_/ ALY N\
Non-Overlap<Overlap \/
1-continous
|O O O| = SCs with same positions and different complementary partners
: . 1.6
Computational Time
14}
10000 e
/ S — 12r
1000 / S
D g U - —
g 1of 0.8 =57
ke) ,/ Reference ——
=~ 1 74 ClustalW
3 0.6 Z7 MUSCLE ———
0 s PCMA
o 01 s POA (op)
E 04f — “Pitn
= o.01 e Dynalign
,,,,,,,,, - Fodalign2.0
0.001 02 Pr\nco;’;c(?argg =
Stemloc (slow)
Stemloc (fast)
0.0001 \ \ \ L L A==
O 100 200 300 400 500 600 700 800 900 1000 10 20 30 20 50 50 70 ) %0

The length of sequence

Sequence ldentity
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Scarna web server

http://www.scarna.org
-SCARNA - Stem Candidate Allgner for RNA

Scarna web server

http://www.scarna.org
SCARKA -

Stem Candidate Aligner for RNA

b 2 Dplabiode| 750 sersceee oniy S

[e— =]
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BH FE (SBRMBIEAE)
=08 B8 (YY)
KEFIZ (R#BKR)

Background

Districting Problem

- political constituencies 7C”te”_a
. school board boundaries ~ “€duity
. sales or delivery regions ~ *contiguousness

=
=
=

| k-bipartition Problem

Input:

i) graph G=(V, E).

ii) disjoint subsets 7,7, 75, /..., T, SV
(Resource sets)
(17;]: even)

| k-bipartition Problem |

Output:

a partition {14, ,} of V
s.t.
(1) | 7;n V|= | T;n V|= | T;]/2 for each
(2) Both of I} and V4 induce connected graphs

k-bipartition

v,

Related Results

k: # of resource sets, n=|W, m=|E|

-Testing whether a A-bipartition exists or not is NP-hard
even if k=1 [Dyer, Frieze 85][Chleikova 99]

Related Results

k: # of resource sets, n=|W, m=|E|

-Testing whether a 4-bipartition exists or not is NP-hard
even if k=1 [Dyer, Frieze 85][Chleikova 99]

-Sufficient condition for which a A=bipartition exists:
1-bipartition - - - 2-connectivity suffices.

O (m) time [Suzuki et al.90][Wada, Kawaguchi94]
2-bipartition - - - 3-connectivity suffices.

O (rPlogn) time [Nagamochi et al. 02]

Conjecture
Every (k+1)-connected graph admits a 4-bipartition.
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Our Recent Results

3-bipartition
5-vertex-connectivity does not suffice!
4-vertex-connectivity suffices if K4 is contained.
For the edge version of 4-bipartition (k=1,2,3),
(k+1)-edge-connectivity suffices.

A 1-vertex-connected graph which has no 1-bipartition of V/

resource vertex

A 1-vertex-connected graph which has no 1-bipartition of

A 2-vertex-connected graph which has no 2-bipartition of V/

k=2
k=1
resource vertex
Our Results 3-bipartition
3-bipartition 3-vertex-connectivity does not suffice.

5-vertex-connectivity does not suffice!

3-vertex-connected graph
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3-vertex-connectivity does not suffice.

0
.
‘e
.
.
.
.
"""""

3-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

3-bipartition

4-vertex-connectivity does not suffice.

.......
.
"y,

4-vertex-connected graph

3-bipartition

5-vertex-connectivity does not suffice.

5-vertex-connectivity does not suffice.

— 400 -




3-bipartition

4-vertex-connectivity suffices if K4 is contained.

g

If Gis a 4-vertex-connected graph and contains K4,
then there exists a 3-bipartition, and moreover,
a 3-bipartiton can be found in O (/Plogn) time.

Algorithm for finding a 3-bipartition|

Reduction to a geometrical problem [Nagamochi et al. 02]

the 3-dimensional space R 3

Find an embedding of G into l
called

Bisect IV in R3 into {V}, 4}
by a plane called

Ham-sandwich cut

P, Py,..., Pe: ksubsets of points
with respect to P,,A,,..., P
- - - hyperplane bisecting each ~,

PlIPZI (0] (0]

Ham-sandwich cut

P, P, ..., P ksubsets of points
with respect to A, /;,..., P
- - - hyperplane bisecting each #,

PllPZI (@] (0]

Ham-sandwich cut

P, Py,.... Pe: ksubsets of points
with respect to P,,A,,..., P
- - - hyperplane bisecting each ~,

o) (¢]
o o
PIIPZI (@] ()

(0]
(] ® ®
® (0]
Theorem [Edelsbrunner87]
In R% a ham-sandwich cut w.r.t. A,,...,P, always exists.
A(rP?) if k=3 (n: #points) [Chi-Yuan et al.94]

Algorithm for finding a 3-bipartition|

Reduction to a geometrical problem [Nagamochi et al. 02]

Find an embedding of G into
the 3-dimensional space R 3
called

Bisect I/ in R3 into {V}, 4}
by a plane called

W 70 Wl=1T;nWl=1T;1/2
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Convex Embedding [Nagamochi et 1.02]

NLVv) : the set of neighbors of v.

f:V Risa of Gwith boundaryG ' into R¥,
if (i)

(ii)

(iii)

Convex Embeddmg [Nagamochi et al.02]

NLVv) : the set of neighbors of v.

f:V Rkisa of Gwith boundaryG ' into R¥,
if (i) the convex hull of F(UG")) is isomorphic to G,

(if)

(iii)

G/

COI’]VGX Embedding [Nagamochi et al.02]

NLVv) : the set of neighbors of v.

f:V Risa of Gwith boundaryG ' into R,
if (i) the convex hull of F(G")) is isomorphic to G,
(i) For VveEe V-V (G,
f(v) is strictly included in the convex hull of F(N{v)).
(iii)

Convex Embedding [Nagamochi et al.02]]

NLVv) : the set of neighbors of v.

f:V Risa of G'with boundaryG’ into R¥
if (i) the convex hull of F(U G")) is isomorphic to G,
(i) For VvE V-V (G,
f(v) is strictly included in the convex hull of F(N{Vv)).
(i)

COI’]VGX Embeddmg [Nagamochi et al.02]

NLVv) : the set of neighbors of v.

f:V Risa of G with boundaryG '’ into R¥,
if (i) the convex hull of 7(I{G")) is isomorphic to G/,
(i) For VveEe V-V (G,
f(v) is strictly included in the convex hull of F(N{v)).
iii)

F(N(v))

Convex Embedding [Nagamochi et al.02]

NLVv) : the set of neighbors of v.

f:V Rkisa of Gwith boundaryG ' into R¥
if (i) the convex hull of 7({G")) is isomorphic to G,
(i) For VvE V-V (G,
f(v) is strictly included in the convex hull of F(N{Vv)).
(iii)

F(N(v))
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Convex Embedding [Nagamochi et 1.02]

NLVv) : the set of neighbors of v.

f:V Rkisa of Gwith boundaryG ' into R¥,
if (i) the convex hull of F(UG")) is isomorphic to G".
(i) For VvE V-V (G,
f(v) is strictly included in the convex hull of F(NL{v)).
(iii) Points of {#(v) | v € V} are in general position.

Convex Embedding
Lemma [Nagamochi et al.02]

f: V  R¢:aconvex embedding of G with boundaryG’ into R,
{l;, V,} : a parition of Vobtained by separating 7( V) with

= Both of I and 4, induce connected graphs.

Algorithm for finding a 3-bipartition|

Reduction to a geometrical problem [Nagamochi et al. 02]

Find an embedding of G into
the 3-dimensional space R 3
called

Bisect VV in R3 into {V4, v}
by a plane called

! D 7,0 Ul=1T,0 V= 1T;|/2

(2) V; and 15 induce connected graphs

3-bipartition

G: a 4-connected graph which includes K4 (denoted
by G").
=G has a convex embedding into R 3 with boundary G~

Key Lemma

Let G be a 4-vertex-connected graph G (#K5), and
H be a subgraph of Gwith H=K4.
Then G has a contractible edge in G )-AH ) in such a sense
that its contraction preserves 4-vertex-connectivity.

s

Algorithm for finding a convex embedding into R 3

Contract edges not contained in G” while preserving 4-connectivity|

& D6

Embed vertices by backtracking the contraction step.
@
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| Embedding Step |

Given:
G,: graph obtained from G, by contracting ¢, and «, into «*
such that (u,w,) € |NLu,)| 24

u* {t, b}

Embedding Stepl

U* {ull UZ}

Embedding Step |

u* {n, b}
h(u)=1f(u)forV u#u,u,

s

G

Ty

NS

Embedding Stepl

u* {u, b}
Lu)=Ff(u)forV u#u,u
Il)é(ul)—f(lf“)

A L

/\\/ﬁ

Embedding Step |

U* {Ull UZ}
Finding a position for ,

YR

/\\/ﬁ

Embedding Stepl

lf|< {Ulr UZ}

(a) &is in the convex hull of N (1)
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Embedding Step |

u* {ty, w}

(a) wis in the convex hull of NGZ(UZ)

|NGZ(U2)|24

Embedding Stepl

u* {w, w}

(b) the convexity of V node /VGZ(UZ)
& }/ G \L/
/)Q\ UI

Embedding Step |

u* {t, b}

(b") the convexity of ¢

: &}/ 9% b

Embedding Stepl

{v, v}
(b") the convexity of

5

\Y%i

u* {t, b}

|Embedding Stepl

.___..--"‘
If and << are disjoint, ..
Ve

v

G

= In G;, u* cannot be included in the convex hull of NGI(UK).
= contradicting that £ is a convex-embedding.
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3-bipartition

For the edge version of A-bipartition (k=1,2,3),
(k+1)-edge-connectivity suffices.

Edge-Version

resource edge sets:

G=(VE) disjoint subsets
T, T, I-of E
_ 4
//
E=E-E

Ely %

connected m

Edge-Version

Input: a graph and subsets 7;of resource edge sets
Output: a bipartition {£, £} of E
st IENT|=I5NT,
£ and £, induce connected graphs.

For the edge version of 4-bipartition (k=1,2,3),
(k+1)-edge-connectivity suffices.

G --> Line graph L(G)
(k+1)-edge-connected --> (k+1)-vertex-connected & Ki+1

A 1-edge-connected graph which has no 1-bipartition of E

resource edge ;

A 2-edge-connected graph which has no 2-bipartition of E

% ,

/
\/

A 3-edge-connected graph which has no 3-bipartition of E

a5
&

S——
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What we have done is ...

Every 4-vertex-connected graph G admits
a 3-bipartition if Ghas a K,

5-vertex-connecitivity does not suffice for 3-bipartition
5-vertex-connecitivity does not suffice for 4-bipartition
5-vertex-connecitivity does not suffice for 5-bipartition

|The vertex version implies the edge version.

Every (k+1)-edge-connected graph G admits
a k-bipartition of £(k=1,2,3).

Open Problems

-Sufficient condition for which a A-bipartition exists

Conjecture
Every (k+1)-vertex-connected graph with K&+1 admits a &
bipartition.

the edge version

Conjecture
Every (k+1)-edge-connected graph admits a A-bipartition.

Open Problem

Define 7 (k) be the smallest p such that every
p-vertex-connected graph admits a A-bipartition.

f(1)=2, f(2)=3

For &>5, prove f(k) = k+1.

f(3) =6, f(4)=6, F(5)=6

For &>3, bound (k) from above by k+constant.
f(k)=A2|T;|)

|The same questions for the edge version.
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Approximating graph
coloring of minor-closed
graphs

Join"i Work with Erik Demaine, Mohammad

Hajiaghayi, Bojan Mohar, Robin Thomas

Partially joint Work with Neil Robertson
—— _—— _and PaulSeymour

Ken-ichi Kawarabayashi
Tohoku University
E-mail: k_keniti@dais.is.tohoku.ac.j
http://lwww.dais.is.tohoku.ac.jp/~k_keniti

Why is ittaccepted in FOCS?

@ |t is building on math deep theory. (although NOT
AT/ALL practical.)

® Minor-closed graphs are natural. (a\generalization
of planar graphs.)

@ [t tells how to use RS’/main structural theorem.
@ |t is a bit easier to access (than RS’ papers)

@ Nice approx. for graph coloring of minor-closed
graphs.

® Lucky.

Algorithmic Results

® Theorem (Demainge, Hajiaghayiy KK, FOCS2005)
There exists a 2-approx. algorithm for the
chromatic number in minor-closed graphs. (graphs
with no Kk-minor)

@ The best known result was O(k  logk) approx.

@ Proof uses the whole graph minor papers....

© Robertson-Seymour theory consists of 23 papers.
Most of them are published in JCTB.

Contents
(Mostly, FOCS paper)

@ Motivation (FOCS paper)

® 2-approx. of the chromatic number of minor-
closed graphs (FOCS paper)

® Tree-width, Grid-minor, RS-structure.

@ Overview of Algorithm (Robertson-Seymour)

@ Approx. the list-chromatic number of minor-
closed graphs.

& Toward Structural Theorem

Motivation

Mathematical-Motivation
1. Hadwiger’s Conjecture. (A farigeneralization of 4CT)
2. Graph Minor Theory (Robertson-Seymour)
Algorithmic Motivation
1. Chromatic number is hard to compute.
NP-complete even for deciding 3-colorability of Planar
graphs.
2. Even hard to approx.
NP-hard to approx. within constant factor.

3. NP-complete to decide the chromatic number of
minor closed graphs. (Even for planar graphs)

Canyouapprox.-?2——

Whyis it 2-approx ?

& The main theorem says that if G is Kk/minor-
free' graphs, then it can be decomposed into
two graphs G1,Gz such/that both'\G1and Gz
have tree-width at most f(k).

@ If tree-width is bounded, one can compute the
chromatic number in the linear time.

@ It remains to give an algorithm for the main
theorem...
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Proof depends on

& Robertson-Seymour theorem

® [t gives a structural theorem for, minor-closed
graphs.

% Once we have this structure, the rest of proof
is not so hard (but not trivial.)

% The main challenge is how to obtain RS-
structure.

& |t depends on the whole graph minor papers.

Graph Minor Theory
[Robertson & Seymour 1984-
2004]

® Seminal series\of 2 20 papers
@ Powerful results\on excluded minors:
e Every minor-closed graph property
(preserved when taking minors)
has a finite set of excluded minors
[Wagner's Conjecture]
e Every minor-closed graph property
can be decided in polynomial time
e For fixed graph H, graphs minor-excluding H have
a special structure: drawings on
bounded-genus surfaces + “extra features”

The disjoint paths
problems

S| @ o,

- - -

Minors

@ A graph G has\a minor H if
H can be formed by removing‘and contracting
edges of X

o

® Otherwise, G is H-minor-free "

@ For example, planar graphs are both
K3 3-minor- -minor=

Highlights of Graph
Minor Theory

® Theorem(The disjoint paths prablem) For
fixed k, there is a polynomial time algorithm
for deciding the disjoint paths problem.

@ Minor testing can be done.
@ Tree-width and grid-minors are discovered.

® Many mathematical and algorithmic
applications.

Treewidth
[GM2—Robertson & Seymour
1986]

® Treewidth of.a graph is/the smallest

possible width 'of a tree' decomposition

® Tree decomposition spreads

out each vertex as a
connected subtree of a
common tree, such that
adjacent vertices have

overlapping subtrees i

e Width = maximum overlap — 1
& Treewidth 1 =tree; 2 =series-parallel;-.

decomposition
(width 3)
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Tree-Decomposition of
Graph

A tree-decomposition ofja graph G is (T,W),
where T is a tree and W=(Wt: t CV(T))
satisfies

Tree-Decomposition

® Utcvm Wt =V(G)
® If ' C T, then Wt N WE» © Wi
® uv C E(G) for some t < V(1) s.t.u, v © Wt.

The width is max(|Wt|-1: t C V(T)).
The tree-width of G is a minimum width.

Tree-Width

® Tree-width at most 1 <=/> G is a forest. ® Discovered by 'Robertson-Seymour.
@ Tree-width at most 2 < = > G is series @ NP-hard to determine tree-width.
parallel. & A linear time to decide/whether tree-width is k
@ Tree-width at most 3/< = > G has no minor or not for fixed k.
isomorphic to Ks, Octahedron, 5-prism, Vs. & Many NP-hard problems can be solved in
@ Tree-width of the complete graph of order n is polynomial time if a given graph has small
n-1. tree-width. (even linear)
@ Tree-width is minor-monotone. @ |t is useful for structural results.
@ The (k X k)-grid minor has the tree-width k. @ |t is a key for the proof of RS.

@ |tisclosely relatedtogrid.

Grid-Minors Grid Minors
Why important ? important ? z

P s ® For any flxeggraph H, every H- minof-free
@ rjx r grid: Ay il graph of treewidth > w(f) has an r x'r grid

e r2 vertices, 2r (r— 1) edges .
. Treowidth — r s minor [GM5—Robertsorl & Seymour 1986]

@ r x r grid is the canonical planar graph of * Re-proved & strengthened [Robertson, Seymour,
treewidth O (r): every planar graph of Thomas 1994; Regd 1997;
treewidth w has an’' Q (w) x @ (w) grid minor Diestel, Jensen, Gorbunov, Thomassen 1999]

[Robertson, Seymour, Thomas 1994] e Best bound of these: w(r) = 205 VH)RBT

e So any planar graph of large treewidth has
an r x r grid minor certifying large treewidth [Robertson, Seymour, Thomas 1994]

e What about nonplanar graphs? e New optimal bound: w(r) = O(r)

[Demaine, Hajiaghayi KK 2005]

« Grids certify-large treewidth in-H-minor-free graph
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Huge-Grid is important

® Routing problem

®/The disjoint paths problem and its
generalization.

& Actually, Robertson-Seymour use this
idea.

Almost-Embeddable
Graphs

@ A graph is O(1)-almost-embeddable into a
bounded-genus surface if it is
e A bounded-genus graph
e + a bounded number of vortices:

» Vortex = Replace a face in the
bounded-genus graph by
a graph of bounded pathwidth

o The interiors of the replaced faces are disjoint
e + a bounded number of apices:
o Apex = extra vertex with any incident edges

But

@ There cannot be so many, crossings that
are far apart.

@ The genus addition process stops quite
soon.

Otherwise, we would get a desired
minor, a contradiction.
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Structure of H-minor-free Graphs
[GM16—Robertson & Seymour 2003]
Main result of RS

@& Every H-minor-free graph can be written
as O(1)-clique sums of graphs

® Each summand is'a graph that.can be
O(1)-almost-embedded
into a bounded-genus surface

& O(1) constants depend only on |V(H)|

What do we need ?

@ Crosscaps
&/Handles

€ Genus

@ Vortex

& Apex (easy)

We know that

© Any long jump 'must be contained in the
handle. This tells how to'detect a handle.

@' Any crossings and crosscaps are contained
in small area. This tells how we can find a
crosscap and a vortex

@ |f there is no crosscap in the small area, then
it is either vortex or planar graph.

@ There cannot be many non-planar small
areas that are far apart. This tells us that
there are bounded number of vortices.




In summary

Stating with huge grid H.

As long as there is a [ong jump, we shall
detect handles.

Otherwise the graph is embedded into a
surface such that all the non-planar graphs
are in small areas.

We shall look at each small area, and
detect either vortex or crosscap.

There are only finitely many vortices and

crosscaps.-So the process stops.

Almost-Embeddable
Graphs

@ A graph is O(1)-almost-embeddable into a
bounded-genus surface ifitis
e A bounded-genus graph

e + a bounded number of vortices:

« Vortex = Replace a face in the
bounded-genus graph by
a graph of bounded pathwidth

o The interiors of the replaced faces are disjoint
e + a bounded number of apices:
e Apex = extra vertex with any incident edges

Approx. list coloring

® Theorem[Mohar and KK]

There is an O(k)-approx. for graphs without Kk-minor,
l.e., minor-closed graphs.

Actually, it is “almost” O(ylogk)-approx.

It is approximating within O(vlogk)c + O(k), where c is
optimal.

The best know appox. was O(k + logk) approx.

Open: O(1) ? (Maybe NP-hard.)

Algorithm for List-coloring

Therejis an O(n“’) algorithm for/the following:

Input/: A graph G, vertex set Z with |Z| <= 4k,
precoloring of Z and each/vertex in G has 16k-
colors available in each list.

Output : Determine either

& 'G has a Kk-minor, or

@ Precoloring of Z can be extended to the whole
graph G, or

@ G has a subgraph H such that H has no Kk-minor
and has a vertex set Z’ with |Z’| <=4k such that
some preeoloring-of Z’ cannet be extended to H.

Algorithm for List Coloring

There is an O(»?) algorithm for deciding
the following:

(1) G has a Kk-minor
(2) G has a 16k-list-coloring

(3) G has a subgraph H such that H has
no Kk-minor and no 12k-list-coloring.

It is easy to list-color by O(k + logk) colors
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NHC Spring School and Workshop

on Discrete Algorithms

Feb. 27th — Mar. 3rd, 2006

University of Electro-Communications / Chofu Creston Hotel

Spring School

Feb. 27th (Mon.)

09:00 — 12:30
12:30 — 14:00
14:00 — 17:30

Feb. 28th (Tue.)
09:00 — 12:30

12:30 — 14:00
14:00 — 17:30

Workshop

Mar. 1st (Wed.)
09:00 — 12:30

12:30 — 14:00
14:00 — 17:30

Mar. 2nd (Thur.)

09:30 — 10:30
10:30 — 11:00
11:00 — 12:00
12:00 — 13:30
13:30 — 14:30
14:30 — 15:00
15:00 — 16:00
16:00 — 16:30
16:30 — 17:30

Data-Driven Computing
Bernard Chazelle (Princeton University)
Lunch
Sensor Networks: A Digital Bridge to the Physical World
Leonidas J. Guibas (Stanford University)

Games in Networks: Routing, Network Design and Potential Games
Eva Tardos (Cornell University)

Lunch

Polynomial Time Algorithms for Market Equilibria
Vijay V. Vazirani (Georgia Institute of Technology)

Random Sampling Techniques and Approximation of MAX-CSP
Marek Karpinski (University of Bonn)
Lunch

Discussion

Games in Networks, Equilibria, and Inefficiency

Eva Tardos (Cornell University)

Break

Approximation Schemes for Metric Clustering and Partitioning
Marek Karpinski (University of Bonn)

Lunch

Discrete Optimization and VLSI-Design

Bernhard Korte (University of Bonn)

Break

Approximation Algorithms for Facility Location
Jens Vygen (University of Bonn)

Break

Algorithms for a Networked World
Magnus M. Halldorsson (University of Iceland)
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Mar. 3rd (Fri.)

09:30 — 10:30
10:30 — 11:00
11:00 — 12:00
12:00 — 13:30
13:30 — 14:30
14:30 — 15:00
15:00 — 16:00
16:00 — 16:30
16:30 — 17:30

Algorithms for String Manipulation and Related Problems

D. T. Lee (Academia Sinica) ............ccoiiiiiiiiiiiian.... 530
Break
Dynamic Data Structures in Computational Geometry

Timothy M. Chan (University of Waterloo) ....................... 553
Lunch
Geometric Networks: Integer Linear Programming and Combinatorial
Algorithms

Alexander Wolff (University of Karlsruhe) ........................ 564
Break
Geometric Embeddings and Graph Expansion

James R. Lee (UC Berkeley) ...t 572
Break
Distance Trisector and Voronoi Diagram with Neurtal Zone

Takeshi Tokuyama (Tohoku University) .............cccoviiiia... 575
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Could Your iPod Be Holding the
Greatest Mystery in Modern
Science?

by Bernard Chazelle

Tuturologists are an amiable bunch, so it is a puzzle why the future has
been so cruel to them. From flying cars and self-cleaning houses to that
bugaboo of workaholics—the leisure society—the soothsayer's trail is

littered with the carcasses of pet predictions turned roadkill.

Gordon Moore need not worry. The co-founder of Intel tried his hand at
crystal gazing once—and struck gold. His celebrated “law” makes the
outlandish prediction that every 18 months, like clockwork, white-clad
technicians will huddle in a silicon wafer clean room and cram twice as

many transistors onto a microchip.

Moore's Law has ruled the roost for the last 40 years. All the oohs and aahs
you hear about the digital revolution are nothing but the squeals humans
emit when tickled pink by Moore's Law. From the nice (medical imaging,
e-commerce, whole-genome sequencing) to the vital (Xbox, IM, iPod), its
rule has been a veritable ticklefest. Moore's Law has been the sizzling
cauldron in which savvy cooks have whipped up a dazzling variety of tasty
dishes. Without it, the Information Superhighway would be a back alley to
Snoozeville; the coolest thing about a computer would still be the blinking

lights.

Moore's law has had a good run but, alas, its days are numbered. By mid-
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century, a repeal is all but certain. With the heady days of the Incredible
Shrinking Chip receding in the past, expect the revolution to grind to a halt;

expect pioneers to give way to tinkerers. Bye-bye ticklefest, hello slumber

party.

No tears please. Perched atop their towering achievements, computer
scientists (the cooks, remember?) will bask in the soothing certainty that
their glorious science died at its peak. With a tinge of sadness but not a
little pride, they'll chime in unison “There is nothing new to be discovered

in computer science now.”

If you think you've seen this movie before, you have. A few short years
before Einstein turned our world upside down, the great Lord Kelvin
bloviated this gem for the ages: “There is nothing new to be discovered in

physics now.” Not his lordship's finest hour.

Moore's Law has fueled computer science's sizzle and sparkle, but it may
have obscured its uncanny resemblance to pre-Einstein physics: healthy
and plump—and ripe for a revolution. Computing promises to be the most
disruptive scientific paradigm since quantum mechanics. Unfortunately, it
is the proverbial riddle wrapped in a mystery inside an enigma. The stakes
are high, for our inability to “get” what computing is all about may well

play iceberg to the Titanic of modern science.
Brilliant foresight or latest tripe from the Kelvin school of prophecy?

Computing is the meeting point of three Big Ideas: universality; duality;
self-reference. To this triad, the modern view adds the concept of
tractability and the revolutionary algorithmic paradigm. Here's how it

works:

Universality Few would mistake your iPod for an IBM Blue Gene/ L—the
world's fastest computer. Yet, fundamentally, the two are the same. Why is
that? At the heart of your iPod is a written document made of two parts:
“program, data”. The data section stores the songs as long sequences of 0s
and Is. The program section explains in words (again, Os and 1Is) how to
read the data and turn it into sound. Add to this mix a smattering of
hardware, the control, to read the program and follow its instructions, and
voila: you've got yourself an iPod. The beauty of the scheme is that the

control need not know a thing about music. In fact, simply by downloading
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the appropriate program/data document, you can turn your iPod into an
earthquake simulator, a word processor, a web browser, or a paperweight.

Your dainty little MP3 player is a universal computer.

Separating control (the hardware) from program (the software) was the
major insight of Alan Turing—well, besides this little codebreaking thing he
did in Bletchley Park that helped win World War II. The separation was the
key to universality. No one had seen anything quite like it before. At least
not since the Chinese philosopher opined: “Give a man a fish and you feed
him for a day. Teach a man to fish and you feed him for a lifetime.” In
Confucius's hands, the specialized view of fishing = river + fisherman finds
itself replaced by a universal one: fishing = river + fishing manual + you.
There you have it, computing = data + program + control. The control part
of your 1Pod is a marvel of electronics, but the shocker is that it need not be
so: universal computers can be built with control boxes vastly simpler than

a cuckoo clock. For all purposes, computing = data + program.

Duality Consider the iPod document “Print this, Let 'em eat cake”. Push
the start button and watch the words “Let 'em eat cake” flash across the
screen. Note how the program part of the document, Print this, is
interpreted as a command—printing is what it wants and printing is what it
gets. Contrast this with the data part, Let 'em eat cake, which is treated as
plain text: no one's eating anything (to Marie-Antoinette's later chagrin).
Strings of Os and Is are interpreted in one of two ways: as form (data) or as
content (program). Tapping into the comic, artistic, and academic potential
of this duality, great minds went to work: Abbott and Costello (“Who's on
First?”), Magritte (“Ceci n'est pas une pipe”), and Saussure (“signified vs.
signifier”). Staring at the sublime will, of course, send the deeper thinkers
among us rushing for the classics—such as Homer Simpson's immortal
quip: “Oh Marge, cartoons don't have any deep meaning; they're just stupid

drawings that give you a cheap laugh.”

Self-Reference Write the iPod document “Print this twice, Print this
twice” and press the start button. The screen lights up with the words:
“Print this twice, Print this twice”. Lo and behold, the thing prints itself!
Just like a computer virus (remember, I did not teach you this). The magic
word is “twice.” For example, the iPod document “Print this, Print this”

prints this: “Print this”—more Dr. Seuss than self-replication.

The “Big Ideas” were the air that the Gang of Four, Princeton branch,
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breathed all day—that would be Alonzo Church, Alan Turing, Kurt Gédel,
and John von Neumann. Mother Nature, of course, figured it all out a few
billion years earlier. Reformat your genome by lining up the two strands of
DNA one after the other, so it looks like a regular program-data iPod

document (billions of letters long though):
“ACAAGAT...GCCATTG, TGTTCTA...CGGTAAC”.

The base pairings (A,T) and (C,G) ensure that the two strands spell the
same word with different letters. So, we lose no genomic information if we
translate the “data” part and rewrite the whole document as the duplicated

text
“ACAAGAT...GCCATTG, ACAAGAT..GCCATTG”.

This is the biological analog of “Print this twice, Print this twice”. Life's but
a walking shadow, Macbeth warned us. Not quite. Life's but a self-printing
iPod! Offended souls will bang on preachily about there being more to
human life than the blind pursuit of self-replication—though Hollywood's
typical fare would seem to refute that. Existential angst aside, duality is the
option we have to interpret the word ACAAGAT...GCCATTG either as genes
(the “form” encoding our genome) or as proteins (the “content” mediating
the DNA replication). Self-reference is the duplication embodied in the
base pairings. Viewed through the computing lens, life = duality + self-

reference.

In the 1953 Nature article that unveiled to the world the structure of DNA,
Watson and Crick signed off with this lovely understatement: ‘It has not
escaped our notice that the specific pairing we have postulated
immediately suggests a possible copying mechanism for the genetic
material. "Duality and self-reference embedded in molecules: what sweet
music to Turing's ears this must have been! Alas, our war hero was a little
distracted at the time, busy as he was enjoying the rewards that the British
authorities had lavished upon him for saving millions of lives during World
War II—generous rewards like a court conviction for homosexuality with a
sentence of forced estrogen injections. Almost one year to the day of
Watson and Crick's triumph, Alan Turing went home, injected cyanide into
an apple, ate it, and died. His mother preferred to believe it was an

accident.
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Tractability The genesis of this fourth Big Idea was the ho-hum
observation that checking the validity of a math prooftends to be much
easier than finding the proofin the first place. But is it really? Amazingly,

no one knows.
Welcome to the most important open question in all of computer science!

Ever wondered if your iPod's 5000-tune library is rich enough to let you
compile a playlist of a thousand songs, no two which have ever been played
back-to-back on MTV? Let's hope not, because not even an IBM Blue
Gene/L could do the job in less time than has passed since dinosaurs were
last seen roaming the earth. To find such a playlist (proof-finding) seems
hopelessly hard, even on a computer, but to test whether a tentative playlist
fits the bill (proof-checking) is a cinch: simply match all possible pairs

against MTV's complete playlist, which is readily accessible on the web.

The twin reality of hard proof-finding and easy proof-checking is hardly an
MTV-induced aberration. Computer scientists have catalogued over 1000
problems just like it. Of course, courtesy of Murphy's Law, these “Jurassic-
IK” include all of the questions humanity is desperate to answer—in
artificial intelligence, computational biology, resource allocation, rational

drug design, etc.

OK, so life is tough. But since when has that observation qualified as a Big
Idea?

Since 1970, roughly. Just as Einstein rebuilt Newtonian mechanics around
the constancy of the speed of light, Cook, Edmonds, Karp, and Levin set out
to rebuild computing around the notion of tractability. A problem is
tractable if it can be solved in time growing polynomially in the input size,
which is a fancy way of saying 'reasonably fast.' None of the Jurassic-1K
appear to be tractable. At least those in the know believe they are not—of
course, not so long ago, those in the know believed the earth was flat. Sadly,
the great promise of computing seems to lie with problems afflicted with
exponentialitis: the dreaded ailment that places even small-size problems

beyond the reach of any computer.

This much we know: it's genetic. If a single one of the Jurassic-1K is
tractable then, wonder of wonders, all of them are. These tough puzzles are

nothing but different translations of the same Shakespeare play. Heady
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stuff! The day your playlist question can be answered in a few hours will be
the day public-key cryptography dies, bringing down with it all of e-
commerce. That day will see biology conquer its highest peak, protein
folding, and mathematicians contemplate early retirement. Indeed, the day
the Jurassic-1K are shown to be tractable (P=NP in computer parlance),
proof-finding will be revealed to be no more difficult than proof-checking.
Andrew Wiles, the conqueror of Fermat's Last Theorem, will be found to
deserve no more credit than his referees. (Note that this says nothing about
understanding the proof.) To be P or not to be P, that is NP's question. It is
likely that P=NP would do for science what the discovery of the wheel did

for land transportation. Little wonder no one believes it.

To discover the wheel is always nice, but to roll logs in the mud has its
charms, too. Likewise, the intractability of proof-finding would have its
benefits. When you purchase a book from Amazon, the assurance that your
transaction is secure is predicated on more than your endearing naiveté.
For one thing, it relies critically on the intractability of factoring a number

into primes.

Just as modern physics shattered the platonic view of a reality amenable to
noninvasive observation, tractability clobbers classical notions of
knowledge, trust, persuasion, and belief. No less. For a taste of it, consider
the great zero-knowledge (ZK) paradox: two mutually distrusting parties
can convince each other that each one holds a particular piece of
information without revealing a thing about it. Picture two filthy-rich
businessmen stuck in an elevator. Their immediate goal is (what else?)
finding out who's the wealthier. ZK dialogues provide them with the means
to do so while revealing zero information about their own worth (material

worth, that is—the other kind is already in full view).

Here is a ZK question for the State Department: can a signatory to the
Nuclear Non-Proliferation Treaty demonstrate compliance without
revealing any information whatsoever about its nuclear facilities? Just as
game theory influenced the thinking of cold war strategists, don't be
surprised to see ZK theory become the rage in international relations

circles.

Tractability reaches far beyond the racetrack where computing competes
for speed. It literally forces us to think differently. The agent of change is

the ubiquitous algorithm.
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The Algorithmic Revolution An algorithm is an iPod program with a
human face. If a computer could wash your hair, its program would look
like “0110001100100110...” but the algorithm behind it might read: “Rinse,
lather, repeat.” (Don't try this at home if you're a computer scientist.) An
algorithm is a list of instructions that tells the computer what to do. It may
loop around and entertain alternatives, as in “Rinse, lather, repeat if
unhappy, dry, go to office, answer question: why didn't you rinse the

shampoo off your hair?” An algorithm is, in essence, a work of literature.

The library's bottom shelves might stack the one-line zingers—algorithmic
miniatures that loop through a trivial algebraic calculation to produce
fractals (pictures of dazzling beauty and infinite intricacy) or print the
transcendentally mysterious digits of ©. Algorithmic zingers can do
everything. For the rest, we have the sonnets on the middle shelves. With
names like FFT, RSA, LLL, AKS, they are short and crisp, and tend to pack
more ingenuity per square inch than anything else in the computing world.

The top shelves hold the lush, richly textured, multilayered novels.

Give it to them, algorithmic zingers know how to make a scientist swoon.
No one who's ever tried to compute the digits of m by hand can remain
unmoved by the sight of its decimal expansion flooding a computer screen
like lava flowing down a volcano. And that's not even the awesome part. For
that, one must turn to the infamous Brazilian butterfly whose evil wing
flaps cause typhoons in China. Zingers embody the potential of a local
action to unleash colossal forces on a global scale: complexity emerging out
of triviality. Cellular automata, chaos theory, dynamical systems, and all

that.

For a glimpse of the fiction genre on the top shelves, check out PCP.
Suppose that, after popping the genius pill, you wake up one bright
morning with a complete proof of the Riemann hypothesis in your head
(that's the “Notorious B.I.G.” of math rap: the biggest open problem in the
field). Few number theorists are likely to listen to your story. That is, until
you offer them the PCP deal. You'll write down your proof in an agreed-
upon format, and then let a “verifier” pick 10 lines at random. On the basis
of these 10 lines alone, the verifier will decide whether your proof is correct.
The shocker: beyond any reasonable doubt, she will be right! (Randomness
plays a key role, but the chance of erring is less than that of the proverbial

monkey typing all of Hamlet flawlessly.)
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The mind reels. If your proof is fine, then it will pass any test the verifier
can throw at it. But, based on only 10 lines, how can she know that you've
proven the Riemann hypothesis and not a baby cousin like 2+2=47? If your
proofis bogus, the intuition does not help much either. Presumably, the
agreed-upon format is designed to smear any bug all across the proof. But
how will the verifier be sure that you didn't play fast and loose with the
formatting rules? So many ways to cheat; so little evidence to check. The
PCP algorithm upends basic notions of evidence and persuasion, and
accomplishes what is usually philosophy's prerogative: to turn the
comprehended into the incomprehensible. Somewhere, Wittgenstein must

be smiling.

Moore's Law has put computing on the map. Algorithms will now unleash
its true potential. Physics, astronomy, and chemistry are all sciences of
formulae. Chaos theory moved the algorithmic zinger to centerstage. The
quantitative sciences of the 21st century (eg, genomics, neurobiology) will
complete the dethronement of the formula by placing the algorithm at the
core of their modus operandi. Algorithmic thinking is likely to cause the
most disruptive paradigm shift in the sciences since quantum mechanics.

And yes, you may trust the future to be kind to this prediction.
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Sensor Networks: A Digital
Bridge to the Physical World

Leonidas Guibas
Computer Science Dept.
Stanford University

b» NHC Spring School and
d 6 Workshop on Discrete Algorithms

Distributed algorithms
Networking
Databases

Software radios
Software design

CS

Introduction

Low-power processors
Signal processing
Wireless communication
Information theory
Estimation theory

EE

Many good algorithmic and theoretical questions!

Lecture Outline

a Part 1: Introduction to Wireless Sensor
Networks
@ Distributed monitoring applications; Sensor network
hardware; Research issues in sensor networks;
Naming and routing; Sensor tasking and control.
@ Part 2: Structure Discovery and Information
Brokerage
a@ Morphological analysis (boundaries, holes, bridges);
Landmarks and local coordinates; Information
diffusion; Hierarchical hashing.
a Part 3: Lightweight Spatio-Temporal Reasoning

@ Configuration spaces; Collaboration groups; Identity
management; Occupancy tracking; Conclusion

TelosB Crossbow Mote

.. )
& dawa”

Untethered micro sensors will go anywhere and measure
anything - traffic flow, water level, number of people
walking by, temperature. This is developing into
something like a nervous system for the earth. -- Horst
Stormer in Business Week, 8/23-30, 1999.

Smart Sensors and
Sensor Networks

/ .
’ Berkeley/Crossbow Motes

Rockwell HIDRA UCLA WINS
o Environmental sensing
aTraffic, habitats, pollution,
hazards, security
o Industrial sensing
aMachine monitoring and
diagnostics (IC fab)
aPower/telecom grid
monitoring
@ Human-centered
computing
aSmart, human-aware spaces

and environments
4

Wireless Sensor Networks

o Distributed systems o

consisting of small,
untethered, low-power
nodes capable of
sensing, processing, and  freer 2
wireless communication ;

MICA

!
MS Spot Watch PDA

large

Sensoria Node 5

@ Monitoring the
environment and
other spaces

@ Monitoring objects

@ Monitoring
interactions between
objects, or between
objects and their
environment

Monitoring the World

S wona ™
Wide

- Web

Senser
nwbivork
senvar

Base
stanon | staton g

NS00

¥
poswer, mamory, skie

|
i
B

nodes
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Petrel Nesting Behavior at Great
Duck Island

Wireless Sensor Network
Deployment

British Columbia winery
with networked temperature
sensors

a Advantages:

@ sensors can be close to signal
sources, yielding high SNR

a phenomena can be monitored
that are widely distributed
across space and time

@ a ‘'macroscope’ [Culler]

@ adistributed architecture
provides for scalable, robust
and self-repairing systems

a significant installation savings
on cabling, etc. are possible

Other data collection and monitoring: temperature
in data centers (HP), oil tanker vibrations (BP/Intel),
soil contaminants, etc. 8

Integration with Current Networks

sumrnu.

' Gateway
Sn:ursge

f_l— ,

= :

Client browsing Storaqs

iem- et

Access to unfiltered information, highly localized in time and space.
Plans for next generation Internet all include edge sensor networks.

More Demanding Sensor
Network Applications

o Beyond simple data collection
and aggregation
@ dynamic, mobile foci of activity
(tracking mobile objects)
@ Amidst clutter of irrelevant
data
a distributed attention: focus and
context
@ acting on the world (closing
the loop)
@ Network must adapt to highly
dynamic foci of activity
@ Sensing is driven by user
queries
@ Sensing and communication
tasks must be planned and
allocated
@ Resources must be
apportioned between
detection, tracking, etc.

Sensor Network
Hardware

Wireless Sensor Trends

a Of 9.6 billion pP’s shipped in
2005, 98% were embedded
processors!

a Riding on Moore’s law, smart sensors get:

More powerful Easy to use Inexpensive & simple Supercheap & tiny
Smart dust (in

EI Crossbow Mica2dot
mote progress)

HP |PAQ w/802 11 4 MIPS CPU (integer only) CPU, Memory: TBD
8KB Flash (LESS!

S!)
5128 RAM Sensors: integrated
Sensors: on board stack

(accel, light , microphone)

Sensoria WINSNG 2.0
CPU: 300 MIPS

Both integrated and oft-
board sensors

Sensors: external
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Currently Popular: Crossbow Motes

Chipcon CC2420
802.15.4 Radio

Light & Temperature

Microphone

Atmel ATMega128L

51-pin MICA2 / GPIO (under)

Connector

Crossbow Stargate - Top View

Ethernet

Crossbow Stargate - Bottom View

SA 1111 StrongArm /O
Chip

Compact
Flash Slot

51-pin MICA2 / GPIO

Specifications

MicaZ Mote
+ TinyOS
* 16 Mhz Atmel ATMega128L
» 128 kB Program FLASH
» 512 kB Serial FLASH
+ Current Draw
* 8 mA — Active Mode

Stargate
@ Embedded Linux OS
@ 400 Mhz Intel Xscale
@ 64 MB SDRAM
@ 32 MB FLASH
@ Many different

* <15 uA — Sleep Mode mteF:fSa(zzszs Ethernet
- Chipcon CC2420 802.15.4 Radio  * jag "

Connector « 250 kbps
« 26 Channels — 2.4 Ghz
Intel PXA255 Xscale
Processor Current Draw — 15 mA
www.xbow.com
15 http://computer.howstuffworks.com/mote4.htm 16
Power Breakdown ...
Active Idle Sleep
CPU 5mA 2mA 5pA
Radio 7mA(TX) | 45mA(RX) | 5pA
EE-Prom 3mA 0 0
LED's 4mA 0 [
Photo Diode | 200 pA 0 0
Temperature | 200 uA 0 0 .
Rene motes data, Jason FIl Arch |tectu r al
Computation/communication ratio per byte: Panasonic CR2354
560 mAh
+Rene motes: Challenges
« Comm: (7mA*3V/10e3)*8=16.8pJ per 8 bit ~ This means

— Lithium Battery runs for 35
hours at peak load and years at
minimum load, a three orders of
magnitude difference!

« Comp: 5mA*3V/4e6=3.8 nJ per instruction
« Ratio: 4,400 instructions/hop

« Sensoria nodes:
« Comm: (100mW/56e3)*32=58pJ per 32 bit
« Comp: 750mW/1.1e9=0.7nJ per instruction
« Ratio: 82,000 instructions/hop 17
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Sensor Network Challenges

a Power management

@ communication 1000s of times
more expensive than
computation
load balancing across nodes

coordinated sleeping/awake
schedules

correlated sensor data
@ In-network processing
o data aggregation
@ overcounting of evidence
a Difficult calibration
@ localization
@ time-synchronization
a Constant variability
@ networking
@ sensing

[Picture from CACM June 2004]

Dense Sampling: Multi-Hop RF
Advantage

RF power attenuation near ground:

Zsed 35 L.
«

receive

Or equivalently, P, <r*P

send receive

Power advantage:

P _ (Nr)*P

send (Nr) receive _ N!H

N-P N-rP,

send (r) receive

Oversimplified: fixed overheads, delay, etc.
20

Dense Sampling: Detection and SNR
Advantage

Sensors have a finite sensing range. A denser sensor field
improves the odds of detecting a target within the range. Once
inside the range, further increasing sensor density by N improves
the SNR by 10logN db (in 2D). Consider the acoustic sensing
case:

Acoustic power received at distance r: P... e

Signal-noise ratio (SNR): r

SNR, =10log P,

receive

—-10log P, =10logP,  —10logP, —20logr

noise e e

Increasing the sensor density by a factor of N gives a SNR
advantage of:

SNR, —SNR =20log——=10log N
~ r

B

21

Collaborative Estimation

@ Structuring communication is very important:

In a setting where each node wishes to communicate
some data to another node at random, interference
hinders scaling:

the per node throughput scales as —L_ (Gupta & Kumar ‘99)
N
Effectively each node is using all of its energy to route
messages for other nodes.

In a sensor network, however, because data from

nearby sensors are highly correlated, more

intelligent information dissemination strategies are
possible. 2

Networking Sensor Networks

@ Network support for a small number @&

of collaborative tasks.

& Data-centric, (as opposed to a
node-centric) view of the world.

@ Monitoring processes may migrate
from node to node, as the
phenomena of interest move or
evolve.

@ Communication flow and structure
is dictated by the geography of
signal landscapes and the overall
network task.

23

“Semantic’ Routing and
Networking

@ We want to address
spatial locations or
information, not individual
nodes

o Content and address in a
message get intermixed — .
unlike classical networks \ = dptoresty

o In a distributed setting, oy O
how do we help d
information providers and
information consumers
find each other?

Directed diffusion
Geo-routing

24
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In-Network Processing

a Information aggregation can
happen on the way to a
destination and provide $
substantial energy savings / 1

o Need to balance quality of
paths with qualityqof / $//f—\: T
information collected s ! $
@ But aggregation makes data . $
lineage harder to ascertain ,/”/ /
@ Can we have “application- -I‘ $ $

independent” paradigms of

information aggregation? Temperature aggregation

25

Power-Aware Sensing,
Computing, and Communication

a Variable power systems

a Let most sensors sleep
most of the time; use
paging channels

@ Exploit correlation in
readings between nearby
sensors

@ Load-balance, to avoid
depleting critical nodes

In-node
processing

3

<

Wireless
communication with
neighboring nodes

26

Sensor Tasking and Control

o Decide which sensors
should sense and
communicate, according
to the high-level task — a
non-trivial algorithmic

problem aahead-of
b
@ Direct sensing of b ahead-of
relations relevant to the Zaheadrof
task — do not estimate full J
world state d ahead-of
e

27

Enable Data-Base Like
Operations

o Data only available right
after sensing operation

@ Dense data streams must
be sampled, or otherwise
summarized

@ Must deal with distributed
information storage —
“where is the data?”

@ Large flash memory
availability can make in-
network storage possible

(a) Lossless Isobars
Field isolines
28

Self-Configuration for Ad-Hoc
Deployment

@ Network size makes it
impossible to
configure each node
individually

@ Environmental
changes may require
frequent re-calibration

@ Network must recover
after node failures

Iterative localization

29

Structure Discovery

a A sensor network is a
novel type of computing
device -- a sensor
computer

a One of its first tasks is to
discover its own structure
and establish

a information highways
a sensor collaboration groups

@ as well as adapt to its

signal landscape

30
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New System Architectures

a Resource constraints
require close coupling
between the
networking
application layers

@ Can we define
application-
independent
programming
abstractions for
sensor networks?

User queries, external ‘
databases

A sensor net stack?

Various Issues

@ Integration of sensors
with widely different
modalities

a High data-rate sensors
(cameras, laser
scanners)

@ Sensor mobility
@ Actuation

Distributed robotics

32

What Defines Sensor Networks?

a Multi-hop communication

@ Many nodes act as routers

@ Multiple paths exist and must be considered
@ Bandwidth limitations

@ Volume of data sensed exceeds to capacity of the
network to transport

@ Power limitations

o (At least some) nodes operate untethered and energy
conservation must be considered in all of sensing,
processing, and communication

a A cooperative system
@ All nodes serve one, or a small number of tasks

33

Sensor Network Research

@ power awareness

@ sensor tasking and control

@ formation of sensor
collaboration groups

@ in-network, distributed
processing

@ node management,
service establishment,

Estimate full
world-state

D

software layers Sense ‘ glivevedreqcl:;g]
@ coping with noise and
uncertainty in the
environment i o
hand, in a lightweight, energy-efficient manner.

34

Naming and Routing
in
Sensor Networks

35

Routing in Sensor Networks

@ Point-to-point routing protocols in communication
networks obtain route information between pairs of
nodes wishing to communicate. Such protocols can be

@ proactive: the protocol maintains routing tables at each node that
are updated as changes in the network topology are detected

@ reactive: the protocol constructs paths on demand only
@ Because of the high rate of topology changes, reactive
protocols are much more appropriate for sensor
networks
@ Several such protocols have already been developed for
ad hoc mobile communication networks. Examples are:
@ Ad hoc on demand distance vector routing (AODV)
@ Dynamic source routing (DSR)
@ both, however, may flood the network to discover paths

36
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Geographic Routing

a In sensor networks, naming and routing is frequently
based on a node’s attributes and sensed data, rather
that on some pre-assigned network address.

@ Geographic routing uses a node’s location to name the
node and discover paths to that node
@ We assume that
@ nodes know their geographic location
a nodes know their 1-hop neighbors
a routing destinations are specified geographically (a point, a
region)
o each packet can hold a small amount (O(1)) of additional routing
info to record where it has been on the network

a most of the time we will model the connectivity graph of the

nodes as a unit distance graph
37

Routing Desiderata

@ Guaranteed delivery

9 Path quality

@ Energy awareness

@ Robustness to low-level link volatility

38

Greedy Methods

In a greedy method, each node
forwards a packet to its best
neighbor

Greedy methods can get stuck
at “dead-ends”

Note that no flooding is involved
for route discovery

39

Greedy Unicast Geographic
Routing

To go from source s to
destination t, at each
intermediate node x
advance to the
neighbor y that
makes most progress
towards t.

@ greedy distance
routing (GPSR)
@ compass routing

40

Neighbor Choice

/.
d
O .
o compass’,mﬁfilng Qy
O greedy distance routing
XU
o
o

41

Greedy Protocols Can Get
Stuck

@ The intermediate node x
can be a local optimum
towards the destination :

a In general, local optima |
will arise if the node
graph contains “holes” — )
areas with no sensor
nodes

@ To prove that such
situations cannot happen
we need to assume
special properties about
the connectivity graph G

42
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Delaunay Triangulations (DT)

o In a Delaunay triangulation (dual to the Voronoi diagram
of the nodes), packets cannot get stuck

@ However, unless the nodes are spaced very closely, it is
unlikely that the UDG will contain all DT edges

43

Measures of Path Quality

a First and foremost, a protocol should guarantee packed
delivery, whenever such delivery is possible

@ Second, the quality of the path produced should be good
when compared to the optimal path available. Different
path costs can be used:

c(m=>y_1'C).

eem

d =0, hop length
d =1, normal path length
d=2,3

4=0123.4... , 4 ..., energy costs

@ These can be made roughly equivalent by assuming a
constant node density or a minimum node spacing
a This can be attained by a node clustering process

44

Planarizations

A planar straight-line graph has no crossing edges. It subdivides the
plane into regions called faces.

45

Traversing Planar Graphs:
Perimeter Routing

G
o Right hand rule: if we walk S
inside a face with right hand on
the wall, we will visit every wall

46

Routing in Planar Graphs

@ To guarantee packet
delivery, it may be
advantageous to disable
some connections, so as
to make the routing graph
planar

@ On a planar graph,
perimeter routing
guarantees delivery

@ Another variant is other
face routing

o The quality of paths can
be bad, however

Perimeter/Face Routing Properties

a All necessary information is stored in the
message
@ Source and destination positions are given
@ Point of transition to next face needs to be chosen

=

“Right Hand Rule”
a Completely local:
@ Knowledge about direct neighbors' positions sufficient

@ Faces are implicit, only local neighbor ordering
around each node is needed 4
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Planarizing the Communication

We must delete just enough edges to make the graph
planar

We must do so in as local a manner as possible 49

Planarization via Geometric Graphs

« defined by local rules?

« distributed construction?

« path quality (spanning property)?
,;TH

|st]
Restricted Delaunay Graph
(RDG)

T
=

|
|

|

Relative Neighborhood Graph
(RNG) )
50

Larger RNG and GB Examples

Relative Neighborhood
Graph

Gabriel Graph [/©\
R/,

Adaptive Algorithms

@ We want the quality of paths
we discover to be nearly
optimal

@ Alternatively, we want to
discover optimal paths without
searching the whole
connectivity graph G

@ If the optimal path between s
and thas length L, then every
node in that path is within an
ellipse with foci s and t defined
by L. This ellipse limits the part
of G to be searched.

9 If Lis not known, it can be
guessed, approximately

In general, finding a path of length
L requires O(L?) work.

52

Average Path Quality

a Not interesting when graph not dense enough
a Not interesting when graph is too dense
a Critical density range (“percolation theory”)
@ Shortest path is significantly longer than Euclidean distance

too sparse

critical density too dense

53

Critical Density: Shortest Path
vs. Euclidean Distance

@ Shortest path is significantly longer than
Euclidean distance

54
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Randomly Generated Graphs:
Critical Density Range

ro.9
ro.s
ro7z
r0.6
0.5
0.4
ro.s
ro.2
0.1

Shortest Path Span
Frequency

R
— critical
5 10 15
Network Density [nodes per unit disk]
55

Combining Greedy and Planarization Strategies:
Greedy Perimeter Stateless Routing (GPSR)

[Bose and Morin 1999,

Karp and Kung, Mobicom 2000]:
Planarize the connectivity graph G

a@ Use greedy distance protocol on the full graph

o If stuck, switch to perimeter protocol on a
planarization of G, until a node closer to the
destination than the stuck node is encountered

56

Planarization Process Is Not
Robust

@ Gabriel and RNG
depend on the unit
disk communication
graph assumption

@ Localization errors
also cause serious
problems

57

Greedy Protocols May Overload
Critical Nodes

GPSR [Karp, Kung, '00]
GOAFR+ [Kuhn, Wattenhofer, Zhang, and Zollinger, 03]

58

Main Point

a Knowledge of the nodes’ locations enables
many powerful mechanisms for message
transport and route discovery that avoid
expensive flooding operations yet require
no routing tables or other high-
maintenance data structures.

59

Sensor Tasking and Control

60
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Programming Sensornets:
Where the Two Sides Meet

Platform View

Spend more time designing
system/component-level abstractions

Information Processing View

Spend more time designing
application-level abstractions

algorithms

levels of
refinement
software
synthesis

common substrates

layers of

abstraction compilation

hardware

61

Collaborative Processing in Sensor Networks

@ What information is critical for

the high-level tasks?

@ What is the cost of accessing
the information?

@ Which nodes should participate
in sensing, processing, or
communication?

@ How should the information be
migrated?

@ What is routing or querying in
this context?

The information processing needs largely
determine the roles of nodes, as well as the
required support by other layers of a sensor

network 62

Collaborative Processing
Group Formation in Sensor Networks

= 7 * Information needs and resource

R bR constraints define who should

o D” o L participate in the processing groups
0% o
L) DD o o 2 L] L] . .
a B « Group membership (e.g. location)
o o L L} s .
o  Smlal w defines the behavior of a node
o = w2
B ow

« Challenges
« Dynamic collaboration among nodes
« Global property from local execution
« Competing events/tasks
+ Real-time constraints/adaptation

63

Summary

@ Ubiquitous networked sensors provide a dense spatial
and temporal sensing of the physical world

@ They potentially provide low-latency access to
information that is highly localized in time and space,
and thus provide a way to sense and act on the physical
world beyond what has been possible up to now

@ Sensor networks raise many research issues at the
physical node level, the system architecture level, and
the algorithm deployment level

64

A Relevant Text

Wireless Sensor
Networks: An
Information
Processing Approach

Feng Zhao and
Leonidas Guibas

Morgan-Kaufmann 2004

[ 1)

65

The End

66
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Structure Discovery and Information
Brokerage in Sensor Networks

Leonidas Guibas

Stanford University

Computer Science Dept.

Structure Discovery

+ A sensor network is a
novel type of computing
device -- a sensor
computer

# One of its first tasks is to
discover its own structure
and establish

« information highways
@ sensor collaboration groups

+ as well as adapt to its

signal landscape

2
[From D. Estrin]

Information Brokerage

+ Information providers
(sources, producers) and
information seekers
(sinks, consumers) need o N
ways to find out about o
and rendez-vous with
each other o

+ Challenges:

+ Neither knows where the

other is o
+ Highly dynamic

environment

+ Limited computation and
communication resources

Talk Outline

+ Naming and Routing
+ Landmarks and local coordinates
+ Hierarchical landmarks

# Sensor Layout Analysis
+ Boundary/hole detection

+ Information Dissemination and Aggregation
+ Sweep

+ Information Brokerage
+ Hierarchical geographic hashing
+ Double rulings
+ Information gradients

A Dilemma: Which Structure?

+ Nodes are embedded in ¢ What if our sampling is
a physical space. Should bad?
we adopt the naming and ordinary &o
routing structures communication 5_—%)
already available in the "e“"’°r§‘/s
host space? s
+ Or should we invent a
space that better reflects
the true network

topology, and use that
instead?

Geometric
structyres

+ What if the network is
volatile?

Greedy Geographic Routing

Assume known node positions

ol
N/
. r/
Id
In a greedy manner, each node ! S 1
forwards a packet to its best X o
neighbor : .

Note that there is little global
state, yet no flooding is involved
for route discovery
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Such Greedy Protocols Get Stuck,
May Overload Critical Nodes

GPSR [Karp, Kung, '00]
GOAFR+ [Kuhn, Wattenhofer, Zhang, and Zollinger, ‘03]
These require building a planar

subgraph of the connectivity
graph — not a robust process

Global Embedding Challenges

» Routing on geographic coordinates

— Only works in 2-D space
— Planarization is tricky (CLDP, etc.)

— Sensitive to location inaccuracy

+ Routing on virtual coordinates

— Requires a global embedding of the
link connectivity graph in the plane

— Forcing a 2-D layout on a 3-D
deployment may ignore much of the
actual connectivity

Naming an Routing Based on
Connectivity Information Only

+ A two-tier approach utilizing combinatorial
Delaunay complexes and local
coordinates (GLIDER)

+ A hierarchical approach using the
Discrete Center Hierarchy (DCH)

l. Using Landmarks and Local
Coordinates: GLIDER

+ Given a communication
graph on sensor nodes
with distances defined by
hop counts

+ Perform structure
discovery:

+ Select a set of landmarks

« Construct the Landmark
Voronoi Complex (LVC)

+ Extract the Combinatorial
Delaunay Triangulation
(CDT) graph on
landmarks

G is connected < CDT D(L) connected

# D(L) is compact —
topology capture has
complexity dependent on
the number of large-
scale features in the
environment

¢ D(L) is stable — low- level
link volatility unlikely to
affect the combinatorial
complex
D(L) is a global network atlas that can

be known to all landmarks, or even
all nodes

Local Routing with Global
Guidance

+ Global Guidance
the D(L) encodes global connectivity
information that is accessible to every node
for proactive route planning on tiles.

+ Local Routing

high-level routes on tiles are realized as
actual paths in the network by using local
reactive protocols.




Information Stored at Each
Node

+ The parents on the shortest
paths to its home landmark,
and its neighbor landmarks

+ A bit to record if the node is
on the boundary of a tile

+ Its coordinates and those of
its neighbors for intra-tile
greedy routing

+ Landmark nodes store the
atlas D(L)

GLIDER -- Routing

+Routing
+Global route plan

eLocal route
+inter-tile
sintra-tile

The Last Mile: Local
Coordinates and Greedy
Routing

Reference landmarks: Ly,...L,
T(p) = Lo

Lets = mean(pLy,..., pL,)

Local virtual coordinates:
2 2
c(p)= (pLo —\S ply s)
(centered metric)
Distance function:

d(p, q) = Ic(p) —c(a)

2
[

Greedy strategy: to reach g, do gradient descent on the function d(p, q)

Local Landmark Coordinates —
No Local Minima

CENTERED METRIC

+ Theorem: In the continuous
Euclidean plane, gradient descent
on the function d(p, q) always
converges to the destination q, i
provided that there are at least three
non-collinear landmarks.

In the discrete case, we empirically
observe that landmark gradient
descending does not get stuck on
networks with reasonable density
(each node has on average six
neighbors or more).

Centered vs. Uncentered Metrics

moviel.mpeg movie2.mpeg

— 436 —




Simulations — Path Length
and Load Balancing

GLIDER GPSR
Each node on average has six one-hop neighbors

Simulations — Hot Spot
Comparison

Randomly pick 45 source and destination pairs, each separated by more
than 30 hops.

GLIDER GPSR

Blue (6-8 transit paths), black (>11 transit paths)

Il. Naming and Routing via
Hierarchical Decompositions
of Graphs

+ Generalize quadtrees

+ No node geographic
coordinates assumed
+ Required properties:

+ Clusters in level i of the
decomposition have
diameter at most o - 2/,
where o is a constant

+ Each cluster in level i+1
contains a small (constant)
number of clusters in level i

Examples of HDs

[
+ A quad-tree induces a HD L
when the sensor field is =n
; ] .
dense and node coordinates s ® 4
are available. .

+ Discrete Center Hierarchy:

+ A hierarchical sampling of the
nodes so that:

+ Nodes in level j are at least 2/
hops apart

+ Each node in level /is within y
21 hops from some node in @
level i+1 r‘

Addressing Scheme

+ A HD yields an IP-type addressing scheme for nodes
+ Clusters are also assigned addresses

- - - .1 28
\\ 123 e 141
cﬁooéc?l oébof\ ® ®
;’\ ‘1 22 .2
IR B 124
P NN .* 12 14 e.
' NN

+ Def: A cluster L at level kis a
neighboring cluster of a
node vif dist(v, L) < o -2k+1

diam(L) < o2+,

+ A routing table is stored at each
node, providing hop distances
to all its neighboring clusters

+ Under mild assumptions, each
node has O(log n) neighboring
clusters

/‘\

/ \
SO guoé)p\“ AOAS




Getting to Your Destination

+ Head in the
direction of the
cluster with the
longest prefix that
agrees with your
destination
address

+ Use local routing
tables to make
the best local
decision

Routing Scheme

+ Routing quality:
+ By proof:
+ Efficient: path(u,v)| < 4 - |d,|
« By simulation:
+Balanced: Nodes high up in

the hierarchy do not get
overloaded

+ Robust: the failure of any
given link does not affect
many paths

Experimental Results

degree 6.21

Routing quality (2000 nodes)

Paths generated are near optimal

HD path length

2000 nodes, perturbed grid
100 random paths
max load = 32

ey Y |

GPSR HD

Quality = ~ghortest path length
HD path —GiPSresatit HD does not hug holes as much as GPSR
Routing Scalability Routing Robustness

80 1 5
3 70 P\ 09 \‘\‘/‘-\‘\‘\‘\.
5 S 2 08
geo ¥ e
% 50 )(_)f\x —=—Ag ,ﬂ, 0'6 . —e—deg-7

40 -t e Min 8 o5 —=—deg-8
;.*_ 30 ~ /'/./.—'— s Max g 0.4 —4—deg-9
& 20 -/-'/.ﬁ £ 03 ——deg-12
g £ 024
L 01

0 . . 0 T T T
100 1000 10000 100000 0 0.05 0.1 0.15 0.2
Number of nodes in network Node failure rate

Storage used grows slowly
Network initialization cost ~ storage used

Routing performance degrades gracefully
as node failure rate increases
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HD Names and Routes Summary

+HD effectively discovers the intrinsic
geometry of the network

+Provides a hierarchy-based scheme with
provable approximation quality on the
routing paths

+Node/link failures affect mostly the low
levels of the hierarchy

Sensor Layout Analysis

+Boundary/hole detection

+Robust planarization of the
communication graph

Boundary Detection

Information Dissemination and
Aggregation

+Most sensor network applications need a
robust and efficient implementation of
certain basic data operations

+In such a data operations library one
needs to include:

+data dissemination (code images, parameter
settings, etc.)
+in-network data aggregation

« Epidemic approaches

Related Work

Data Dissemination Data Aggregation

+ Tree-based approaches

— Trickle/Deluge + TAG/DAG
O O + Synopsis diffusion
0
.
@

. Independent dominating sets

OOOO

O
O o O

Tree-Based Approaches Are
Fragile

+Single links are
relied upon

sLong interval
between
establishment and
use
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Sweeps over a Sensor Network

[Skraba, Fang, Nguyen, G.2008]  pjrection of sweep propagation

Swept

+ Unswept nodes
+ Nodes in sweep
+ Swept nodes

Sweep front

Unswept

Global Picture

+ Nodes are invited to join in the
sweep by already active
neighbors

+ Nodes remove themselves

from the sweep after they and

all their neighbors have been
processed

A select subset of the nodes

always holds the state of the

sweep

Active band moves across the

network as nodes join and

remove themselves

Locality of advancing tests

allows for parallelism

*

*

-

Sweep Requirements

+ Cover all nodes in a network, each
exactly once

+ Use a small active band
+ Robust to link volatility
# Local, asynchronous control

Preprocessing

# Structure discovery

+ Some global information
needs to be extracted from
the network

+ Boundary detection

« source and sink for the
sweep

+ Auxiliary info for sweep
control

Potential Field for Wavefront
Diffusion

+ Part of preprocessing

+ Potential field
+ Sense of direction
+ Ordering

+ Stable
+ Used for many sweeps

Potential Field Construction

+ Fix potential values at certain
boundary nodes

+ Regular nodes iteratively
average over neighbors’ values

1 e
O\ "m Z (i)

o)
JEN(I)

)

O <=

Jacobi iteration
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Intuition (Cont. Domain)

+ Laplace’s equation with Dirichlet boundary conditions

¢(source) = 1

# Solving discretized version on communication graph

+ Smoothing

-
g

Properties

# Linear system
+ Static case: Convergence guaranteed
+ Convergence can be slow (but done only once)
+ Direct solution
+ No strict maxima or minima at regular nodes
+ Harmonic functions

+ Any non-plateau regular node has a strictly
monotone path to a maximum or minimum

Plateaus

+ All neighbors have same value
+ Do not occur in continuous case
+ Not strict extrema
+ Cons:
+ Potential field provides no
information
+ Pros:
+ Easy to detect
+ Can also be addressed by building
another potential within the
pleateau

+ Boundary nodes can also be
detected

Sweep Algorithm

o

oo B

+ Begin Unswept
+ Receive invitation
+ Enter Sweep and send

et

data to inviter (aggregator) “I
+ Possibly issue new ’
invitations o d 1 -
+ If all upstream neighbors e

have left the sweep

+ Forward data to
downstream neighbor

+ Leave Sweep

Simulations
+ Stability of the potential
field
+ Robustness of thesweep < .o
+ 500 nodes
+ Varying degrees of
connectivity

+ TOSSIM implementation
+ 20x20 grid
+ Different radio models

+ Robust to link
failures/collisions

Conclusions

4 Class of global
operations on a WSN

+ Still uses a transient
local tree
+ But the tree is local
and is used soon after
it is built

+ Two-part solution

« Potential field

+ Captures link connectivity
and global structure

+ Relatively stable
+ Sweep

+ Uses the potential field
for local control

+ Robust
+ Easily extendible
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Information Brokerage

+ Information providers
(sources, producers) and
information seekers
(sinks, consumers) need o N o o
ways to find out about o
and rendez-vous with S
each other o O L. NT0

+ Challenges:

+ Neither knows where the

other is o
+ Highly dynamic

environment

+ Limited computation and
communication resources

Current Approaches:

Directed Diffusion
[Intanagonwiwat, Govindan, Estrin ‘00]

+ Data-centric storage: data is named by
attributes

(a) Interest propagation

(b) Initial gradients set up (c) Data delivery along re-

inforced path

Current Approaches:
Geographic Hash Tables (GHT)

[Ratnasamy, Karp, Shenker, Estrin, Govindan, Y|n Yu 03]

Put("elephant”, dataj
+ Event data is stored, by ﬁl 2 °
name, at home nodes; M/ -
home nodes are selected f‘“"’-“‘""*""’ﬂ

by the named attributes, e, e s
via a hash function a

+ Queries also go to the ¢
home nodes to retrieve ctenmant
the data (instead of to /Gw‘
the nodes that detected © o gy %
the events)

+ Routing usually done e 0 “%*"’“
using a geographic o e o
routing protocol (GPSR) . °

Information Brokerage Issues

+ Find a good balance between
cost of information replication
(storage size) and cost of
information discovery (query
time)

+ Load balance

+ Robustness

+ Information brokerage is
intimately coupled with
+ how network nodes are
named
+ do we have coordinates?

+ how routing is done in the
network

Distance-Sensitive Information Brokerage:
if producer and consumer are at a distance d,
the query cost should be O(d)

Approaches to Efficient
Information Brokerage

@

Information Gradients
Hierarchical Decompositions
of Graphs

GLIDER-based
[Infocom 06]

Information Diffusion

+ Hash function:
Generates a random
valid address in a given
cluster for any
information type

wrxHD— S

+ A producer hashes its
information to all of its
neighboring clusters

+ O(log n) hashes
+ Total path length to all
hashes is O(D), where D is

the diameter of the sensor
field

A producer hashes its information
to many nearby nodes and to
few far away nodes.

— 442 —




Information Retrieval

+ Consumer v looking for a
particular information
examines hash locations
of that information in
larger and larger clusters
containing v

+ Thm: The length of
retrieval path from vis at
most 4 - d,, where uis
the producer (unknown
tov)

Brokerage Costs

Storage cost grows slowly
Cost of query is distance sensitive

Path length from consumer to hash location

Query time =—g; tost path length to producer

HD Brokerage Summary

+HD effectively discovers the intrinsic
geometry of the network

+Provides a hierarchy-based scheme with
provable approximation quality on the
routing paths

+Node/link failures affect mostly the low
levels of the hierarchy

+Enables distance sensitive information
brokerage

Resource Discovery Using Local
Double Rulings

Associate with each node two
connected “1-d’ structures, call
them roads — the red and blue

A double ruling derived via a Morse
function = distance to boundary

+ All red roads together cover

the network in a load-balanced

fashion

All blue roads together cover

the network in a load-balanced

fashion

+ For any pair of nodes A and B,
the red road from A has to
intersect the blue road from B

L

Information providers and seekers
can meet by following blue and red
roads respectively

GLIDE-based Brokerage: At the CDT
Level — Do Content-Based GHT

GHT at a coarse

+ Hashing on coarse data data type level

types for structured data

storage

giraffes

Large-sized Animals

Stored in the same tile

elephants

a Both producers and consumers
of the same content type follow
the shortest path tree to the
hashed tile (the root of the tree).

@ Consumers return once the data
are retrieved, otherwise move on
towards the hashed tile.

Within Each Tile — Double-Ruling Scheme for
Transit Tiles

Guides v, x, y are landmarks selected
according to a set of rules based on hashing

and the CDT x

consumer

producer

An example by simulation

+ Routes formed by following shortest paths to guides
+ The two sets of curves always meet
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Double-Ruling Scheme in Hashed Tile

+ Producers and consumers
are guaranteed to meet by
following the two sets of
curves.

+ The consumers may not
need to reach the hashed
tile to fetch the data as the
data are available at some
transit tiles.

Reducing Producer Cost — En Route Data
Aggregation

»

e + Producers of the same
i content type share the
shortest path tree (on
CDT) rooted at the

+ Data of the same type
can be aggregated
+ Inside the tile if two
producers share one
+ Inside the tile of their
common ancestors

Locality Awareness Comparison with GHT by
Simulations — Transmission Cost by Individual Node

1.GHT

-*

Scenario: one producer; all
nodes query for the producer
data; one big hole in the
network connectivity graph.

-

Note the y-scale in figure 1 is
twice of that in figure 2.

2. Landmark-based
The total load is much lower
than using GHT.

-

+ The load is also more
balanced than using GHT.

*

GLIDER Brokerage Summary

Distance-sensitive information brokerage is possible with

very modest data replication

+ Information discovery is closely coupled with the network

node naming and routing

+ In some ways, geometric methods and tools can be

effectively used even when the connectivity graph is all

we got

Information Potentials

+ Natural phenomena typically generate
continuous fields (temperature, pressure ...)

+ But it can be advantageous to also invent
artificial potentials that diffuse information about
event detections

.

Information Diffusion

Information sources can diffuse a
quantity that we can think of as
information strength via Laplace’s
equation (Dirichlet boundary c.)

V2d(z) =0
() = ;g TvenP®@)

Information seekers can ascend
the gradient of this potential to
find a source

A harmonic function ® has no
local maxima or minima — its
gradient can guide a packet, or a
vehicle, to its maximum

Usually smooth ® by computing a
square root, or logarithm
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N

Diffusion Challenge

+ Diffusion can be slow to
converge

+ What if there are multiple
sources with the same
type of information?

¢ What if there are many »
different types of
sources? R

+ What about discretization
effects?

Reaxaton eraons

0
Comverge Threshoid %

01

Coveraga Perc

o 0 0 000
Relaxaton llerations

Dealing with Many Potential Sources:
Bloom Filters for Membership Testing

+ Given aset S={x;,%,X;,...X,}
on a universe U, want to
answer queries of the form:

Start with an m bit array, filled with Os.

BlofoloelofofofoJolofofoo]ofofo]

IsyeS?
Hash cach item s, in § & times. T F(x) ~ a, set Bla] ~ I.

. Exqmple: a set of detection BlolJololifolifolo i il i o]

attrlbutgs i To check if'y is in S, check B at Hy). All & values must be 1.

+ Bloom filter provides an nnEnoonooanEnnnn|
answer in

+ “Constant” time (time to Possible to have a false positive; all £ values are 1, but y is not in S.
hash). Bloltfolol ol ool tfoli]t]o]

+ Small amount of space.
+ But with some probability of
being wrong.

Dealing with Many Potential Sources:
Network Coding to Save Storage

Diffusion Brokerage Performance

+ Each node can compute a + If there are L active potential
random linear combination of sources, then a neighborhood
all the potentials it hears of size k around a node " ol
provides Q(k?) equations w ©
relating the local potential ) s ™
Zi >\ZCDZ values HE [
+ But in a neighborhood of size S 27
k, the O(k) boundary values &7 S
determine all the interior ol 7 20|
0D~ values for each potential ol 2 K
07 %0 °N (harmonic function property) . T o s d B 0% o G 6 s
SO + So we have enough equations
Y o & to recover the unknown
S potentials if k> L (k?
constraints vs. kL unknowns)
Information Diffusion Summary Conclusions

+ Diffused information potentials can guide
both virtual and physical information
seekers to the appropriate sources

+Multiple sources can be handled by
having their potentials co-mingled and
then decoded as necessary

+Sources may move and the potentials
adapt in a smooth manner

+ Structure discovery and information brokerage are
fundamental problems for WSNs

+ With light preprocessing we can extract certain global
quantities that can significantly help with local decisions

+ These quantities reflect an understanding of the
geometry or topology of the sensor filed and do not
require localization

+ The same quantities are also robust to local volatility in
the network connectivity

+ Such approaches integrate very well with current
“narrow waist’ sensor net protocols, such as SP
(Berkeley)




X . . More Demanding Sensor
Lightweight Spatio-Temporal Network Applications

Reasoning in Sensor Networks o Beyond simple data collection

and aggregation
@ dynamic, mobile foci of activity
(tracking mobile objects)
@ Amidst clutter of irrelevant
data

a distributed attention: focus and

Leonidas Guibas

Computer Science Dept. context
i i @ acting on the world (closing
Stanford University the Iobp)
] l(;letwork ;nust fadapt to highly
s ynamic foci of activity
Fosma ko, ° gﬁgrsi‘i;r;g is driven by user
3 @ Sensing and communication
@ [ @) tasks must be planned and
Q@ ¢ y allocated
i D e [ @) S @ Resources must be
& d—‘ 5’ apportioned between

detection, tracking, etc.

Five Quick Vignettes on

Lightweight Spatiotemporal Reasoning V1. Large-Area Phenomena

) ] @ A chemical plume blows ; ;
1. Tracking Wide-Area SR over a city after a factory . e
Phenomena leak.

Counting Moving Objects o Networked sensors are

3. Distributed Identity air-droppzd to track its
Management Sensor collaboration groups _el_):ent an motlon..

4. Tracking Spatial Occupancy ° theem Sszfl‘igésazrgamze

appropriate, in order to

perform this task.

A

L inty and multiple
hypotheses

Network structure Lic

discovery integration

. Using Geometric Duality
Tracking a Large Shadow Points < Lines

In a dual configuration space, the
sensors become lines and the
edge of the shadow a moving
point, crossing cells in the
arrangement of the lines.

We track a half-plane shadow across a field with light
sensors.

A projector is used to throw a
moving shadow onto a wall.

55
———3 gl g 10

“
1§

Sensor nodes are
Berkeley/Cossbow motes with a
radio and a light detector

shadow

25471 S35 6 deg

Shaded cells indicate the trajectory

[Liu, Cheung, G., Zhao, WSNA '02] of the shadow edge_
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Selective Sensor Activation

TR

primalspace

dualspace

Only sensors dual to the lines bounding
. . . the current cell can be crossed next.
Dual view Primal view

Thus, of all the sensors in the field, only
four on the average need be active at
once.

Some Lessons and Issues

a An appropriately chosen configuration space can
transform a wide-area phenomenon into a localized
one.

@ Only a small fraction of the nodes in the field need
be active at any one time.

@ Most message traffic is along the shadow
boundary: the physical phenomenon dictates the
communication paths.

V2. Target Counting

Problem Spec:

= A sensor network with
multiple targets present.
Targets can be stationary or
moving;

Each sensor can detect the
local superimposed
amplitude of target signals
(e.g., acoustic) at any
instant of time;

Objective:

To determine the number of targets
and their approximate locations in the
field, forming an initial count and re-
computing the count when targets
move, enter, or leave the field.

[Fang, Zhao, G., MobiHoc'03]

Acoustic Signal Field Landscape

Goal: count and track the significant signal peaks in the field

1. Signal attenuation rate, and the spacing and communication range of
sensors have big impact on “signal resolution”

2. Number of detected peaks may not equal number of targets due to
sampling artifacts and/or noise.

LB\
¥Q5&£J . 4“&"’} .

C i ial Signal Pr ing and C i T

Scattered Amplitude Sampling
\ //\.\ AN
AN AL

o . -
//\\ &d

AL
s\
/ \ Over-sampling
i _ / N

' [ie N
//A\,/ \\\\ Q/// )K/ \ Under-sampling

In 1-D, the number of peaks in sampled landscape cannot exceed the number of peaks
in the true landscape. However, this is possible in 2-D.

Peak Landscape Simplification

@ Some signal peaks may
be noise

@ Usually such peaks are
near other critical points
of the landscape

a@ Topological ideas, such
as persistent homology
can be used to simplify
the landscape by
canceling saddles with
maxima, etc., removing
noise




Downhill Flooding Protocol (DFP)

A sensor nodﬁbis qualified as a leader, if its reading is higher than that of all its
rs.

one hop neighbol

Local leader election is conducted by sensors exchanging information with their
neighbors via one hop broadcast.

p, = received signal power at
each node

1. Onr\(y sensors with myPr > threshhold will
participate

2. Each sensor emits a packet in each
protocol period, broadcasting its reading
Prandits ID

3. Sensors pass on or drop a packet P from
their neighbors, according to the
following rule:

If (Pr recorded in the packet > myPr &
Pr of the sensor relaying this
packet > myPr)

x;and x, are elected leaders, broadcast(P);

other n?des j%irg)o?ﬁ olf thde else
roups forme: e leaders: .

gachpnode joins Yhe highest drop(P);

leader it can reach by a

monotone ascending path

11T TT 272272272

Sensor Cluster Trees

For each node,

i\ . parent = the neighboring node with
maximum Pr (received signal power)

Leader

15 8 Bird's eye view of the cluster tree
structure. Each node follows a strictly
upwards path to the highest peak it
can reach.

We call such groups of sensors aggregates, as they collaboratively perform a task.

2-D View of a Sensor Field with
Cluster Trees Formed Using DFP

o Different colors mark different
sensor clusters formed

o Each cluster has one leader

Target Counting Demo

Simulation with 9 moving targets (above);
Implementation on motes sensors (right)

jisbman

Some Lessons and Issues

@ Sensors naturally form collaboration groups.
Target localization and counting can be
performed in-network.

@ These sensor collaboration groups must be
maintained as the physical phenomena of
interest change over time.

@ Aggregates may be easier to sense than
individual objects

@ Equivalently, physical phenomena are
translated into networking behaviors.

@ Can such behaviors be programmed without
naming the nodes individually?

—

V3. Distributed Identity
Management

% 2,% " Multi-target Tracking (MTT)
T *
LTS *

“‘_.h.._" R = Basic application of sensor

Thuaa > networks

Mixing = Data association problem - Target

Action at a distance? @

mixing
= Multi-target Identity Management
= Represent and manage additional
quantity called target identity

[Shin, Zhao, G., IPSN'O3]  ++(Fevssssssssnennnnnnnees
= Simplified version

= Position estimates are given

Sensor confirms

tank — [H

= Fixed number of targets assumed
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Approach A: Belief Matrix

The belief matrix B(k) is the main quantity that the algorithm maintains
— ‘ Which ID goes with which track, with what probability? ‘

e ’
doubly P | Identity 1
~,
B(k) = btk) | || .
i ‘ Identity N
1stTrack ... Nt Track

where b;(k) = p(ID(x;(k)) = i) and E,(k) is ID belief vector on i, track.

Q: How to update B(k), given X(k +1)?

Distributed Management of B(k), |

1] ® = L eader nodes for vehicle tracking

Distributed Management of B(k), Il

Local
b(1)=[0] Mixing !
o]
o]
b,(1) =1

Distributed Management of B(k), IlI

b(2) = aby (1) + (1- a)b, (1)

Incorporating Local Evidence

This is an elephant m
) 0.1737 0.0947 0.3447 0.3869 | @@
@ O

B 0.3527 0.6473 0 0 [ |
0.3201 0.1744 0.3043 0.2011 oo
0.1535 0.0836 0.3509 [0.4120]| [g&

|

0.1737 0.0947 0.3447 |0
| 0.3527 0.6473 0 0
0

1

[ 5103201 0.1744 03043

0.1535 0.0836 0.3509

| Not doubly-stochastic = inconsistent!

Renormalization, Given Local
Evidence

1. Ideal solution: Bayesian normalization,
given the priors, all the mixing events in history
and all the sensor evidence.
Exact solution in this framework. (Bayesian posterior)
Used as a reference - Desirable properties of the solution.

2. Reallistic solution: Sinkhorn lteration (repeatedly normalize
rows and columns)
[Sinkhorn 1964,1967; Sinkhorn and Knopp 1967]
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What Do We Want?

@ The belief matrix represents a probability
distribution. The matrix A represents our a priori
belief, but violates sum constraints.

@ We would like to find the sum-constrained
(feasible) matrix B that is the closest distribution to
A (which is infeasible).

@ Use Kullback-Leibler distance (measure of
distance between distributions):

KL(B:A)= >3 bjlog-—7
j=1li=1 Gij

Sinkhorn Scaling and the
Kullback-Leibler Distance

KL(B:A)= ) > b Iogﬁ
j=1i=1 @iy
Theorem: Given a prior matrix A € R™*" the matrix B
that satisfies the row and column sum constraints, and
minimizes the KL-distance from the prior matrix A is
always the solution of the Sinkhorn scaling process.
[Balakrishnan, Hwang,Tomlin '04]

Solve by interior point methods:
Sy Sy biglog it

Z;‘:l byy=mrVi=1---m

minimize

subject to
TRk = Vi=1--n

by >0Vi=1--m; j=1:n

Distributed Management of B(k), IV

Distributed Management of B(k), V

a
B(3) = [ 1—a | =i g
o
o0
b2(3) =
0] b
Normalization message o
(Group Management o
o Protocol)
0 o o
3)=|0 O. EEED
by(3) o i —
1 o o o
- o

b(@3)=|0
,O,
roT
b,(3)=|1
0

Target Mixing Video

1
Particles filters

are used to keep
track about multiple
hypotheses about
the location of each
vehicle

a5

o
1

|
A |
=

1

0s

o
1

05

o
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Distributed Implementation of
Tracking and Normalization

Q: Which nodes store and/or . FE. .
compute what information? /o j—-*o
K \\‘ 4 ”_,‘ °
L o

-- When do we track in joint
space?

-- How to distribute B(k)?

-- How to implement the
probabilistic normalization?

-- What is required at the 5
communication/network T, ° °

layer to make the above ST marginal MT joint ST marginal
happen?

Managing Sensor Groups

= We have distributed columns of
B(k) to leader nodes tracking targets.

= When a leader initiates a
normalization based on local
evidence, it has to know where are
the other leaders that have non-zero
mass on the evidence ID.

= Group Management Protocol:
Maintains the group membership
based on the ID probability mass.

= Communication needs to be S| i | e [
minimized. § : : §

RoamHBA protocol
[Fang, Liu, G., Zhao, IPSN'04]

Approach B: Information Matrix

9 Keep unnormalized [y o]
X A == 2 2N
beliefs by simply [ ; J
. . A vt o Iy oo Iew
adding log-likelihoods
after each local 1 =3109(7" = (k. Dlej =)k € {1, )
evidence event

@ No communication i)
necessary, except
when mixing events |mixing | |Local evidence |
occur or queries are
made pix)

[Shin, Lee, Thrun, G. '05 and Schumitch, Thrun, Bradski, Olukotun '05]

Some Lessons and Issues

a Collaboration groups need not always be physically
clustered.

o Different attributes of a phenomenon can be tracked at
different rates (target location, identity).

@ A change of information representation can have a deep
impact on cost trade-offs.

@ How do information providers and information seekers
locate each other?

V4. Image Sensor Networks

@ CMOS technology enables
the production of small, low-
cost and low-power
integrated image sensors

@ Cameras (still or video) and
other image sensors are
becoming cheaper, smaller,
and nearly ubiquitous

@ However, truly distributed
networked systems of image
sensors are still not here

Wireless Camera Node

@ CMOS image sensor Video Sensing

a@ Small, cheap, battery- 0OV6650 CMOS
powered 352 x 288

@ Integrated CPU and 30 fps
radio 20 mwW

Agilent ADCM 1650

Computation = Communication

TI MSP430 RFM TR1001
10 KB 300 m
—" 8 MHz 20 Kbps

8 mm 3mW 20 mW




Current Multi-Imager Networks

o Data is transported over a @ This approach
wired network to a central cannot scale:

location @ vast amounts of
@ Human operators look at data to move h
the data @ wiring Is
expensive -

@ automatic ways i
to filter the data .
are needed g

1/t

IR Enn
1T Ay

Distributed Imager Challenges

a@ Imagers are high data rate
sensors; therefore data must be
compressed and summarized

@ compression must take into
account shared data

@ goal of compression need not be
reconstruction
a Vision algorithms can be
expensive to run on weak
capability, low power devices
@ Visibility is non-local and
discontinuous (occlusions, etc)

@ Issues of privacy, etc.

Collaborative, Task-Driven Image
Sensing

@ Large numbers of simple,
inexpensive cameras
collaborate over a wireless
network to accomplish a task

@ Data is compressed locally
and aggregated within the
network

@ Cameras are only tasked as
the situation demands

@ The system can be
expanded incrementally to
large numbers of nodes

The goal is to estimate certain
high-level, global attributes of
the environment.

The Initial Effort

@ Use a camera network to
obtain information about space
occupancy by people.

@ Useful for aggregate tracking,
counting, etc.

@ Crowd density implies multiple
occlusions — no one camera
by itself can do this.

@ No image reconstruction --just
high-level distributed spatial
reasoning.

Packard 013

The Experimental Setup

@ Web cameras:
@ 16 firewire webcams with 49 degree FOV
@ Placed around a 22 x 19 foot room

@ Linux computers
@ A PC is connected to 2 webcams
@ A separate process is running for each webcam to
simulate an individual camera node
a All processes can communicate with each other over
the network

System Architecture

Autonomous Collaborative

Background |:> Visual Hull |:> Problem

Subtraction, Estimation, Solution

Data Compression Camera Tasking

v e <. @

‘e v X
) N

-« v - v a
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Local Processing

a Perform background o 640x480 RGB image >

subtraction 640 bit scan-line (which
@ Collapse to a single scan- can be further
line compressed)
— _- ‘/.\‘- — e

Occupancy Representation:
The 2-D Visual Hull

A Visual Hull Example

Top view of room
with 5 people

Scanlines from
16 cameras

The Visual Hull Overestimates
Occupancy

X\
&

Visual hull regions surround each object.

Visual hull regions may also be empty;
we call these the phantom regions

Pruning the Visual Hull

@ Using more cameras :
reduces the ) : "
overestimation — but it {
can never be fully
eliminated

@ Motion can allow the
pruning of phantom
regions

An Application: Counting People

@ Given occupancy, bound
the number of objects in
each polygon of the

visual hull
o The bounds over time t
can be used to constrain
the count, using a tree L]l
data structure. 2] [en]
Ed [EEEsE

[32]
t+1 E

phantom
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A Counting Example

Localization — Where?

Global: Target
localization

Best camera placement
Best camera tasking

Contributions
o Analysis of target
localization error

o Solutions for camera
placement and tasking

Noise in location

Noise in local data

Localization w. Occlusions

@ Suppose M moving
objects in a room

@ Given priors on these
objects

@ And camera positions 2 O .

@ We are interested in
localizing one of them
(blue prior)

@ Which k cameras are
best for localization?

Algorithm Animation

Scaling to Large Camera Networks

a Few foci of activity
a Episodic events of interest

a Camera control (aiming,
panning, zooming)

@ Camera selection (how
many, which ones)

*Analysis
*Simulation
*Real Experiments

Some Lessons and Issues

a A surprising amount of spatial information can
be captured by cameras sharing very few bits.

@ Small subsets of cameras, when appropriately
tasked, can provide accurate estimates.

@ The system can perform counting without
tracking, thus raising no privacy issues.

@ Alternatively, low-res video cameras for
occupancy can be combined with a few high-res
still cameras that can be commanded to snap a
few high-detail photos, capturing the essentials
of a scene.
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Five Quick Vignettes on
Lightweight Spatiotemporal Reasoning

1. Tracking Wide-Area
Phenomena

Counting Moving Objects

3. Distributed Identity
Management

4. Tracking Spatial Occupancy

Sensor selection

N

Sensor collaboration groups

L
hypotheses

and multiple

Network structure Li

discovery integration

@ Conclusions T

9@ Ubiquitous networked @ Sensor networks raise many
sensors provide a dense research issues at the
spatial and temporal physical node level, the
sampling of the physical system architecture level,
world and the algorithm

o They allow low-latency deployment level
access to information that @ A combination of global and
is highly localized in time local methods promise to

and space, and thus provide robust tools for

’ provide a way to sense network structure discovery,

and act on the physical understanding the global
world beyond what has aspects of sensor layouts

been possible up to now and signal landscapes ‘
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spatiotemporal reasoning

— 455 —




Games in Networks:
Routing, Network Design, Potential Games,
and Equilibria and Inefficiency

Eva Tardos
Cornell University

Part I

* what is a game?
* Pure and randomized equilibria

* Load balancing and routing as games

Why care about Games?
S

Model Resulting Issues as

Users with a multitude
of diverse economic
interests sharing a
Network (Internet)

+ browsers
* routers
* servers

Selfishness:
Parties deviate from
their protocol if it is

in their interest Games on Networks

A simple game: load balancing

Each job wants to be on a lightly loaded machine.

EIEl

2

With coordination we
can arrange them to
minimize load

Example: load of 4

machine 1  machine 2

A simple game: load balancing

Each job wants to be on a lightly loaded machine.

« Without coordination?

2

+ Stable arrangement:
No job has incentive o switch

+ Example: some have load of 5

Games: setup

* A set of players (in example: jobs)
+ for each player, a set of strategies
(which machine to choose)

Game: each player picks a strategy

For each strategy profile (a strategy for each
player) — a payoff to each player
(load on selected machine)

Nash Equilibrium: stable strategy profile:
where no player can improve payoff by
changing strategy
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Games: setup

Deterministic (pure) or randomized (mixed)
strategies?

Pure: each player selects a strategy.
simple, natural, but stable solution may not exists

Mixed: each player chooses a probability distribution of
strategies.

+ equilibrium exists (Nash),
* but pure strategies often make more sense

Pure versus Mixed strategies in
load balancing

* Pure strategy: load of 1

* A mixed equilibrium
Expected load of 3/2
for both jobs

;

0% 503 .
SO%M 50%

Machine 1 Machine g

Quality of Outcome:
Goal’s of the Game
Personal objective for player i:
min load L; or expected load E(L;)
Overall objective?

- Social Welfare: X, L;or
expected value E(Z; L;)

* Makespan: max; L; or

max expected value max; E(L;) or
expected makespan E(max; L;)

Example: simple load balancing

n identical jobs and n machines
1 1 1 1 1
All pure equilibria: load of 1 (also optimum)

A mixed equilibrium: prob 1/n each machine

=

expected load: E(L;)= 1+(n-1) -+ <2 for eachi
E(max; L; ): balls and bins: log n/log log n

10

Results on load balancing:

Theorem for E(max, L; ):
+ w/uniform speeds, p.o.a < log m/log log m

» w/general speeds, worst-case p.o.a. is
O (log m/log log log m)

Results on load balancing:

Theorem for E(max; L; ):
+ w/uniform speeds, p.o.a < log m/log log m

» w/general speeds, worst-case p.o.a. is
O (log m/log log log m)

Proof idea: balls and bins is worst case??

Requence of results by
[Koutsoupias/Papadimitriou 99],
[Mavronicolas/Spirakis 01],
[Koutsoupias/Mavronicolas/Spirakis 02],
[Czumaj/Vocking 02]
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Today:
focus on pure equilibria
Does a pure equilibria exists?

Does a high quality equilibria exists?
Are all equilibria high quality?

some of the results extend to
sum/max of E(L,)

load balancing and routing

Load balancing: Delay as a function

of load:

2.(x) =x
jobs X unit of load —
machines causes delay 2,(x)

Allow more complex
networks

2e(x) =X
< e
1 X

Routing network:

14

Atomic vs. Non-atomic Game

Non-atomic game: 80%

+ Users control an infinitesimally
small amount of flow -
+ equilibrium: all flow path 20%
carrying flow are minimum
total delay

Atomic Game: s 0
+ Each user controls a unit of flow,and 1 X
+ selects a single path or machine

Both congestion games: cost on edge e depends on the

congestion (number of users) 5

Example of nonatomic flow on two
links

* One unit of rovx sentfromstot

———
S T
— —

Flow = .5

Traffic on lower
edge is envious.

An envy free solution:

No-one is Flow = 0
better of f

Infinite number of players
+ will make analysis cleaner by continuous math

Braess’s Paradox

—F et
P N Cost of Nash flow

=15

Braess’s Paradox

R 6\\
P % Cost of Nash flow

=15

Added edge:

Effect?

Cost of Nash flow =2

All the flow has increased delay!
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Model of Routing Game

+ Adirected graph G = (V,E)

- source-sink pairs s;,1; for
i=1,.k

- rate r;> 0 of traffic
between s, and t; for each

i=1,. k

* Load-balancing jobs wanted min load
* Here want minimum delay:
delay adds along path

edge-delay is a function 2,(+) of the load on
the edge e

Delay Functions

Assume ¢,(x) continuous and
monotone increasing in load
X on edge

No capacity of edges for now

Example to model capacity u:

2.(x)= a/(u-x)

20

Goal’s of the Game

Personal objective: minimize

25(f) = sum of latencies of edges along P
(wrt. flow f)

No need for mixed strategies
Overall objective:
C(f) = total latency of a flow f: =X, fp<2(f)

=social welfare

21

Routing Game??
Flow represents
+ cars onh highways
+ packets on the Internet 1
individual packets or small — continuous model

User goal: Find a path selfishly minimizing user delay

~ true for cars,
packets?: users do not choose paths on the Internet:
routers do!

With delay as primary metric — router protocols choose
shortest path!

22

Connecting Nash and Opt

Min-latency flow
« for one s-t pair for simplicity

«  minimize  C(f) = Z,f,* 2.(f,)
. subject to: fis an s-t flow
. carrying r units

* By summing over edges rather than paths
where f, = amount of flow on edge e

23

Characterizing the Optimal Flow

* Optimality condition: all flow travels along
minimum-gradient paths

gradient is:

(x 2(x)Y
= 9(x)+x 2'(x)

24
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Characterizing the Optimal Flow

* Optimality condition: all flow travels along
minimum-gradient paths

gradient is: g
(x 2(x)) s
= Q(x)+x 2'(x)

Recall: flow f is at Nash equilibrium iff all flow
travels along minimum-latency paths

25

Nash < Min-Cost

Corolary 1: min cost is "Nash" with delay
2(x)+x 2°(x)

Corollary 2: Nash is ;'min cost” with cost
D (f) = =, [, 8, (x) dx
Why?

gradient of: .
(o) dx ) =2(x)

26

Using function ®

* Nash is the solution minimizing ®

Theorem (Beckmann'56)

* Ina network latency functions 2.(x) that
are monotone increasing and continuous,

+ a deterministic Nash equilibrium exists,
and is essentially unique

27

Using function ® (con't)

* Nash is the solution minimizing value of ®
* Hence,

@ (Nash) < ©(OPT).

Suppose that we also know for any solution
®<cost<AD

— cost(Nash) < A ®(Nash) < A P(OPT)< A
cost(OPT).

— There exists a good Nash!

28

Example: ® <cost<A D

Example: 2,(x) =x then
- total delay is x-€,(x)=x2
- potential is | 8,(¢) dz = x2/2
More generally: linear delay 2,(x) =a,x+b,
- delay on edge x-2,(x) = a,x?+b, x
- potential on edge: [ 2,() d¢ = a,x?/2+b, x
- ratio at most 2
Degree d polynomials:
- ratio at most d+1

29

Sharper results for non-atomic

games

Theorem 1 (Roughgarden-Tardos'00)
* In a network with linear latency functions
- i.e., of the form 2,(x)=a x+b,

+ the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

30
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Sharper results for non-atomic

games

Theorem 1 (Roughgarden-Tardos'00)
+ Inanetwork with linear latency functions
- i.e., of the form ¢.(x)=a x+b,

+ the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

-‘-@

Flow =

optimum 1 5‘
31

optimum 3/4‘ ‘

Braess paradox in springs (aside)

H

B Cutting
middle
string
makes the weight rise

and decreases power flow
along springs

-

Flow=power; delay=distance =

Bounds for spring paradox

Theorem 1' (Roughgarden-Tardos'00)

In a network with springs and strings cutting
some strings can increase the height by at
most a factor of 4/3.

H

Cuttin

R g

middle -
string

General Latency Functions

* Question: what about more general
edge latency functions?

* Bad Example: (r=1, d large)

A Nash flow can
cost arbitrarily
more than the
optimal (min-cost)
flow

1 x4 1.

34

Sharper results for non-atomic
games

Theorem 2 (Roughgarden'02):

+ Inany network with any class of convex continuous
latency functions

* the worst price of anarchy is always on two edge
network

e

35

Sharper results for non-atomic
games

Theorem 2 (Roughgarden'02):
In any network with any class of convex continuous
IaTency functions

* the worst price of anarchy is always on two edge
network

Corollary:

price of anarchy for
degree d polynomials is
O(d/log d).

C=d

36
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Another Proof idea

Modified Network

Modify the network NGSh 0.9 B, 2.(x)
T S M S
f, 2,(x) f-B
Ol M)y T Eel
9(x)=1 - fixed cost set A= 2,(f,)
* Add a new fixed delay parallel edge - Optimum on modified network
- fixed cost set A= €,(f,) splits flow so that marginal costs are
* Nash not effected equalized
- Optimum can only improve - and common marginal cost is A= 2,(f.)
Proof of better bound More results for non-atomic games
Nash B 2,(x) Theorem 3 (Rougl'}gar'den—'Tar'dos'OO):
2,(x) ¢ + Inany network with continuous,
Q—'Q - © nondecreasing latency functions
f-B. Q(x)=A

* Theorem 2:the worst price of anarchy is
always two edge network

* Proof: Prize of anarchy on G is median of
ratios for the edges

39

cost of opt with

rates r;for all i rates 2r;for all i

cost of Nash with

Proof ...

40

Proof of bicriteria bound

Nash B 2.(x)
2,(x) ¢
ot - G

fBe  geen

common marginal cost on two edges in opt is A=

2.(f.)

* Proof: Opt may cost very little, but marginal
cost is as high as latency in Nash

+ — Augmenting to double rate costs at least as
much as Nash

41

More results for non-atomic games

Theorem 3 (Roughgarden-Tardos'00):

* Inany network with continuous,
nondecreasing latency functions

cost of opt with
rates 2r;for all i

cost of Nash with
rates r;for all i

<

Morale for the Internet:
build for double flow rate

42

— 462 —




Morale for IP versus ATM?
Corollary: with M/M/1 delay fns: 2(x)=1/(u-x),
where u=capacity

Nash w/cap. 2u < opt w/cap. u

Doubling capacity is more effective than
optimized routing (IP versus ATM)

43

Part IT

+ Discrete potential games:
* network design

* price of anarchy stability

44

Continuous Potential Games

Continuous potential game: there is a function
@(f) so that Nash equilibria are exactly the local
minima of ®

also known as Walrasian equilibrium ® convex then
Nash equilibrium are the minima. For example

O(f) = =, Jo 2,(x) dx

45

Discrete Analog
Atomic Game

R

Theorem Change in potential is same as function
change perceived by one user

+ Each user controls
one unit of flow, and

- selects a single path

O(f) = 2, (2.(1)+.+ L,(f)) ==, @,
Even though moving player ignores all
other users

46

Potential: Tracking Happiness
Theorem Change in potential is same as function
change perceived by one user
O(f) = 2, (2,(1)+.+ L.(f)) = =, @,
Potential before move:

2. ()+.. 2. (f.-1) + £.(f.)
e

ST )

e

o0——->0

Reason?

47

~ o}

Potential: Tracking Happiness
Theorem Change in potential is same as function
change perceived by one user
O(f) = 2, (L(D+.+ L(f)) = Z. @,
Potential after move:

2,(1)+.. 2.(F, 1) + LHE)
+ QD)+ L (f,) + L(f 1)
Change in @ is -,(f,) + £,(f +1)

Reason?

same as change for player

48
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What are Potential Games

Discrete potential game: there is a function
®(f) so that change in potential is same as function
change perceived by one user

Theorem [ Discrete
potential games if and only if congestion game (cost
of using an element depends on the number of users).

Proof of “if" direction ®(f) = =, (£,(1)+..+ 2,(f,))

Corollary: Nash equilibria are local min. of ®(f)

49

Why care about

Best Nash/Opt ratio?

Nash = outcome of selfish behavior
=worst Nash/Opt ratio: Price of Anarchy

Non-atomic game: Nash is unique...
Atomic Nash not unique!

Best Nash is good quality...

cost of best selfish outcome

Price of Stability=—

‘socially optimum” cost

cost of worst selfish outcome
“socially optimum” cost

Price of Anarchy=

Potential argument = Low price of stability

But do we care?

51

Atomic Game: Routing with Delay

Theorems 142 true for the Nash minimizing the
potential function, assuming all players carry
the same amount of flow

Worst case on 2 edge network

52

Atomic Game: Price of Anarchy?

Theorem: Can be bounded for some classes of
delay functions

e.g., polynomials of degree at most d at most
exponential in d.

53

Network Design as Potential Game

16=(V.E),
costs ¢, (x) forallecE,
k terminal sets (colors)

Have a player for each color.
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Network Design as Potential Game

16 =(V.E),
costs ¢, (x) forall e € E,
k terminal sets (colors)

Have a player for each color.
Each player wants to build a

network in which his nodes
are connected.

Player strategy: select a
tree connecting his set.

Costs in Connection Game

Players pay for their trees,
want to minimize payments.

What is the cost of the edges?
¢, (x) is cost of edge e for x users.

Assume economy of scale for costs:

¢, (x

Costs in Connection Game

Players pay for their trees,
want to minimize payments.

What is the cost of the edges?
¢, (x) is cost of edge e for x users.

Assume economy of scale for costs:

c. (x How do players share
the cost of an edge?

A Connection Game

How do players share the cost
of an edge?

Natural choice is
or

A Connection Game

How do players share the cost
of an edge?

Natural choice is
or

Players using e pay for it evenly:
aP)= Z c (k) /k,
where k, number of users on edge e

59

A Connection Game
How do players share the cost
of an edge?

Natural choice is
or

Players using e pay for it evenly:
Ci(P) = Z Ce (ke)/ke
where k, number of users on edge e

This is congestion game: £.(x) =c,(x)/x
with decreasing "“latency”
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A Simple Example

61

A Simple Example

b oty
@ @
1 k 1 k
@ @
S1, S, - Sk One NE:
each player
pays 1/k

62

A Simple Example

oty t
@ @ ®
1 k 1 k 1 k
) () ®
St 2. Sk One NE: Another NE:
each player each player
pays 1/k pays 1

63

Maybe Best Nash is good?

We know price of anarchy is bad.

Game is a potential game so maybe Price
of Stability is better.

cost of best selfish outcome

Price of Stability=

“socially optimum” cost

Do we care?

64

Nash as Stable Design

Need to Find a Nash equilibrium

- Stable design: as no user finds it in their
interest o deviate

Need to find a "good"” Nash

- Best Nash/Opt ratio? = Price of Stability
[ADKTWR 2004]

Design with a constraint for stability

65

Results for Network Design

Theorem

Price of Stability is at most O(log k) for k
players
proof:
- edge cost €, with k, > O users
- edge potential with k, > O users
®, =c,(1+1/2+1/3+..+1/K)
— Ratio at most H,=0O(log k)

66
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Example: Bound is Tight

1)
((0@3
@)

67

Example: Bound is Tight

cost(OPT) = 1+ ¢

68

Example: Bound is Tight

cost(OPT) = 1+¢
..but not a NE:
player k

pays (1+ € )/k,
could pay 1/k

69

Example: Bound is Tight

so player k
would deviate

70

Example: Bound is Tight

now player k-1
pays (1+ € )/(k-1),
could pay 1/(k-1)

71

Example: Bound is Tight

so player k-1
deviates too
(k)

1+

72
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Example: Bound is Tight

Continuing this
process, all
players defect.

This is a NE!
(the only Nash)
cost=1 +12+ +%

Price of Stability is H, = ©(log k)!

73

Congestion games

Routing with delay:

+ cost increasing with
congestion

e.g., C,(x)= x-2,(x)=x91

xd 1

Network Design Game:

+ cost decreasing with
congestion

e.g., 2,(x)= c(x),/x

74

Contrast with Routing Games

Design with Fair Sharing
* ¢,(x) decreasing

Routing games
*+ ¢,(x) increasing

OK? to split traffic
+ Nash is unique

need to select single path

*+ Many equilibria

75

Part ITIT

Is Nash a reasonable concept?

Is the price of anarchy always small?

and what can be do when its too big
(mechanism design)

Examples:
* Network design and
- Resource allocation

76

Why stable solutions?

Plan: analyze the quality of Nash equilibrium.
But will players find an equilibrium?

* Can a stable solution be found in poly. time?
* Does natural game play lead to an equilibrium?

 We are assuming non-cooperative players,
what if there is cooperation?

7

Why stable solutions?

Plan: analyze the quality of Nash equilibrium.
But will players find an equilibrium?

+ Can a stable solution be found in poly. time?
+ Does natural game play lead to an equilibrium?

+ We are assuming non-cooperative players,
what if there is cooperation?

Answer 1. A clean solution concept and exists
([Nash 1952] if game finite)

Does life lead to clan solutions?
78
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Why stable solutions?

* Finding an equilibrium?

Nonatomic games: we'll see that equilibrium can be
found via convex optimization [Beckmann'56]

Atomic game: finding an equilibrium is polynomial local
search (PLS) complete [Fabrikant, Papadimitriou, Talwar
STOC04]

79

Why stable solutions?

+ Does natural game play lead to equilibrium?

we'll see that natural "best response play” leads to
equilibrium if players change one at-a-time

See also:
Fischer¥Rdcke¥Vocking'06, Blum¥Even-Dar¥Ligett'06

also if players simultaneously play natural learning

strategies

80

Why stable solutions?

+ We are assuming non-cooperative players

Cooperation? No great models,
see some partial results on Thursday.

81

How to Design “Nice” Games?
(Mechanism Design)

* use payments to induce

all players to tell us his
utility for connection

« Select a network to

maximize social welfare
(minimize cost)

82

How to Design “Nice” Games?
(Mechanism Design)

* use payments to induce
all players to tell us his
utility for connection

+ Select a network to
maximize social welfare
(minimize cost)

Cost lot of money; lots of
information to share

83

How to Design “Nice” Games?
(Mechanism Design)

* use payments to induce

all players to tell us his
utility for connection

» Select a network to
maximize social welfare
(minimize cost)

Cost lot of money; lots of
information to share

Here:

» design a simple/natural

Nash game where users
select their own graphs
and

» analyze the Prize of
Anarchy

84
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Network Design Mechanism

We used fair sharing ...

Ci(P) = Z Ce (ke ) /ke
where k, number of users on edge e

which makes network design a potential game

85

Network Design Game Revisited

We used fair sharing ...

Another approach: Why not free market?

players can also agree on shares? ..any division
of cost agreed upon by players is OK.

Near-Optimal Network Design with Selfish Agents
STOC '03 Anshelevich, Dasgupta, Tardos, Wexler.

86

Network Design without Fairness

Results [Anshelevich, Dasgupta, Tardos, Wexler
STOC03]

Good news: Price of Stability 1 when all users
want to connect to a common source

(as compared to log n for fair sharing)

But: with different source-sink pairs
Nash may not exists (free riding problem)
and may be VERY bad when it exists

Partial good news: 3 low cost Approximate Nash

87

No Deterministic Nash:
Free Riding problem

Network Design

[ADTW STOC'03] 1

Users bid contribution on
individual edges.

« Single source game: )
Price of Anarchy = 1 S| @

* Multi source: no Nash

88

Mechanism Design

Example: Network design.

Results can be used to answer question:
Should one promote “fair sharing” or “free
market”?

89

Another Example: Bandwidth
Allocation

i

3
§

Many Users with diverse
utilities for bandwidth.

How should we share a
given B bandwidth?

e 0

90
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Bandwidth Sharing Game

Assumption:

Users have a utility function U;(x) for receiving x
bandwidth.

Assume elastic users
(concave utility functions)

91

A Mechanism:

.
m i‘? + Players offer money w,
I for bandwidth.
» Bandwidth allocated
proportional to payments:
— effective price p= (Z; w, )/B
— player allocation x; = w; /p

Kelly: proportional sharing

3

4%

§

Many Users with diverse
utilities for bandwidth.

How should we share a
given B bandwidth?

92

A Mechanism:

% 5 ‘L Kelly: proportional sharing
e 0

| R
Many Users with

diverse utilities for
bandwidth.

+ Players of fer money w; for
bandwidth.

+ allocation proportional:
- unit price p= (Z; w; )/B
- playerigets x;=w; /p

Thm: If players are price-takers
(do not anticipate the effect
of their bid on the price)

— Selfish play results in optimal
allocation

How should we share a
given B bandwidth?
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Price Taking Users

Given price p:
how much bandwidth does user i want?

U(x
slope p. )
Answer: keeps asking
for more until marginal
increase in happiness is —
. i X
af least p: Assume elastic users
U/ (x)=p (concave utility functions)
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Price Taking Users:
Kelly Mechanism Optimal

Equilibrium at price p: slope p

each user i wants x; such
that U/(x)=p

Total bandwidth used up at
price p

— result optimal division of
bandwidth X X

Assume elastic users

(concave utility functions)

Ui(x)

Price taking users
standard assumption if many players

95

Kelly Proportional Sharing:

i
0

Johari-Tsitsikis, 2004:

1

% ;
<

§

Players offer money
w; for bandwidth.

: what if players do

anticipate their effect
on the price?

Theorem: Price of Anarchy
at most % on any
networks, and any
number of users

Bandwidth allocated
proportional to
payments

96
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Theorem [Johari-Tsitsikis,
ﬁ T "ﬁ_ 2004] Price of Anarchy at
| .

most  on any networks, and
any number of users

Kelly Proportional Sharing:

Why not optimal? big users
“shade"” their price. User
choice

Players of fer money w;
for bandwidth.

U/ (x)(1-x;)=p
assuming total bandwidth is 1

Bandwidth allocated
proportional to
payments

Worst case: one large user and
many small users
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Summary

We talked about many issues

Price of Anarchy/Stability/Coalitions

in the context of some Network Games:

- routing, load balancing, network design,
bandwidth sharing

- Designing games (mechanism design)
- network design

98

Algorithmic Game Theory
+ The main ingredients:
- Lack of central control like distributed computing

- Selfish participants game theory
+ Common in many settings e.g., Internet

Most results so far:
- Price of anarchy/stability in many games,
including many I did not mention

- e\.;q. Facilh‘z location (another potential game)
[Vetta FOCS'02] and [Devanur-Garg-
Khandekar-Pandit-Saberi'04]:
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Some Open Directions:

* Other natural network games with low

lost of anarchy

* Design games with low cost of anarchy

* Better understand dynamics of natural

game play

* Dynamics of forming coalitions

100
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Polynomial Time Algorithms

For Market Equilibria

Vijay V. Vazirani

Markets

Stock Markets

lINVESTMENT STRATEGY SESS]ON'

lﬂ HEA;EH

UTIl.lTiE \ YELcas
@ TECH,

T ERIALY)

” r —h
@ .

IT'S BECIDEDI WE'LL BUY TECH COMPANIES|

Internet

m Revolution in definition of markets
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m Revolution in definition of markets

m New markets defined by
Google
Amazon
Yahoo!
Ebay

m Revolution in definition of markets

m Massive computational power available

m Revolution in definition of markets

m Massive computational power available

m Important to find good models and
algorithms for these markets

Adwords Market

m Created by search engine companies
Google
Yahoo!
MSN

m Multi-billion dollar market

m Totally revolutionized advertising, especially
by small companies.

- I—:',: i‘ Kl himgy o o0 v [ =
Goting SariedLasest hemiiiness  Camputstionsl Co. 3 Tht tew Tork Tim.. . _ How Magariots _ Harvard Ecesc Grous
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GOL',gle foiox Search | fimsiins

‘s 1-10 of sbcut 9,990,000 for viexx. (038 saconds)

J Expactad o rench $18,000,000,000! For Viaxs Damages - Gat Mors Infe.
it

tor injurias taking Vioxs

vioxx.com
MERCK, Print Butice. Dres Dnly VIO ... Mirk Annsunses Volatan Wordwide Wishdmanl VoK Lawsuis
oar sftacks and strokos

of VIOXX &. WHITEHOUSE STATION, NJ, Sept. 30, 2004—Mesck & Ca. lne. ..
£ P Find Viow attamays nationaide
e i heart-ilach. cor

v o

Vioxx Redirect
This page will be recinected 10 tha Vicx Information Page in 10 secorcs. Or you
many chick on P link hitg iws fda. gowcden drugrinfopagevon def sl him

s 218 infevinws ke - T

Anomays - Cumsnt Viaex Infa
Free Cate Riview, Quick Response
Vi {rofecoxib) Vigxx Vistini?

Search. Vioxx (ofecoxit). Merck & Co., inc, snnounced 3 voluntary wilhdrawal f you had heart astack or simko
of Vionx (pofecox i) from the US and wordwde markel . whies £rs vioxa out firm can help

fiage viem defau
1 A |
Migox?

i - Rl i Viox Heart Atack or Stroke?
with VIDKK: Proiect Your Legal Rights Hers
1400 pationts Fecesed VIDKCK for B MONis of INger and approximately ... o Abenandert i corm
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e
Start Reaching Prospects wilh AdWords Today: Done:
1: Choose target languages and countries
2: Create Ad Groups.

3: Set your daily budget

0O & &80

4: Create your accsunt
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How will this market evolve??

m The study of market equilibria has occupied
center stage within Mathematical Economics
for over a century.

m The study of market equilibria has occupied
center stage within Mathematical Economics
for over a century.

m This talk: Historical perspective
& key notions from this theory.

2). Algorithmic Game Theory

m Combinatorial algorithms for
traditional market models

" JEET
3). New Market Models

m Resource Allocation Model of Kelly, 1997

" S
3). New Market Models
m Resource Allocation Model of Kelly, 1997

m For mathematically modeling
TCP congestion control

m Highly successful theory
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A Capitalistic Economy

Depends crucially on

pricing mechanisms to ensure:

m Stability
m Efficiency

m Fairness

Adam Smith

m The Wealth of Nations
2 volumes, 1776.

Adam Smith

m The Wealth of Nations
2 volumes, 1776.

m ‘invisible hand’ of
the market

Supply-demand curves

High Supply

Price per bushel

Demand

Low

High
Quantix e

Leon Walras, 1874

b
S4

m Pioneered general

equilibrium theory

Irving Fisher, 1891

m First fundamental

market model

— 476 —




"
Fisher’s Model, 1891 Fisher’s Model

m 7 buyers, with specified money, m(i) for buyer i
e m k goods (unit amount of each good)

$39535$8S ) e . .
m Linear utilities: 74; is utility derived by i

¢ D D “‘" on obtaining one unit of j

m Total utility of i,
cheese milk u.= Zj U; Xy

o . x,; €[0.1]
m People want to maximize happiness — assume v

linBamdifitiges s.t. market clears

Fisher’s Model

m 7 buyers, with specified money, m(i)

m k goods (each unit amount, w.l.0.g.)

m Linear utilities: 14 is utility derived by i
on obtaining one unit of j

m Total utility of ;,
u.=- Z_,—Mij Xii

m Find prices s.t. market clears, i.e.,
all goods sold, all money spent.

"
Arrow-Debreu Model, 1954

Exchange Economy Kenneth Arrow

m Second fundamental market model
m Nobel Prize, 1972

m Celebrated theorem in Mathematical
Economics
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Gerard Debreu

m Nobel Prize, 1983

= JEE
Arrow-Debreu Model

m n agents, k goods

" JEE
Arrow-Debreu Model

m 1 agents, k goods

m Each agent has: initial endowment of goods,
& autility function

= JEE
Arrow-Debreu Model

m n agents, k goods

m Each agent has: initial endowment of goods,
& a utility function
m Find market clearing prices, i.¢., prices s.t. if
Each agent sells all her goods
Buys optimal bundle using this money

No surplus or deficiency of any good

" JEE
Utility function of agent i
=  4:R'>R
m Continuous, monotonic and strictly concave
m For any given prices and money m,

there is a unique utility maximizing bundle
for agent i.

Arrow-Debreu Model

Agents:
Buyers/sellers
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Initial endowment of goods

Prices

@ $40
. @

©%25 @=$150=%$10

(@) $40
o. @

@=925 @ -s15 © =510
Agents Agents
. =
Goods Goods
e O ® o0 ® O ® 0
‘e % ‘@ (0
" EE— " I
| Maximize utility
ncomes U :(x,%,,...x,) >R
Agents Agents
$50 - $50 —
e o $60 ® P e o $60 ® e e
Prices Prices

%25 @=$150=$10

Find prices s.t. market clears

$50
® 9) $60 ®

(@) $40
e . @

Agents

]

Goods

®© 00

Prices
©%25 @=$150=%10

Maximize utility
U, :(x,...x,) >R

m Observe: If p is market clearing
prices, then so is any scaling of p

m Assume w.l.o.g. that sum of
prices of k goods is 1.

m A, : k-1 dimensional

unit simplex
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Arrow-Debreu Theorem
m For continuous, monotonic, strictly concave

utility functions, market clearing prices

exist.

Proof

m Uses Kakutani’s Fixed Point Theorem.
Deep theorem in topology

Proof

m Uses Kakutani’s Fixed Point Theorem.
Deep theorem in topology

m Will illustrate main idea via Brouwer’s Fixed
Point Theorem (buggy proofl!!)

*
Brouwer’s Fixed Point Theorem
m Let S < R" beanon-empty, compact, convex set
m Continuous function  f:S =S

m Then 3xeS:f(x)=x

Brouwer’s Fixed Point Theorem

" JEET
Idea of proof

= Will define continuous function 7 A, = A,

m If p is not market clearing, f{p) tries to
‘correct’ this.

m Therefore fixed points of f must be
equilibrium prices.
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Use Brouwer’s Theorem

" JE
When is p an equilibrium price?
m 5(j). total supply of good ;.

m B(i): unique optimal bundle which agent i
wants to buy after selling her initial

endowment at prices p.

m d(j): total demand of good ;.

" JE
When is p an equilibrium price?
m 5(j): total supply of good ;.

m B(i): unique optimal bundle which agent i
wants to buy after selling her initial

endowment at prices p.

m d(j): total demand of good ;.

m For each good j: s(j) = d(j).

" JEET
What if p is not an equilibrium price?
=) <dg) => 1 pg)

m () > di) => | p()

m Alsoensure P € Ak

" I
mlet  f(p)=p'

o PG ~s()
w S()<dg) =>  p'(j) o

w g >dg) => p)=LL

m N isst. ,p(j)=1
7

" JEE
Vi: U, is a cts. fn.

= Vi: B(i) isacts. fn. of p

= Vj: d(]) isacts. fn. of p

=> f isacts.fn.of p
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= JEE
Vi:u, isacts. fn.

= Vi: B(i) is acts. fn. of p

=> Vj;d(]‘) isacts. fn. of p
=> f isacts. fn.of p

By Brouwer’s Theorem, equilibrium prices exist.

" JEET
Viiu, isacts. fn.
=> Vi:B(i) isacts.fn.of p
=> ‘v’j;d(j) isacts. fn. of p
=> f isacts.fn.of p
By Brouwer’s Theorem, equilibrium prices exist.

g.ed.!

" JEE
Kakutani’s Fixed Point Theorem

m ScR" convex, compact set

m 5528 non-empty, convex,
upper hemi-continuous correspondence

=3dxeS st Xxef(x)

= JEE
Fisher reduces to Arrow-Debreu

m Fisher: n buyers, & goods

m AD: n+l agents

first » have money, utility for goods
last agent has all goods, utility for money only.
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Combinatorial Algorithms for
Market Equilibria

Vijay V. Vazirani

m Arrow-Debreu Theorem: Equilibria exist.

m Arrow-Debreu Theorem: Equilibria exist.

m Do markets operate at equilibria?

m Arrow-Debreu Theorem: Equilibria exist.

m Do markets operate at equilibria?

m Can equilibria be computed efficiently?

Arrow-Debreu is highly non-constructive

"
Arrow-Debreu is highly non-constructive
m “Invisible hand” of the market: Adam Smith
m Scarf, 1973: approximate fixed point algs.

m Convex programs:
Fisher: Eisenberg & Gale, 1957
Arrow-Debreu: Newman and Primak, 1992
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m Used for deciding tax policies, price of new
products etc.

m New markets on the Internet

Algorithmic Game Theory

m Use powerful techniques from modern algorithmic
theory and notions from game theory to address
issues raised by Internet.

m Combinatorial algorithms for finding market
equilibria.

Two Fundamental Models

m Fisher’s model

m Arrow-Debreu model,
also known as exchange model

Combinatorial Algorithms

m Primal-dual schema based algorithms
Devanur, Papadimitriou, Saberi & V., 2002
Combinatorial algorithm for Fisher’s model

m Auction-based algorithms
Garg & Kapoor, 2004
Approximation algorithms.

" JEET
Approximation
m Find prices s.t. all goods clear

m Each buyer get goods providing
at least (1—¢&)xoptimal utility.

" JEETT
Primal-Dual Schema
m Highly successful algorithm design

technique from exact and
approximation algorithms
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Exact Algorithms for Cornerstone
Problems in P:

m Matching (general graph)
m Network flow

m Shortest paths

m Minimum spanning tree
m Minimum branching

Approximation Algorithms

set cover facility location
Steiner tree k-median

Steiner network multicut

k-MST feedback vertex set
scheduling . ..

Main new i1dea

m Previous: problems captured via

linear programs

m DPSV algorithm: problem captured via a

nonlinear convex program

Fisher’s Model

m 7 buyers, with specified money, m(i) for buyer i
m k goods (unit amount of each good)
m Linear utilities: 1/; is utility derived by i
on obtaining one unit of j
m Total utility of ,

u.= Zj U; Xy
x, €[0.1]

Fisher’s Model

m 5 buyers, with specified money, m()

m £ goods (each unit amount, w.l.0.g.)

m Linear utilities: 14 is utility derived by i
on obtaining one unit of ;

m Total utility of 7,

U= 20Uy Xy

m Find prices s.t. market clears

Eisenberg-Gale Program, 1959

max Y m(i)logu(i)

S.t.
Vi:u(i)= Z,-ui,x,-,-
Vi), x, <1

Vlj:xy_ZO
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DPSV Algorithm

m “primal” variables: allocations of goods
m “dual” variables: prices

m algorithm: primal & dual improvements

Market Equilibrium
= Buyer i’s optimization program:
maximize ST wesmas
SUDJeCT to PR foat At

= Global Constraint:

Allocations Prices
People Goods Prices and utilities
$100 @ D $100 10 E $20
20
$60 @ $60 @ $40
L )
s20 © [ ] $20 © ) $10
$140 O© D $140 © T $60
utilities
" JEETT
Bang per buck
Bang per buck
$100 10 ] s20 1020 gp
20 m Utility of $1 worth of goods
$60 ) $40 20/40
4
m Buyers will only buy goods providing
20 © 2 $10 4/10 maximum bang per buck
Ugj
s140 © 2/60 max —L
W
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Equality subgraph

$100 @ 10 E $20 10120
20
$60 @ $40  20/40
4
20 O ’ $10  4/10
$140 O $60 2/60

Equality subgraph
$100 @ T s
$60

® ] s
$20 / $10
$140 @ B $60

Most desirable goods for each buyer

m Any goods sold in equality subgraph make
agents happiest

m How do we maximize sales in equality

m Any goods sold in equality subgraph make
agents happiest

m How do we maximize sales in equality

subgraph? subgraph?
Use max-flow!
" JEE
Max flow
Idea of Algorithm
20
109, m Invariant: source edges form min-cut
60 40 (agents have surplus)
\/ 10
20 m [terations: gradually raise prices,
140 %0 decrease surplus

1

infinite capacities

m Terminate: when surplus =0, i.e.,

sink edges also form a min-cut
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Ensuring Invariant initially

How to raise prices?

m Ensure equality edges retained

m Set each price to 1/n J
Ui Uil
: [ =
m Assume buyers’ money integral / pi pi
" JEE
20x
How to raise prices? 109,
m Ensure equality edges retained 60 40x
_ 10,
J 20
, Ui Ui
i == 140 Ox
/ b P
D Ui initialize: x =1
* Raise prices proportionately —=—
pr Ui x 1
active

x = 2: another min-cut

x>2: Invariant violated

reinitialize: x=1

frozen
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active

I

l x=1.25

frozen

unfreeze

p ensure
Invariant

I3
I3
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m p  ensure m DX
Invariant B
x=1, x1
Ir'es) S I'(S) S tight set
x-p(S)=m(I'(S)) x-p(S)=m('(S)) = freeze S
I'(S) S I'S) . S
DX
prices in S are market clearing x=1, x1
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I'eS) S I'(S) : : S
px px
x=1, x1 x=1, x1
I'(S) : | S : |
new edge enters equality subgraph unfreeze component
" JE
* All goods frozen => terminate  All goods frozen => terminate
(market clears) (market clears)

* When does a new set go tight?

*Solve as parametric cut problem
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Termination

m Prices in S* have denominators < A =nU",

) . 242
m Terminates in Mn~ A~ max-flows.

Polynomial time?

m Problem: very little price increase
between freezings

Polynomial time?

m Problem: very little price increase
between freezings

m Solution: work with buyers having
large surplus

Max flow
20
100
60 40
10
20
140 60

Max flow
20
100
60
20
140

surplus(i) = m(i) — f{i)
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surplus(i) = m(i) — f(i)
20

Surplus vector = (40, 60, 20, 70)

Balanced flow

m A max-flow that minimizes /, norm of

surplus vector

tries to make surpluses as equal as possible

Algorithm > frozen
m Compute balanced flow
>> active
Active subgraph: Buyers with
maximum surplus
> frozen frozen
>> DX active / active
x=1, xt new edge enters equality subgraph
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frozen

active

Unfreeze buyers having residual path to

active subgraph

frozen

active

Unfreeze buyers having residual path to
active subgraph

Do they have large surplus?

" JEE
/> balanced flow
R(f): residual graph

Theorem: If R(f) has a path from i to; then

surplus(i) > surplus(j)

frozen

active

New set tight

frozen

active

New set tight: freeze

Theorem: After each freezing, /, norm of
surplus vector drops by (1 -1/n?) factor.

m Two reasons:
total surplus decreases
flow becomes more balanced
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Idea of Algorithm

m algorithm: primal & dual improvements

SN

Allocations Prices

m measure of progress: /,-norm of surplus vector

" JEETT
Polynomial time

Theorem:  O(n*(nlogU +log Mn?))

max-flow computations suffice.

Weak gross substitutability

m Increasing price of one good cannot decrease
demand for another good.

Weak gross substitutability

m Increasing price of one good cannot decrease
demand for another good.

=> never need to decrease
prices (dual variables).

Weak gross substitutability

m Increasing price of one good cannot decrease
demand for another good.

=> never need to decrease

prices (dual variables).

m Almost all primal-dual algs work this way.

" A
Arrow-Debreu Model
m Approximate equilibrium algorithms:

Jain, Mahdian & Saberi, 2003:
Use DPSV as black box.

Devanur & V., 2003: More efficient, by
opening DPSV.
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Garg & Kapoor, 2004
Auction-based algorithm

m Start with very low prices

m Keep increasing price of good that is in demand

m Bhas excess money. Favorite good: g
Currently at price p and owned by B’

m B outbids B’

5 Outbid B

-p(l+¢) +p

e p(l+e)
| — 7

" JET
Auction-based algorithm
m Go inrounds: B,,B,,...B,

m In each round, total surplus decreases
by (I+¢&) factor

m Hence log,,,, M iterations suffice,
M= total money

Arrow-Debreu Model

m Start with all prices 1
m Allocate money to agents (initial endowment)
m Perform outbid and update agents’ money

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)
m Perform outbid and update agents’ money

m Any good with price >1 is fully sold

Arrow-Debreu Model

m Start with all prices 1
m Allocate money to agents (initial endowment)
m Perform outbid and update agents’ money

m Any good with price >1 is fully sold

max price o maxu,

min price  minu,;

m Eventually every good will have price >1
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m Garg, Kapoor & V., 2004:

Auction-based algorithms for
additively separable concave utilities
satisfying weak gross substitutability

m Kapoor, Mehta & V., 2005:

Auction-based algorithm for
a (restricted) production model

" JE
Q: Distributed algorithm for equilibria?

m Appropriate model?

m Primal-dual schema operates via

local improvements
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New Market Models

Resource Allocation Markets

Fisher’s Model

m 7 buyers, with specified money, m(i) for buyer i
m k goods (unit amount of each good)
m Linear utilities: 14; is utility derived by i

on obtaining one unit of j

m Total utility of i,

Vijay V. Vazirani = . x
x, €[0.1]
F " oEE———
Fisher’s Model Eisenberg-Gale Program, 1959

m 7 buyers, with specified money, m(i)

m k goods (each unit amount, w.l.o.g.) max z m(i)log u(i)
m Linear utilities: 14 is utility derived by i st !

on obtaining one unit of j L
m Total utility of ; vizu® =2, u, X,

Vi), x, <1
U= 2, Uy X, Vij:ix, 20
ij
m Find prices s.t. market clears
" D " A

Via KKT Conditions can establish:

m Optimal solution gives equilibrium
allocations

m Lagrange variables give prices of goods

Eisenberg-Gale program
helps establish:

m Equilibrium exists (under mild conditions)
m Equilibrium utilities and prices are unique
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Eisenberg-Gale program

helps establish:

m Equilibrium exists (under mild conditions)

m Equilibrium utilities and prices are unique

m Rational!!

Kelly’s resource allocation model, 1997

Mathematical framework for understanding
TCP congestion control

Kelly’s model

ml) g, c(e) y

1
S>
m(2)

Given:
network G = (V,E)

(directed or undirected)
capacities on edges
source-sink pairs (agents)

m(i): money/unit time agent i

is willing to pay

" JEETT
Kelly’s model

Si

I,

L

S>

Network determines:

f(i): flow rate of agent i

Assume utility u(i) = m(i) log f(i)
Total utility is additive

Convex Program for Kelly’s Model

max Y m(i)log f (i)

1

S.t. ,
‘v’i:f(i)zzpfi
Ve: flow(e) < c(e)

Vi,p:flpZO

" JEETT
Kelly’s model

S1 p(e)

t

S>

Lagrange variables:

p(e): price/unit flow
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Kelly’s model

Optimum flow and edge prices

are in equilibrium:

Kelly’s model

Optimum flow and edge prices

are in equilibrium:

S ple) ¢ S p(e) t
2 2
1). p(e)>0 only if e is saturated 1). p(e)>0 only if e is saturated
2) flows go on cheapest paths 2) flows go on cheapest paths
3) money of each agent is fully used 3) money of each agent is fully used
t t
Let rate(i) = cost of cheapest path for i Let rate(i) = cost of cheapest path for i
S> m(i) = f{i) rate(i) S> f{i)’s and rate(i)’s are unique!
"SI "
TCP Congestion Control TCP Congestion Control

m /(i) source rate
m pee): prob. of packet loss (in TCP Reno)
queueing delay (in TCP Vegas)

m f(i): source rate
" e): prob. of packet loss (in TCP Reno)
queueing delay (in TCP Vegas)

Kelly: Equilibrium flows are
proportionally fair: only way of
increasing an agent’s flow by 5% is to
decrease other agents’ flow by at least 5%

TCP Congestion Control

m /(i) source rate
m pee): prob. of packet loss (in TCP Reno)
queueing delay (in TCP Vegas)

m Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

TCP Congestion Control

m /(i) source rate
[ o prob. of packet loss (in TCP Reno)
ple): . .
queueing delay (in TCP Vegas)
m Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

m AIMD + RED converges to equilibrium
primal-dual (source-link) alg.
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TCP Congestion Control Combinatorial Algorithms
m f(i): source rate m Devanur, Papadimitriou, Saberi & V., 2002:
® ). prob. of packet loss (in TCP Reno) for Fisher’s linear utilities case

queueing delay (in TCP Vegas)

m Kelly & V., 2002: Kelly’s model is a
generalization of Fisher’s model.

m Low, Doyle, Paganini: continuous time algs.
for computing equilibria (not poly time).

m FAST: for high speed networks with large Find comb. poly time algs!
bandwidth
" D " A
Irrational for 2 sources & 3 sinks Irrational for 2 sources & 3 sinks
$1 $1 3
2 2
S f t SN3 o L
1 s> 2 t S2 t,
$1
Equilibrium prices

m | source & multiple sinks
m 2 source-sink pairs

1,810

1, $10
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7, $100

1, $10

Jain & V., 2005: strongly poly alg

m Primal-dual algorithm
Usual: linear programs & LP-duality
This: convex programs & KKT conditions

m Ascending price auction
Buyers: sinks (fixed budgets, maximize flow)
Sellers: edges (maximize price)

rate(i): cost of cheapest § ~7; path
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m(i)

rate(i)

Capacity of #,~f edge = min s-t cut

p=p rate(2):p0 p, P T rate(2) = D,
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= JEE
=
tl
S
- t,

——

rate(2) = D,

p, P

rate(l) = rate(3) = P, D,

t
14

= JEE
s
tl
e s
—~—
P P

pT

" JEE
=
t
S
- t,

[ —

p, P, 2 nested cuts

t
E rate(2)= p_

= JEE
s
t
e s
—~—
P D

p,

rate(l) = rate(3) = P, D,

rate(4) = p,tptD,

m Find s-t max flow

m Flow and prices will:

Saturate all red cuts
Use up sinks’ money
Send flow on cheapest paths

t $120

t, $10
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t
ya 1 12%0
t
z </m
2 2 >
N — b
p=10
" -~
a L 120 a L 120
y 1 10+ p t y' 1 w‘:t
s | B
y </ 1 ; </ 1
2 >
N — b

8304 s120

$10

40
s t: $10

Rational!!
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Max-flow min-cut theorem

Other resource allocation markets

m 2 source-sink pairs (directed/undirected)
m Branchings rooted at sources (agents)

m Spanning trees

m Network coding

Eisenberg-Gale-Type Convex Program

max Y m(i)logu(i)

st. packing constraints

" JEET
Eisenberg-Gale Market
m A market whose equilibrium is captured

as an optimal solution to an
Eisenberg-Gale-type program

" J
m Megiddo, 1974: Let T = set of sinks (agents)

m For S c T define v(S) to be the max-flow
possible from s to sinks in S.

m Then v is a submodular function, i.e., for
AcBCcT,
te A,
v(B+1t)—v(B)<v(A+1t)—-v(A)

Simpler convex program for
single-source market

max Y m(i)log f (i)

S.t.
VST )  f)<wS)
Vi:f(i)=0
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Submodular Utility Allocation Market

m Any market which has simpler program
and v is submodular

Submodular Utility Allocation Market

m Any market which has simpler program

and v is submodular

m Theorem: Strongly polynomial algorithm
for SUA markets.

Submodular Utility Allocation Market

m Any market which has simpler program
and v is submodular

m Theorem: Strongly polynomial algorithm
for SUA markets.

m Corollary: Rational!!

m Theorem: Following markets are SUA:
2 source-sink pairs, undirected (Hu, 1963)
spanning tree (Nash-William & Tutte, 1961)
2 sources branching (Edmonds, 1967 + JV, 2005)

m 3 sources branching: irrational

m Theorem: Following markets are SUA:
2 source-sink pairs, undirected (Hu, 1963)
spanning tree (Nash-William & Tutte, 1961)
2 sources branching (Edmonds, 1967 + JV, 2005)

m 3 sources branching: irrational

m Open (no max-min thoerems):
2 source-sink pairs, directed
2 sources, network coding

m Theorem: Following markets are SUA:
2 source-sink pairs, undirected (Hu, 1963)
spanning tree (Nash-William & Tutte, 1961)
2 sources branching (Edmonds, 1967 + JV)

m 3 sources branching: irrational

m Open (no max-min thoerems):
2 source-sink pairs, directed
2 sources, network coding

Chakrabarty, Devanur & V., 2006
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m EG[2]: Eisenberg-Gale markets with 2 agents

m Theorem: EG[2] markets are rational.

" JEET
m EG[2]: Eisenberg-Gale markets with 2 agents
m Theorem: EG[2] markets are rational.
m Combinatorial EG[2] markets: polytope
of feasible utilities can be described via

combinatorial LP.

m Theorem: Strongly poly alg for Comb EG[2].

Rational

" JEETT
Other properties:
m Efficiency

m Fairness (max-min + min-max fair)
m Competition monotonicity

Open issues

m Strongly poly algs for approximating
nonlinear convex programs
equilibria

m Insights into congestion control protocols?
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Random Sampling Techniques

and Approximation of CSP Problems

MAREK KARPINSKI

UNIVERSITY OF BONN

(NHC Spring School Lectures, Tokyo, March 1, 2006)

Abstract. We present some recent results and new sampling
techniques for absolute and relative approximation of general
Constraint Satisfaction Problems (CSP). The methods used are
threefold and based on: Smooth or Linearized Integer Programs,
combinatorial arguments, and special linear algebraic techniques.
In particular we apply those techniques to construct polynomial
time approzimation schemes (PTASs) for certain instances of
both MAX- and MIN-CSP including dense and subdense in-
stances and general metric and quasimetric instances of those
problems. In that context we study the generic sample com-
plexity for approximating arbitrary CSP instances and try to
establish tight upper bounds for their underlying core-sample
sizes. We go also beyond CSP optimization problems and design
first PTASs for general metric and quasimetric size-constraint
Partitioning Problems.

— 509 —



Selected References

1]

N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski,
Random Sampling and Approximation of MAX-CSPs, J.
Computer and System Sciences 67 (2003), 212-243.

S. Arora, D. Karger and M. Karpinski, Polynomial Time
Approximation Schemes for Dense Instances of NP-
Hard Problems, J. Computer and System Sciences 58
(1999), 193-210.

W. F. de la Vega, R. Kannan, M. Karpinski and
S. Vempala, Tensor Decomposition and Approzimation

Schemes for Constraint Satisfaction Problems, Proc.
27th ACM STOC (2005), 747-754.

W. F. de la Vega and M. Karpinski, Approximation
Complexity of Nondense Instances of MAX-CUT, in
preparation, 2006.

W. F. de la Vega, M. Karpinski and C. Kenyon, Approz-
imation Schemes for Metric Bisection and Partitioning,
Proc. 15th ACM-SIAM SODA (2004), 506-515.

W. F. de la Vega, M. Karpinski, C. Kenyon and Y. Ra-
bani, Approzimation Schemes for Clustering Problems,
Proc. 35th ACM STOC (2003), 50-58.

M. Karpinski, Polynomial Time Approximation Schemes
for Some Dense Instances of NP-Hard Problems, Algo-
rithmica 30 (2001), 386-397.

— 510 —



— 511 —




- 512 —




— 513 —




— 514 —




— 515 —




— 516 —




— 517 —




— 518 —




Approximation Algorithms for Facility Location

Jens Vygen

University of Bonn

Outline

Introduction

Uncapacitated Facility Location

Capacitated and Universal Facility Location

Facility Location and Network Design with Service Capacities

Facility Location: Applications

Y YV VYV VYV VY VY VY

manufacturing plants

storage facilities, depots
warehouses, retail stores
libraries, fire stations, hospitals
servers in the internet

base stations for wireless services

buffers distributing signals on a chip

Goal: Optimum service for clients at minimum cost

Common features of facility location problems

» Two sets: clients and potential facilities

» Each client must be served.
> A potential facility can be opened or not.
» Clients can only be served by open facilities.

» Two cost components: facility cost and service cost.

» Opening a facility involves a certain cost.
» Serving a client from a facility involves a certain cost.

» The total cost is to be minimized.

But there are many variants

» Can a client’s demand be satisfied by more than one facility?

vV vy vyyvy |V

v

Are there constraints on the total demand, or total service
cost, that a facility can handle?

Do the service costs satisfy the triangle inequality?
Are there finitely or infinitely many potential facilities?
Do the facility costs depend on the total demand served?

Is it allowed to serve only a subset of clients, and pay for
those that are not served?

Is there a bound on the number of facilities that we can open?

» Does the total service cost of a facility depend on the sum of

the distances to its clients, or the length of a shortest tour, or
the length of an optimal Steiner tree?

Are we interested in the sum of all service costs, or rather in
the maximum service cost?

Do we need to serve facilities by second-stage facilities (etc.)?

Example 1: Fermat-Weber Problem

The most prominent example for continuous facility location

Locating a single facility in R”: Given ay, ..
Wi, ..., Wnm € Ry, find p € R” minimizing

.,am € R" and weights

m

> willp = aill-

i=1

v

For ¢1-norm solvable in linear time (Blum et al. 1973)

v

lr-norm, n =2, m = 3: Simple geometric solution (Fermat,

Torricelli, Cavalieri, Simpson, Heinen)

» For {-norm: construction by ruler and compasses impossible
(Bajaj 1988)

» Approximate solution for £3-norm: Weiszfeld's algorithm

(Weiszfeld 1937, Kuhn 1973, Vardi and Zhang 2001,

Rautenbach et al. 2004)
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Example 2: Uncapacitated Facility Location (UFL)

The most prominent example for discrete facility location

Instance:
> a finite set D of clients;
» a finite set F of potential facilities;
» a fixed cost f; € Ry for opening each facility i € F;
> a service cost ¢ € Ry for each i € F and j € D.
We look for:
> a subset S of facilities (called open) and
> an assignment o : D — S of clients to open facilities,
» such that the sum of facility costs and service costs
Dty
ics j€ED

is minimum.

More examples discussed later

» Capacitated Facility Location
» Universal Facility Location

» Facility Location and Network Design with Service Capacities

These are more general and more realistic in many applications.

Approximation Algorithms: Definition

Let f be a function assigning a real number to each instance.
An f-approximation algorithm is an algorithm for which a
polynomial p exists such that for each instance /:

> the algorithm terminates after at most p(size(/)) steps,

» the algorithm computes a feasible solution, and

> the cost of this solution is at most f(/) times the optimum

cost of instance /.

f is called the approximation ratio or performance guarantee.
If f is a constant, we have a (constant-factor) approximation
algorithm.

Uncapacitated Facility Location is as hard as Set Covering

SET COVERING: Given a finite set U, a family S of subsets of U
with Jses S = U, and weights w : S — R, find aset R C S
with [ Jger R = U with minimum total weight } . w(R).

» No o(log |U|)-approximation algorithm exists unless P = NP.
(Raz, Safra 1997)

> Greedy algorithm has performance ratio 1+ In|U]|.

(Chvatal 1979)

» SET COVERING is a special case of UNCAPACITATED
FACILITY LOCATION: define D := U, F := S8, fs = w(S) for
5e€S,csj:=0forjeSeSandcsj:=o0cforjecU\S.

» Conversely, the greedy algorithm for SET COVERING can be
applied to UNCAPACITATED FACILITY LOCATION:

Set U:=D, S =F x 2P, and w(i,D) :=fi+ 3 ;cpp ¢j.
(Hochbaum 1982)

A natural assumption: metric service costs
Therefore we assume henceforth metric service costs:
cj >0

and
Cij + ¢cirj + cirjr = cjjr

forall i,i" € F and j,j' € D.
Equivalently, we assume ¢ to be a (semi)metric on DU F.

Motivation:

» The general problem is as hard as SET COVERING.

» In many practical problems service costs are proportional to

geometric distances, or to travel times, and hence are metric.

But: Greedy algorithm has performance guarantee
Q(log n/ log log n) even for metric instances. (Jain et al. 2003)

Integer Linear Programming Formulation

minimize Y " fiyi+ > Y cjx;

ieF ieF jeD
subject to
Xij < Yi (l eF,je D)
doxgoo= 1 (j e D)
ieF

Xij € {0,1} (ieF,jeD)
Vi € {0,1} (ireF)

(Balinski 1965)
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Linear Programming Relaxation

minimize Z fiyi + Z Z X
i€F ieF jeD
subject to
Xij < yi  (ieF,jeD)

ZX,'J' = 1 (jGD)

ieF

\%
o

(ieF,jeD)

Xj

v
o

Yi (IG]‘-)

The Dual LP

maximize ZVJ-
jED
subject to
vi—w; < g (ieF,jeD)

> wj

J€D

IN
SN

(ieF)

wj > 0 (ieF,jeD)

First Approximation Algorithm: LP Rounding

» Compute an optimum solutions (x*, y*) and (v*, w*) to the
primal and dual LP.
» By complementary slackness, xij. > 0 implies vj* — W; = Cjj,
and thus ¢; < vj*.
> Let G be the bipartite graph with vertex set F U D containing
an edge {/,} iff xi > 0.
» Assign clients to clusters iteratively as follows.
> In iteration k, let jx be a client j € D not assigned yet and
with v/ smallest.
» Create a new cluster containing jx and those vertices of G that
have distance 2 from jix and are not assigned yet.
» Continue until all clients are assigned to clusters.

> For each cluster k we choose a neighbour ik of ji with f;
minimum, open ik, and assign all clients in this cluster to i.

Analysis of the LP Rounding Approximation Algorithm

» The service cost for client j in cluster k is at most
Gij < Cjtcj t+cg < vi+2v, < 3V

where i is a common neighbour of j and jx.
» The facility cost f; can be bounded by

AED VRS SV SR
i€F i€F{ijk}€E(G) i€F{ijk}EE(G)
As jx and jir cannot have a common neighbour for k # k’,

the total facility cost is at most » ;. - y;'f;.
» The total cost is at most

3D v+ 2 vt
JED ieF
which is at most four times the LP value. Hence we get:

Theorem
This is a 4-approximation algorithm for metric UFL.

(thnyc’ Tardos and Aardal 1007)

Better approximation ratios for metric UFL

‘ technique ‘ ratio ‘ RT ‘ authors ‘ year ‘
LP-Rounding 3.16 | — | Shmoys, Tardos, Aardal | 1997
LP-Rounding+Greedy | 2.41 | — | Guha, Khuller 1998
LP-Rounding 1.74 | — | Chudak 1998
Local Search 5.01 | o | Korupolu, Plaxton, Ra- | 1998

jaraman

Primal-Dual 3.00 | + | Jain, Vazirani 1999
Primal-Dual+-Greedy 1.86 | + | Charikar, Guha 1999
LP-Rounding+Primal- | 1.73 | — | Charikar, Guha 1999
Dual+Greedy

Local Search 242 | o | Aryaetal 2001
Primal-Dual 1.61 Jain, Mahdian, Saberi 2002
LP-Rounding 1.59 | — | Sviridenko 2002
Primal-Dual+Greedy 1.52 | + | Mahdian, Ye, Zhang 2002

RT : running time; —: slow; o : medium; + : fast

Primal-Dual Algorithm by Jain, Mahdian and Saberi (2002)

Start with U := D and time t = 0. Increase t, maintaining v; = t
for all j € U. Consider the following events:

> v; = cjj, where j € U and i is not open. Then start to increase
w;; at the same rate, in order to maintain v; — w;; = ¢j.

> D jep Wi = f;. Then open i. For all j € D with w;; > 0:
freeze v; and set wy/; := max{0, ¢; — ¢y} for all i/ € F, and
remove j from U.

> v; = cjj, where j € U and i is open. Then freeze v; and set
wirj := max{0, ¢j — ¢js;} for all i’ € F, and remove j from U.
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Improvement by Mahdian, Ye and Zhang (2002)

Multiply all facility costs by 1.504.
Apply the Jain-Mahdian-Saberi algorithm.

Now consider the original facility costs.

vV vy VvVYy

Apply greedy augmentation (Charikar, Guha 1999):

Let g; be the service cost saving induced by adding facility i.
Iteratively pick an element i € F maximizing % as long as
this ratio is greater than 1.

Theorem
This is a 1.52-approximation algorithm for metric UFL.

Lower bound on approximation ratios

Theorem
There is no 1.463-factor approximation algorithm for metric UFL
unless P = NP.

(Sviridenko [unpublished], based on Guha and Khuller [1999] and
Feige [1998])

Local Search as a general heuristic

Basic Framework:
» Define a neighbourhood graph on the feasible solutions.
» Start with any feasible solution x.

» If there is a neighbour y of x that is (significantly) better, set
x :=y and iterate.

Features:
> Quite successful for many practical (hard) problems
» Many variants of local search heuristics

» Typically no guarantees of running time and performance
ratio.

Local Search in Combinatorial Optimization

Example: TSP

» Even simple 2-opt typically yields good solutions. Variants
(chained Lin-Kernighan) with empirically less than 1% error

» Worst-case running time of k-opt is exponential for all k.
» Performance ratio Q(nﬁ).
(Applegate et al. 2003, Chandra, Karloff, Tovey 1999)

Example: Facility Location
» Probably the first nontrivial problem where local search led to
constant-factor approximation algorithms.
(Korupolo, Plaxton and Rajamaran 2000, Arya et al. 2004)
» But: for metric UFL worse in theory (maybe also in practice)
» The only known technique to obtain a constant-factor
approximation for CAPACITATED FACILITY LOCATION.

Capacitated Facility Location (CFL)

Instance:
» finite sets D (clients) and F (potential facilities);
> metric service costs ¢; € Ry for i € F and j € D;
» an opening cost f; € R, for each facility i € F;
» a capacity u; € Ry for each facility i € F;
> a demand d; for each client j € D.
We look for:
> a subset S of facilities (called open) and
> an assignment x : S x D — Ry with Y7, s x; = d; for j € D
and ZjeDij <ujfories§
» such that the sum of facility costs and service costs

Z fi+ Z Cij Xij
ieS JjED

is minimum.

Splittable or Unsplittable Demands

Assume that facilities with given capacities are open.
Task: assign the clients to these facilities, respecting capacity
constraints.

» Splittable (or uniform) demand:
Hitchcock transportation problem.

» Unsplittable non-uniform demand:
Generalizes bin packing.

Consequence: CFL with unsplittable demands has no
approximation algorithm. It is strongly NP-hard to distinguish
between instances with optimum cost 0 and oco.

Hence consider splittable demands only.

— 522 —




Universal Facility Location (UniFL)

Instance:
> finite sets D (clients) and F (potential facilities);
» metric service costs, i.e. a metric c on DU F;
> a demand d; > 0 for each j € D;

» for each i € F a cost function f; : Ry — R4 U {oo},
left-continuous and non-decreasing.

We look for:
> a function x : F x D — Ry with >, x; = dj for all j € D

(a feasible solution), such that c(x) := cr(x) + cs(x) is minimum,
where

cr(x) == Z f,( ZX’7> and

icF \ jeD

C5(X) = Z Z CijXij-

ieF jeD

UniFL: Facility cost function given by an oracle

fi(z): cost to install capacity z at facility /.

Given by an oracle that, for each i € F, u,c € Ry and t € R,
computes f;(u) and

max{d e R:u+06 >0, fi(u+0)— fi(u) + c|d| < t}.
Proposition

There always exists an optimum solution.
(Mahdian and P3l 2003)

UniFL: important special cases

» UNCAPACITATED FACILITY LOCATION:
di =1 (j € D), and £;(0) = 0 and fi(z) = t; for some t; € Ry
and all z >0 (i € F).

» CAPACITATED FACILITY LOCATION:
fi(0) =0, fi(z) = t; for 0 < z < u; and fi(z) = oo for z > u;,
where uj, t; € Ry (i € F).

» SOFT-CAPACITATED FACILITY LOCATION:
di=1(j€D), and fi(z) = [Z]t; for some u; €N, t; € Ry
and all z>0 (i € F).

Simple local search operations

» ADD: open a facility (CFL); add capacity to a facility (UniFL).
» DROP: close a facility (CFL).

» SWAP: open one facility, close another one (CFL).

Even for CFL with non-uniform demands, these operations do not
suffice:

When closing one facility, it may be necessary to open many other
ones (and re-assign the demand along the edges of a star).

Previous approximation algorithms for CFL and UniFL

Kuehn, Hamburger 1963 | add,drop,swap | CFL —

Korupolu, Plaxton, Raja- | add,drop,swap | CFL 8.001 | uniform
maran 1998 capacities

Chudak, Williamson | add,drop,swap | CFL 5.829 | uniform

1999 capacities
Pal, Tardos, Wexler 2001 | add,star CFL 8.532
Mahdian, Pal 2003 add,star UniFL | 7.873

Zhang, Chen, Ye 2004 add,double-star | CFL 5.829

Garg, Khandekar, Pandit | add,double-star | UniFL | 5.829 | not poly-
2005 nomial!

Vygen 2005 add,comet UniFL | 6.702

All based on
local search.

star double star comet

ADD Operation for UniFL

Let t € D and 6 > 0. Replace current solution x by an optimum
solution y of the transportation problem

min{cs(y) y:FxD—Ry, Zy,'j:dj(jED),
ieF
DSy xie FA{t}), D vy < thj+5}.
jeD JED jep jep

We denote by

c*(t,0) :=cs(y) — cs(x) + f thj+(5 —f thj

Jj€ED Jj€D

the estimated cost (which is at least c(y) — c(x)).
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How to find a profitable ADD operation

Lemma
Lete >0 andt € F. Let x be a feasible solution. Then there is an
algorithm with running time O(|V/|3log |V|e™1) that

> finds a § € Ry with c*(t,0) < —ec(x)

> or decides that no § € Ry exists for which c*(t,d) < —2ec(x).

(Mahdian, P4l 2003)

P1voT Operation
Let x be a feasible solution. Let A be a graph with V(A) = F and

JeDy:=6€RT > x;+6;>0forallicF, Y 6 =0
j€D ieF
Then we consider the operation PIVvOT(A, §), which means:
» Compute a minimum-cost (w.r.t. ¢) uncapacitated d-flow in
(A, ©).
» W.l.o.g., the edges carrying flow form a forest.
» Scan these edges in topological order, reassigning clients
according to flow values.
» This increases the cost of the solution by at most the cost of
the flow plus

Zf;(zx,ﬁa,-)fﬁ(zx,j).

ieF JjeD Jj€eD

How to find a profitable P1vOoT operation

But: how to choose §7

» 0 cannot be chosen almost optimally for the complete graph
(unless P = NP).

» We show how to choose § almost optimally if A is a forest.

Restrict attention to PIVOT on arborescences

Let A be an arborescence with V(A) = F. Let x be a feasible
solution.
For 0 € A% define

Cj‘i,i({i) = ﬁ(Zx,-j+6,-) — fl<lej> +

JjED JjeD

>0

e At
JEA]

Cip(i)

for i € F and
c*(A,0) = Z ca i(6).
i€F
Here A} denotes the set of vertices reachable from i in A, and p(i)
is the predecessor of /.

How to find a profitable P1voT for an arborescence

Lemma
Let € > 0. There is an algorithm with running time O(|F|*¢~3)
that
> finds a § € A% with c*(A,0) < —ec(x)
> or decides that no 0 € A% exists for which
(A, 8) < —2¢ec(x).

(Vygen 2005)

Bounding the cost of a local optimum

Let 0 < e < 1. Let x,x* be feasible solutions to a given instance.

Lemma

If (t,0) > —ﬁc(x) for all t € F and 6 € Ry, then

cs(x) < cr(x™) + cs(x™) + ec(x).

(P4l, Tardos and Wexler 2001)

Lemma

If X(A,8) > =1z c(x) for all stars and comets A and & € A}, then

cr(x) < 4cr(x") + 2c5(x") + 2¢5(x) + ec(x).

(Vygen 2005)
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The total cost of a local optimum How to bound the facility cost

Let x be the current solution and x* be an optimum solution.

Let b(i) := 3 ;ep(xy — x) (i € F).

These two lemmata imply: Let y be an optimum transshipment from S := {i € F : b(i) > 0}

Theorem to T:={ie F:b(i) <0}
If c*(t,0) > 7ﬁc(x) fort € F and § € Ry and W.l.0.g., the edges where y is positive form a forest F.
(A, 8) > 7ﬁc(x) for all stars and comets A and § € A%, then The cost of y is at most cs(x*) + cs(x).
c(x) < (1 + €)(Tcr(x*) + 5cs(x")). Using F and y, we will define a set of pivot operations on stars

and comets, whose total estimated cost is at most

4cp(x*) — cr(x) + 2cs(x*) + 2¢5(x).

An operation (A, ) closes s € S if 6, = —b(s) < 0, and it opens
te Tif0<d < —b(t).

Over all operations to be defined, we will close each s € S once,
open each t € T at most four times, and use an estimated routing
cost at most twice the cost of y.

By scaling facility costs by @ we get a polynomial-time

(@ + €)-approximation algorithm for UniFL.

How to define the operations (1) How to define the operations (2)

Orient F as a set of arborescences rooted at elements of T.
Call a vertex weak if there is more flow on downward than on
upward incident arcs, otherwise strong. Let t € T.

t up to twice if t is strong and up to three times if t is weak.

For each child s of t: Close s once, and each child of s at
most once (if weak) or twice (if strong).
Example:

fweak  strong

lwm [Imng

VLSI Design: Distributing a signal to several terminals Problem Statement
Instance:
I » metric space (V,¢),

finite set D C V (terminals/clients),
demands d : D — Ry,
facility opening cost f € Ry,
capacity v € R.

| 4
>
>
>

Find a partition D = D;U---UDj and
Steiner trees T; for D; (i =1,..., k) with

C(E(T,'))‘Fd(D,‘) <u
fori=1,..., k such that

k

> c(E(Ty) + kf
i=1
is minimum.

blue: terminals red: facilities
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Complexity Results

(All the following results are by MaBberg and Vygen 2005)

Proposition

» There is no (1.5 — €)-approximation algorithm (for any ¢ > 0)
unless P = NP.

> There is no (2 — €)-approximation algorithm (for any ¢ > 0)
for any class of metrics where the Steiner tree problem cannot
be solved exactly in polynomial time.

» There is a 2-approximation algorithm for geometric instances
(similar to Arora’s approximation scheme for the TSP).
However, this is not practically efficient.

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, ).

Let e1,...,en—1 be the edges of F1 so that c(e1) > ... > c(en—1).
Set Fi:= Fr—1\ {exk—1} for k=2,...,n.

Lemma

Fk is a minimum weight spanning forest in (D, c) with exactly k
components.

Proof.

By induction on k. Trivial for k = 1. Let k > 1.

Let F* be a minimum weight k-spanning forest.
Let e € Fi_1 such that F* U {e} is a forest. Then

c(Fi) + c(ex—1) = c(Fr—1) < c(F*) + c(e) < c(F*) + c(ex—1)-

|

Lower bound: Steiner forests

A k-Steiner forest is a forest F with D C V/(F) and exactly k
components.

SR R W
=T L HT

Lemma
%C(Fk) is a lower bound for the cost of a minimum weight
k-Steiner forest, where « is the Steiner ratio.

Lower bound: number of facilities
Let t’ be the smallest integer such that
1 /
—c(Fy)+dD) <t -u
@

Lemma
t' is a lower bound for the number of facilities of any solution.

Let t” be an integer in {t/,..., n} minimizing

1
EC(FtN) +t"f.

Theorem
Le(Fu)+ " f is a lower bound for the cost of an optimal
solution.

Algorithm A

1. Compute a minimum spanning tree on (D, ).
2. Compute t” and spanning forest F as above.

3. Split up overloaded components by a bin packing approach.

LY
=R

It can be guaranteed that for each new component at least 5 of
load will be removed from the initial forest.

Analysis of Algorithm A

Recall: Lc(Fyr) +t”- f is a lower bound for the optimum.
We set L, := éc(Ftn) and Lf:=t"-f.
Observe: L, +d(D) < ¢Lyf.

The cost of the final solution is at most
2
c(Fer)+¢F + = (c(Ft”) + d(D)) f
2f
=al,+ L+ T(QL, +d(D))
<al,+ Lf +2als

Theorem
Algorithm A is a (2o + 1)-approximation algorithm.
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Algorithm B

Define metric ¢’ by ¢’(v, w) := min{c(v, w), ﬁ’;f}

1. Compute a Steiner tree F for D in (V,c’) with some
[3-approximation algorithm.

uf

u-t2f "
3. Split up overloaded components of the remaining forest as in
algorithm A.

2. Remove all edges e of F with c(e) >

Theorem

Algorithm B has perfomance ratio 3(3.

Using the Robins-Zelikovsky Steiner tree approximation algorithm
we get a 4.648-approximation algorithm.

With a more careful analysis of the Robins-Zelikovsky algorithm we
can get a 4.099-approximation algorithm in O(n?™") time.

Algorithm C

Define metric ¢” by ¢”(v, w) := min{c(v, w), #’rf}
1. Compute a tour F for D in (V,c") with some
~-approximation algorithm.
2. Remove the longest edge of F.
3. Remove all edges e of F with c(e) > ﬁff

algorithm A.

Theorem

Algorithm C has perfomance ratio 3.

Using Christofides’ TSP approximation algorithm we get a
4.5-approximation algorithm in O(n?) time.

4. Split up overloaded components of the remaining forest as in

Comparison of the three approximation algorithms

Algorithm A computes a minimum spanning tree.
Algorithm B calls the Robins-Zelikovsky algorithm.
Algorithm C calls Christofides' algorithm.

vV v vYyy

Then each algorithm deletes expensive edges and splits up
overloaded components.

algorithm ‘ metric ‘ perf.guar. ‘ runtime

A (R?,41) | 4 O(nlogn)
A general | 5 o(n?)
B general | 4.099 O(n2m°00)
C general | 4.5 o(n?)

Experimental Results

Algorithm A on six real-world instances:

instl inst2 inst3 inst4 instb inst6

# terminals | 3675 | 17140 | 45606 | 54831 | 109224 | 119461
MST length | 13.72 | 60.35 | 134.24 | 183.37 | 260.36 | 314.48
t/ 117 638 1475 2051 3116 3998

L, | 821 | 31.68| 63.73 | 102.80 | 135.32 | 181.45

L,+ Lf | 23.07 | 112.70 | 251.06 | 363.28 | 531.05 | 689.19

# facilities 161 947 2171 2922 4156 5525
service cost | 12.08 | 54.23 | 101.57 | 159.93 | 234.34 | 279.93
total cost | 32.52 | 174.50 | 377.29 | 531.03 | 762.15 | 981.61
gap (factor) 1.41 1.55 1.59 1.46 1.44 1.42

Reduction of power consumption

Algorithm A on four chips, compared to the previously used
heuristic:

chip Jens Katrin Bert Alex
technology | 180nm 130nm | 130nm | 130nm

# clocktrees 1 3 69 195
total # sinks 3805 | 137265 | 40298 | 189341
largest instance 375 | 119461 | 16260 | 35305

power (W, old) 0.100 0.329 | 0.306 2.097
power (W, new) 0.088 0.287 | 0.283 | 1.946
difference | —11.1% | —12.8% | —7.5% | —7.2%
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Some Open Problems

» Close the gap between 1.46 and 1.52 for the approximability
of UNCAPACITATED FACILITY LOCATION.

» Find better lower bounds than 1.46 for capacitated problems
(such as CFL).

Is Universal Facility Location really harder than CFL?

v

v

Improve the approximation ratio for the problem with service
capacities (in (R2, /1), with a practically efficient algorithm).
» In some real-world instances, there exists an interval graph on
the terminals, and we have to partition this graph into cliques.
Is there an approximation algorithm for the resulting problem?

v

What other interesting problems combining facility location
with network design, or routing, can be approximated?

» What about multi-stage extensions?

Further Reading

» J. Vygen. Approximation Algorithms for Facility Location
Problems (lecture notes, with complete proofs and references).
Can be downloaded at
http://www.or.uni-bonn.de/ vygen

» B. Korte, J. Vygen. Combinatorial Optimization: Theory and
Algorithms (Chapter 22). Springer, Berlin, third edition 2006.
Also available in Japanese!

» J. MaBberg, J. Vygen. Approximation Algorithms for Network
Design and Facility Location with Service Capacities.
Proceedings of the 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization
Problems (APPROX 2005); LNCS 3624, Springer, Berlin
2005, pp. 158-169
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Algorithms for a Networked World

Magnuas M. Halldérsson

Dept. of Computer Science, University of Iceland

Abstract:

The realization of Moore’s law has ensured that computing ability has increased
dramatically in our times. The law has held not only for processor power and quantity of
internal and external memory, but also for the ability to communicate information. The
resulting impact on essentially all spheres of society and life has been nothing less than
astounding.

Along with increased connectivity, we are also seeing the introduction of a wide range of
compact computing entities, possibly mobile and often non-statically connected into
largely wireless networks. The explosion of the web and the internet as not only a source
of information but also as a resource of computational intelligence, is poised to lead to a
dramatic change in the way we view computation. The traditional view of an algorithm
with full random access to its input, operating serially on a single processor, is on the
retreat.

In comparison, it can be said that changes in CS theory are less dramatic. Surely, each
year and each conference brings new topics, new subjects, new treatments, and new
directions. Yet, we can also easily detect a great deal of consistency [one that is certainly
comforting at times], and a measured pace of change. Are we theoreticians then by nature
reactionaries? One of the theses of this talk is that the objects of study in CS theory are
inherently fundamental and long-lasting, applying also to this Panopticon world of global
and ubiquitous computing.

Yet, we cannot rest on our laurels, with self-satisfied smugness. We must find ways to
treat the new means, ways, possibilities and limitations of computation in a systematic
framework that continues to provide applied fields with rigorous guidance. The aim of
the talk is to discuss some objectives, measures, and paradigms that address the changing
nature of computing in a networked world. The concrete examples discussed will mostly
relate to problems of coloring and packing, the topics of main focus of the speakers
research.

This will by no means be a comprehensive overview — in fact, it is unlikely to be even a

balanced introduction. Instead, the hope is that by posing some questions, some members
of the audience will eventually be prompted to find some of the answers.
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Algorithms for Sequence
Manipulation and Related Problems

1

D.T. Lee

Institute of Information Science
Academia Sinica
&
Department of Computer Science and Information Engineering
National Taiwan University

2006 NHC Spring School Workshop March 2-3, 2006

: Optimization on Sequences

n Given a sequence A =a,, a,, ..., 4,, an
optimization problem on sequences is to
maximize or minimize some function, such
as: sum of subsequence, density of
subsequence, etc., with some constraints,
such as: length, weight, etc.

3/92

n The combinatorial optimization typically
deals with problems of maximizing or
minimizing a function of one or many
variables subject to a number of inequality
constraints.

n Consider two categories of problems on
sequences:
» Optimization Problems
» Range Search Problems

2/92

: Range Search Problems

n A range (query) search problem is typically
to report the subset S' to count the total
number of elements of the subset S' of a set
S contained in a query range Q subject to
certain conditions.

4/92
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n Given a sequence A =a,, a,, ..., a,, and a
range query, we want to report or count
some subsequences of A contained in the
query range satisfying certain conditions.

5/92

Notations 2

n Let A be a sequence of n real numbers
a;, ay, ..., A,
n segment of A(i, j) is a consecutive
subsequence a;, a;,y, ..., &
n width w(i, j) of A(4,j):j-i+1
n density d(i, j) of A(i, j):
(a +a, + ... + a)/w(i, j)

n sum s(i, j) of A(L, j): a +a,, + ... +a;

7/92

Focus of Talk

n  Focus on the optimization and range search
problems on sequences, give a survey and present
efficient problem-solving techniques for them.

n Many elegant and sometimes sophisticated
techniques have been developed and applied to
these problems in the past decade.

n Key: To exploit the combinatorial nature of these
problems to obtain simpler and faster algorithms
or algorithms with faster query time for range
search problems.

6/92

n Given two positive real numbers ¢ and u with
€< u,wesay A(L,j)=a;, a,, ..., a of Ais
feasible if £ < w(i,j) =j-i+1 < u.

n rank r(x, S) of an element x in a set S:
the number of elements in S no greater than x,

ie,1(x,S)=Hylye S,y <x}l.

8/92
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n

n

n

n

Optimization Problems on

Sum of subsequence,
Density of subsequence
Selection of subsequence

subject to constraints on length, or weight
of subsequences.

9/92

: Example — Max-Sum Segment

n Input:
nA=3,-4,-2,56
n =2, u=4

n Output: s(4,5) =11

n Sums of all feasible segments:
s(1,2)=-1,s(1,3)=-3,s(1,4)=2
8(2,3)=-6,s(2,4)=-1,s(2,5)=5
$(3,4)=3,s53,5=9
s4,5) =11

11/92

n

n

Input:

» asequence A of n real numbers a,, a,, ..., a,

n two nonnegative real numbers £, u with £ < u.
Output:

n asegment A(i*, j*) with maximum sum over all
O((u-¢) n) feasible segments such that s(i*, j*)
=max({ s(i, j) | A(i, j) is feasible.}

10/92

: Application: Max-Sum Segment

n Finding the most rich GC-rich region in a
DNA sequence can be cast as a maximum-
sum segment problem.

n Input sequence A corresponds to a given
DNA sequence, where a, = 1 if the
corresponding nucleotide in the DNA
sequence is G or C, a; = 0 otherwise.

n Output feasible segment corresponds to the
GC-rich region of the given DNA sequence.

12/92
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n Useful applications in bioinformatics including

n finding tandem repeats, which are commonly
used to map disease genes

n locating DNA segments with rich CG content
is a key step in gene finding and promoter
prediction

n low complexity filter, which is most
commonly applied in sequence database search.

13/92

n Lin, Jiang and Chao gave an O(n) time
algorithm based on a clever technique
called left-negative decomposition.

J. of Computer and System Sciences *02

15/92

Max-Sum Segment Problem

n Prior Results:

n O(n) time for the special case { =1, u=n
Gries [Science of Computer Programming’82]

n O(n) time for the special case =1, u=n
Bentely. [Commun. ACM ’84]

n O(n) time. Lin, Jiang and Chao. [Journal of
Computer and System Sciences ’02]

n O(n) time. Fan, Lee, Lu, Tsou, Wang, and Yao.
[CIAA °03]

14/92

n A sequence A=a,, a,, ..
the sum of each proper prefix a,, a,,
negative or zero for all 1 <i<n-1.

e 1S

n A partition of the sequence A= A A, ... A, is
minimal left-negative if each A, 1 <i<Kk, is
left-negative, and, for each 1 <i <k-1, the
sum of A, is positive.

., a, 18 left-negative iff

16/92
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n

n

n

The sequence -4, 1, -2, 3 is left-negative.

The sequence -5, 3, 4, -1, 2, -6 is not left-negative.
The partition (-5, 3, 4), (-1, 2), (-6) is minimal left-
negative.

For every suffix of a sequence we can find a minimal
left-negative partition.

BG)YB(-1.2)(-6); (H(-1,2)(-6); (-1,2)(-6), (2)(-6); (-6)

are all possible minimal left-negative partitions

17/92

: Max-Density Segment Problem

n Input:
n a sequence A of n real numbers a,, a,, ..., a,

n two nonnegative real numbers ¢, u with £ < u.

n Output:

n a segment A(i*, j*) with maximum density over
all O((u-¢) n) feasible segments such that
d@i*, j*) = max{ d(i, j) | A(i, j) is feasible.}

19/92

Example — left-negative sequence

Lemma: Every sequence of real numbers can be
uniquely partitioned in linear time into blocks of
minimal left-negative segments, and the right end of
a maximum sum segment must be at a block
boundary.

(-5, (3), 4), (-1,(2)), (-6)

Prefix sum sequence S=0, -5, -2, 2, 1, 3, -3
Sum(1st) = 2, Sum(2nd) = 1, Sum(3rd) = -6
Max-Sum segment is a,, a5 a, a5 of sum s5-s; =8

18/92

Example — Max-Density Segment

n Input:
nA=3,-4,-2,5,6
nl=2,u=4

n Output: d(4, 5) =11/2

n Densities of all feasible segments:
d(1,2)=-1/2,d(1,3)=-1,d(1,4)= 12
d2,3)=-3,d(2,4)=-1/3,d(2,5) =5/4
d(3,4)=3/2,d(3,5)=3
d@4,5)=11/2

20/92
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!’ Application: Max-Density Segment

n Finding the segment with the largest GC-ratio in a
DNA sequence can be cast as a maximum-density
segment problem.

n Input sequence A corresponds to the given DNA
sequence, where a;= 1 if the corresponding
nucleotide G or C; and a; = 0 otherwise.

n Output feasible segment corresponds to the region
with the largest GC-ratio.

21/92

Max-Density Segment Problem

n Prior Results:

O(n ¢) time algorithm for the special case u =n
Huang. [Computer Appl. in the Biosciences *94]

O(n log ¢) time algorithm for the special case u =n
Lin, Jiang, and Chao. [J. Comp. and Syst. Sci. "02]

O(n log (u-¢)) time algorithm. Goldwasser, Kao, and
Lu. [J. of Comp. and Syst. Sci. 03]

O(n) time algorithm. Kim. [IPL *03]- has a flaw
O(n) time algorithm. Chung and Lu. [SICOMP ’04]

23/92

!’ Application in Bioinformatics

n Maximum-Density Segment Problem arises from the
investigation of non-uniformity of nucleotide
composition within genomic sequences, which was
first revealed through thermal melting and gradient
centrifugation experiments.

n Researchers observed that the compositional
heterogeneity is highly correlated to the GC content
of the genomic sequences, and this motivates finding
the segment with the largest GC-ratio.

22/92

n Construct a point set in the plane P = {p, | p, =
(k,s). k=1,2,...,n, where s, =a+a,+...+a,
is the prefix sum of sequence A.

n Construct lower hull of P; = {p, ¢, Pj.415 -++» Pjuu}
and find tangent segment t; from p; to P;.

n The tangent segment of the maximum slope is
the maximum-density segment of A.

24/92
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].‘ Technique-- Kim. IPL 03 2
e
'
0 » 7
® » Pic
P -
Py-u
Pi =Py
P,
Dj=Di ajta;+..+a; JGial i
s i =d(i+1,j)

25/92

n Based on a clever observation that

d(x, y), d(y+1, z) and d(x, z) with x <y < z are
related as follows:

d(x, y) <d(y+1, z)
< dx, y) <d(x, z)
< d(x, z) <d(y+1, 2)
n Chung and Lu, SIAM Journal on Computing ’04.

27/92

For each j,
(1) we need to do tangent query from p;

If p; lower than the line Py Py We do nothing

If p; higher than the line P P we do tangent query from p;
(2) we then delete p;, from P;and insert p; ., into P; to obtain P,

26/92

k-Maximum Sums Problem

n Input:
n asequence A of n real numbers a,, a,, ..., a,

n two nonnegative real numbers ¢, u with £ <u
n a positive integer k.

n Output:

n k feasible segments such that their sums are the
k largest over all O((u-¢) n) feasible segments.

28/92
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].’ Example — k-Max. Sums

n Input:
nA=3,-4,-2,506
nl=2,u=4
n k:3

» Output: s4,5) = 11,5(3,5)=9,5(2,5) =5

n Sums of all feasible segments:
s(1,2)=-1,s(1,3)=-3,s(1,4) =2
$(2,3)=-6,s(2,4)=-1,s(2,5) =5
s3,4)=3,5(3,5 =9
s4,5) =11

29/92

n Prune-and-Search technique

n There are n subsequences A(1, n), A(2, n), ...,
A(n, n) of A, where A(i, n) = a;, a;,, ..., a,

n At iteration i, it prunes away a fraction (%2 ) of
the n/2"! subsequences, so that no more than
2ik/n segments are in the set of feasible k-
maximum sum segments.

n Cheng, Chen, Tien, and Chao. ISAAC 2005.

31/92

k-Maximum Sums Problem

n Prior Results: (special case £ = 1, u =n)

n O(kn) time algorithm for the Bae and Takaoka.
[Int’l Symp. on Parallel Architectures,
Algorithms and Networks *04]

» O(min {k + n log?n, nk'?) time algorithm
Bengtsson and Chen. ISAAC 2004

» O(n + k log(min{n, k})) time algorithm
Cheng, Chen, Tien, and Chao. ISAAC 2005

30/92

n Recent Result:

n We obtain an O(n log (u - £) + h) time randomized
algorithm based on random sampling technique.
Lin and Lee. ISAAC 2005

n Solve the k™-Sum Selection Problem using
random sampling technique.
n After finding the k'™ largest feasible segment s*,

we can find k largest sum segments by sum range
search algorithm, introduced later.

32/92
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n Input:
n asequence A of n real numbers a,, a,, ..., a,
n two nonnegative real numbers ¢, u with £ < u
n a positive integer k.

n Output:

n the k segments such that their densities are the
k largest over all O((u-¢) n) feasible segments.

33/92

: Random Sampling Technique

n Recent Result:

» We obtain an O(n log (u - ¢) + h) time randomized
algorithm based on random sampling technique.

n Solve the kth—Density Selection Problem using
random sampling technique.

n After finding the k'™ largest density d*, we can
find k largest density segments by density range
search algorithm, introduced later.

35/92

!‘ Example — k-Max Densities

n Input:
nA=3,-4,-2,5,6
n =2, u=4
n k=3

« Output: d(4, 5) = 11/2,d(3, 5) = 3, d(2, 5) = 5/4

n Densities of all feasible segments:
d(1,2)=-1/2,d(1,3)=-1,d(1,4) =12
d(2,3)=-3,d(2,4)=-1/3,d(2,5) =5/4
d(3,4)=3/2,d(3,5)=3
d4,5)=11/2

34/92

: kP-Sum Selection Problem

n Input:
n asequence A of n real numbers a,, a,, ..., a,
n two nonnegative real numbers £, u with £ < u
n a positive integer k.
n Output:
n the segment A(i*, j*) over all O((u-{) n)
feasible segments such that the rank of the sum

s(i*, j*) in the set of sums of possible feasible
segments is k.

36/92
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kh-Sum Selection Problem

» O(n log n) time randomized algorithm for the
special case £ = 1, u = n based on random
sampling technique by Lin and Lee. ISAAC
2005

n New results:

n We obtain an O(n log (u - £)) time randomized
algorithm based on random sampling technique.

37/92

n Input:
n a sequence A of n real numbers aj, a,, ..., a,
n two nonnegative real numbers ¢, u with £ < u
n a positive integer k.
n Output:
n the segment A(i*, j*) over all O((u-£) n)
feasible segments such that the rank of the

density d(i*, j*) in the set of densities of
possible feasible segments is k.

39/92

n Contract initial interval [s;, s,] = (-, o) into a smaller
subinterval [s;, s,] such that it contains the k™ largest
feasible segment s* and the subinterval [s/, s,'] contains
at most O(n*/n"2)= O(n3?) feasible segments.

n Contract the interval [s;, s,] into a smaller subinterval
[s,", s,"] such that it contains not only s* but also at
most O(n*2/n'2)= O(n) feasible segments.

n If both steps are successful, output all the segments in
[s,", s,"] and find the solution segment with an
appropriate rank, whose sum is s*, by using any
standard selection algorithm.

38/92

n Input:
n asequence A of n real numbers a,, a,, ..., a,
n two nonnegative real numbers €, u with £ <u
» areal number s*

n Output:

» the segment over all O((u-{) n) feasible segments
such that its sum s(i*, j*) is closest to s*

40/92
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].‘ Example — Sum Finding

n Input:
nA=3,-4,-2,5,6
nf=2,u=4
ns*=1.5

n Output: s(1,4) =2

n Sums of all feasible segments:
s(1,2)=-1,s(1,3)=-3,s(1,4)=2
8(2,3)=-6,s(2,4)=-1,8(2,5)=5
s(3,4)=3,5(3,5)=9
s(4,5) =11 Open

41/92

*E)fmiple — Density Finding
Input: —

nA=3,-4,-2,5,6
nl=2,u=4
nd¥=1.5

n Output: d(3,4) = 3/2

n Densities of all feasible segments:
d(1,2)=-1/2,d(1,3) =-1,d(1,4)=1/2
d(2,3)=-3,d(2,4)=-1/3,d(2,5) =5/4
d(3,4)=3/2,d(3,5)=3
d4,5)=11/2

43/92

n Input:
n asequence A of n real numbers a,, a,, ..., a,
n two nonnegative real numbers ¢, u with £ < u
n areal number d*

n Output:

n the segment over all O((u-{) n) feasible segments
such that its density d(i*, j*) is closest to d*

42/92

: Density Finding Problem

n Result to date:

» We obtain an O(n log? (u-)) time and O(n log (u-¢))
space algorithm based on maintaining a data
structure of the left branch of an upper hull.

44/92
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Technique — maintaining a data

n We first reduce this problem to a geometric slope
finding problem
n Input:

» Given a set of points P = {pg, p;, ..., p,} in R%,
and

n two integers £, u
n Output:

» a feasible line segment s(i, j) that minimizes the
slope m(i, j), where m(, j) = 0.

45/92

Technique — maintaining a data
structure of left branch of upper hull ,

n m(Y, j) =min {m@, j) | p; € P;* } =m(", j).
n Find m(t;, j) for each j and take the minimum.

UH(P;) e—=—"1
L ]
Pi-u
P I 47/92

Technique — maintaining a data
structure of left branch of upper hull ,

n Let x;=a,+ ...+a;, i=1, 2, ..., n, and let x;=0.
n Let P = {x,, X, ..., X, }.

n Let Pj = {xj,u, Xigsls oo XH}.

n Let Pi*= {p,e P; I m(i, j) 2 0}.

n Let p,. be the tangent point of the upper hull
UH(Ijj“') from p;-

n Lemma: p, must be a hull point on the left
branch of the upper hull UH(P).

46/92

n We can generalize the optimization problems on
sequences to higher dimensional space.

n Given an mxn matrix, the maximum subarray
problem is to find a rectangular subarray with the
largest possible sum among all such subarrays.

n For example, the 2D maximum-sum segment
problem with £ = 1, u = n, referred to as maximum
sum subarray problem, has many applications in
graphics and data mining.

48/92
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n Single-shot mode query: O(n) query time is
optimal for this query mode.

n Repetitive mode query: Preprocessing
allowed, and obtaining an o(n) time query
time is the goal. A trade-off between
storage and query time is expected.

49/92

Sum Range Search Problem

: single-shot mode

n Related work :
» O(n log (u-¢) + h) time algorithm, where h is
the output size. Lin and Lee. ISAAC 2005

n Straightforward
» Ordinary binary search trees (order-statistic tree)

51/92

Sum Range Search Problem

n Input:
» asequence A of n real numbers a,, a,, ..., a,
n two nonnegative real numbers ¢, u with £ < u
n two real numbers s, s, with s, <s_.

n Output:

n the segments over all O((u-¢) n) feasible
segments such that their sums are between s,
and s,.

50/92

Technique — maintaining an

: order-statistic tree ,

n prefix sum x; of the sequence A,

X;=a;+...+a,i=1,2, ...,n, and let x, = 0.
n LetP = {x4 X, ..., X, }.
n Let Pj = {xj_u, Xjgals oo xj_z}.

n Maintain an order-statistic tree T(P;) on
P,. by scanning the sequence of prefix sums.

52/92
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n An order-statistic tree is a balanced binary
search tree with size information, size[z],
stored in each node z of the tree, and
containing the total number of nodes in the
subtree rooted at z.

n For an internal node z, size[z] = size[left[z]]
+ size[right[z]] + 1
n For a leaf node z, size[z]= 1.

53/92

Technique — maintaining an
order-statistic tree ,

n To solve this problem, it suffices to iterate on each
j finding all x; € P; such that s < X; - x; <s..
n At each iteration j,

n maintain T(P;) dynamically such that we can
find all the numbers x; €[x; - s, X; - 5] by
binary search in O(log (u-€) + hj) time

n delete x;, and insert x; , 1 into T(P;) to obtain

j-u

T(P;,,) in O(log (u-{) ) time.
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n Therank r(x, P) =1{yly e P;, y <x} lof
any x not necessarily in P; can be
determined using T(P;) in O(log n) time.

n An element in T(Pj) of a given rank can be
found in O(log n) time.

n Both insertion and deletion operations in
T(P;) can be done in O(log n) time.
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Density Range Search Problem

n Input:
n asequence A of n real numbers a,, a,, ..., a,
n two nonnegative real numbers ¢, u with £ < u
n two real numbers d;, d, with d, < d..

n Output:

n the segments over all O((u-£) n) feasible
segments such that their densities are between
d;and d,
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]- Problem Transformation

n Transform the Density Range Search Problem
into a geometric slope range query problem as
follows.

n Consider the point set P = {p, p, ..., p,} in R?
based on the prefix sums of the sequence A, where
pi=X,yp=0Ga,+a,+...+a),i=1,2,..,nand
po=(0,0).

n Slope of segment connecting p; and p; corresponds
to density d(i+1,j)
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Density Range Search Problem

n Recent result:

n We obtain an O(n log (u-{) + h) time algorithm,
where h is the output size.

n Use problem transformation

» Maintain a priority search tree T(P,) on P,.
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: Geometric Slope Range Search

n Input:
n A point set P = {pg, p,, ..., P} in R%,
n two integers ¢, u
n two real numbers d,, d,,

n Output:

» find all feasible line segments s(i, j) such that
their densities m(i, j) satisfying d, <m(i, j) <d..
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!’ Point-Line Duality Transform

n We can further transform this geometric
slope range search problem into its dual
problem, by mapping a point p; = (x;, y;)
into its dual line {;: y = xx - y;.

n For any two points p;, and p;, their
corresponding dual lines ¢;, £; will intersect
at the x-coordinate X = (yj - yi)/(xj - X;)
which equals m(i, j).
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n Letu, = x,d, - y, denote the y-intercept of
line ¢, at d, and v, = x,d, — y, .the y-intercept
of line £, atd,

n Denote Q = {q07 gy qn} R
where q, = (u, v) = (X d; - Yo X4, - Y-

n Let Q; ={q.Gjustos Gt = Qpuu
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Dual of Geometric Slope Range

!’ Search— Intersection Search

n Input:
n aset of lines L = {£, ¢, ,..., £,} in R?, where
each line £;: y = x;x - y;,
n two integers ¢, u
n two real numbers d;, d,
n Output:
» find all intersection points p;=(x;;, y;;) of two

feasible dual lines ¢, t’j such that their abscissae
x;liein [dy, d].

o
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n By the monotonically increasing property of
the slopes of lines in L, i.e., the slope of £ is
larger than each ;€ L, for i <}, any dual line
¢ in L;intersects £, in [d;, d,] iff u; 2 u; and
ViS V.
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: Priority Search Tree - Definition

n A priority search tree for a set of ordered
pairs {(x;, yp) li=1,2, ...,n} is a hybrid of
a heap (say in y) and a balanced binary
search tree (say in x) used for orthogonal
range query where at least one of sides of
the query range is unbounded.
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n The Intersection Search problem is now
equivalent to an orthogonal range search of
the form Rj = [uj, ©0) X(-00, vj] to report all
the points of Q; which lie in R; for each j =1,
2, ..., 0

n We use a data structure called priority
search tree to support the above orthogonal
range queries in logarithmic time.
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: Priority Search Tree - Construction

n The priority search tree T({P;}) can be constructed in
O(n log n) time using any bafanced binary search
tree as follows:

n For a given set S of points P;, if S is empty, then the
priority search tree T(S) is null.

Otherwise, let point P; be the point in S with the smallest

y-coordinate and x,, be the median of the x-coordinates of

the remaining point set S\{P;}. Let S, = { P, (x,, y}) €

S\{P;} Ix, <x,, }and S, = { P, (X, y) € S\{P;} Ix, >x, }.

The root of T(S) contains P; (and key x,,) and its left child

is T(S, ) and right child is T(S, ).
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].’ Priority Search Tree: Example
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Sum Range Search Problem

n Work to Do:

n Try to preprocess A into an appropriate data
structure such that the query time is o(n + h).
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Sum Range Search Problem

].’ repetitive mode -- definition

n Input:
» asequence A of n real numbers a,, a,, ..., a,.
n two nonnegative real numbers £, u with £ < u
n two real numbers s, s, with §; <'s.

n Online Query:

n for an intervals [s), s ], reports the segments
over all O((u-¢) n) feasible segments such that
their sums are between s, and s,.
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Density Range Search Problem

n Input:
n asequence A of nreal numbers a,, a,, ..., a,.
n two nonnegative real numbers ¢, u with £ <u

n two real numbers d,, d, with d, <d..

n Online Query:
n for an intervals [d,, d ], reports the segments over all
O((u-¢) n) feasible segments such that their densities
are between d, and d,.
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Density Range Search Problem
repetitive mode

n Work to Do:

» Try to preprocess A into a nice appropriate
structure such that the query time is o(n + h).
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Range Minimum Search Problem

]- -- definition

n Input:

n a sequence A of n real numbers a,, a,, ..., a,

n two real numbers i, j, 1 <j.
n Online Query:

n for each query interval [i, j], reports the index k
with i <k <j such that a, achieves minimum.
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Aggregate Range Search Problem
-- definition

n Given S and a range query Q, compute an
aggregate function on the subset S'=SNQ
An aggregation function can be Min, Max,
Sum, Count, Mean, Median (of S’), etc.
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Range Minimum Search Problem

a a a a3 a; as ag a; ag

Sequence A [ 3| 8 |5 [34|7 |19 |10 |12 | 13| 16

RMS,(3,7)=4

RMS, (1, 6) =2
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n Related work :

n O(n) preprocessing time and O(1) query time
under the unit-cost RAM model. -- Gabow,
Bentley, and Tarjan. STOC 1984

n O(n) preprocessing time and O(1) query time
under the unit-cost RAM model. -- Bender and
Colton. In Proc. the 4th Latin American
Symposium on Theoretical Informatics 2000
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n LCA problem reduces to £1RMS problem

n Observation: The LCA of nodes u and v in
T is the lowest node encountered between
the visits to u and to v during a depth first
traversal of T, where the depths of the nodes
in T differ by exactly one.
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n *1RMS problem: adjacent elements of the input sequence A
differ by +1 or -1

n Least Common Ancestor (LCA) problem reduces to £1RMS
problem by depth first search traversal of input tree T of
LCA.

n An (O(n log n), O(1))-time table-lookup algorithm for RMS

n Using the above algorithm on a smaller array A' obtained by
partitioning A into 2n/logn blocks, each of size (log n)/2 and
making use of the +1 property, we can solve £1RMS in
(O(n), O(1))-time.

n RMS reduces to LCA building the Cartesian tree of A.
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(O(n log n), O(1))-time
Algorithm for RMS

n Table-lookup algorithm
n Pre-compute the n by log n matrix M1, j],
1<i<n,0<j<logn
M(i, j] = RMS(, i + 2J)
n For any RMS(, j) query:
n Letk =max {rl 2f < j-i+1}
n RMS(, j) = min{M(, k), M(-2%+1, k)}
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Problem Reduction

n RMS can be reduced to LCA by building a
Cartesian tree of A.

n The root of a Cartesian tree is the minimum
element of the array. The root is labeled with
the position k of this minimum element.

n The left and right children of the root are the
roots of recursively constructed Cartesian trees
of the left and right subarrays respectively.
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Range Maximum-Sum Segment

: Search Problem

n Related work :

n O(n) preprocessing time and O(1) query time
under unit-cost RAM model by Chen and Chao.
ISAAC 2004
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Range Maximum-Sum Segment

n Input:

n a sequence A of n real numbers a,, a,, .
be preprocessed.

n real numbersi,j,i<jand k, k<1

., a,to

n Online Query:

n for two query intervals [i, j] and [k, /], reports
A(x,y)withi<x <jand k <y</that
maximizes s(X, y).
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: Technique Used

n LetS=s,s,, ..., s, be the sequence where
S, = a;+a,+...+a, is the prefix sum of sequence A.
n Disjoint case: by min= RMinS(S, i, j),
max= RMaxS(S, k, 1), Ans.=s_,.-S
n Overlapping case: Divide into 3 possible cases and
take minimum of the outputs of these three cases.
n [i, k] and [k, 1]: by RMinS(S, i, k), RMaxS(S, k, 1)
o [k, j] and [j, 1]: by RMinS(S, k, j), RMaxA(S, j, )
n [k, j] and [k, j]: by RMSSS(k, j), a special case!

'min
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Range Maximum-Sum Segment

n Input:
n a sequence A of n real numbers a,, a,, ..., a,.

n two real numbers i, j, 1 <j.

n  Online Query:

n for any query interval [i, j], reports A(x, y) with
i <x <y <jsuch that A(x, y) is the maximum-
sum segment of A(i, j).
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Algorithm

n Let C[-] be the array of prefix sum of A.

n Define: left bound L[K] of A at index k to be the
largest index [ with 1</ <k-1 such that C[/] > C[k],
and L[k]=0, if no such [ exists.

n Define: partner P[k] of A at index k to be the
largest index p with L[k]+1 < p < k that minimizes
C[p-11.

n A(P[k], k) is a candidate segment of A at index k
with sum M[k] = s (P[k], k), for ISk <n.
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Range Maximum-Sum Segment
Search Problem- A Special Case

n Related work :

n O(n) preprocessing time and O(1) query time
under the unit-cost RAM model by Chen and
Chao. ISAAC 2004

n They solved RMSSS by using RMinS and
RMaxS.
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RMax-SumSegSearch
n Algorithm of RMSSS(A, i, j)
r < RMaxS(M, i, j), i.e. M[r] is maximum
if P[r] <i then
p < RMinS(C, i-1, r-1)+1
s <« RMaxS(C, i-1, r-1)+1
if C[r]-C[p-1] < M(s)
then output (P[s], s)
else output (p, r)
else output (P[r], r)
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Range Maximum-Density Segment
Search Problem

n Input:

n asequence A of n real numbers a,, a,, ..., a,

n Online Query:
n for two intervals [i, j] and [k, 1], reports A(x, y)
with i < x <j and k <y <1 that maximizes

! Generalization

n We can also generalize the above
aggregation range search problems to other
aggregation functions or consider the
dynamic range query problems which
support insertion, deletion, concatenation

d(x, y). operations.
Range Maximum-Density Segment
Search Problem- A Special Case Conclusion

n Input:
» asequence A of n real numbers a,, a,, ..., a,.
n two real numbers i, j, i <j.

n Online Query:
» for any query interval [i, j], reports A(x, y) with
i< x <y <jsuch that A(x, y) is the maximum-
density segment of A(i, j).
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search problems on sequences, gave a
survey and presented recent results for these
problems.

n Open problems

» Sum Range Search Problem (repetitive mode)
Density Range Search Problem (repetitive mode)
Range Maximum-Density Segment Search Problem

s

Problems for which the elements are each chosen from
an (error) interval

s
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Dynamic Data Structures in Computational Geometry

Timothy M. Chan

School of Computer Science
University of Waterloo

Every student in computer science knows that we can maintain a set of n real numbers (in
1-d) to support insertions and deletions in O(logn) time and searches in O(logn) time, by his/her
favorite kind of balanced search trees. The underlying question in this talk is: to what extent can
this basic result hold in dimension beyond on