
科学研究費補助金 特定領域研究

新世代の計算限界

— その解明と打破 —

平成 17年度 成果報告書

平成 18年 4月

領域代表者 岩間 一雄
京都大学 大学院 情報学研究科 教授

目 次

1.総括班活動報告 1
総括班活動報告 . 3
教科書シリーズ . 5
電子ジャーナル . 5
ニュースレター . 6
ミニプロジェクト . 7
電子情報通信学会和文論文誌A 「新世代の計算限界 招待解説論文特集号」 8
電子情報通信学会英文論文誌D 「新世代の計算限界 招待論文特集号」 9
国際ワークショップ iETA の企画 . 10
Randomness and Computation . 11

NHC国際会議 . 13
第 18回 回路とシステム軽井沢ワークショップ 特別講演セッション 16
研究集会 (モデル班) . 17
ミニ研究集会 (組合せゲーム・パズル) . 18
ミニ研究集会 (複雑ネットワーク, ウェブグラフ) . 20
ミニ研究集会 (列挙合宿) . 21
ミニ研究集会 (Complexity) . 22
ミニ研究集会 (暗号理論) . 24
ミニ研究集会 (ジオメトリ) . 26
電子情報通信学会 COMP-NHC 学生シンポジウム . 27
第 19回 回路とシステム軽井沢ワークショップ 講演企画 . 28

2.研究課題別活動報告 29
A01: オンライン予測の手法を用いた意思決定モデルに関する研究 31
A02: 計算理論的設計による知識抽出モデルに関する研究 . 45
A03: 論理関数表現のモデルとシンボリックアルゴリズム . 54
A04: 組み合わせ最適化における指数サイズ・多項式時間近傍の設計 62
A05: ハードウェアアルゴリズムの性能評価に関する研究 . 70
A06: 幾何的配置問題の計算量限界と近似可能性の研究 . 78
A07: 現実的な状況下での量子計算の能力に関する研究 . 89
A08: 動的な構造をもつネットワーク上の資源割当て問題の研究 103
A09: 非明示的表現に対するアルゴリズムの開発 . 114
A10: 変移する要素間の関係を条件とする組合せ最適化モデル 124
B01: 代数的および確率的手法による離散構造の限界の究明 132
B02: 暗号解析手法の計算量理論による改良とそれに基づく暗号方式 143
B03: 量子論理回路の最適化に関する研究 . 157
B04: 回路計算量の下限の研究とその応用 . 168

i

B05: ブール理論に基づく離散システムの構造解析と計算限界の研究 172
B06: 暗号システムに対する実装攻撃の適用と限界に関する計算的研究 180
C01: グラフ描画アルゴリズムとそのWeb情報検索への応用 190
C02: 連続と離散の統合によるロバストアルゴリズム構築 . 201
C03: ネットワーク上での社会的効用と個人的効用の対立問題に対するアルゴリズム的研究 . 222
C04: 実践的な列挙アルゴリズムの理論構築 . 233
C05: 幾つかの画像関連問題の計算複雑度の解析と効率的な解決法の提案 240
C06: グラフ構造を有する問題に対する近似アルゴリズムの設計 254
C07: Webコンテンツ活用に関連した離散最適化問題の研究 273
C08: 高性能近似アルゴリズムの設計法に関する研究 . 287
C09: ネットワーク問題のモデル化とアルゴリズムの研究 . 301
C10: 情報基盤アルゴリズムとしてのメタヒューリスティクスの研究 322
C11: 大量データ処理のための領域効率の良いアルゴリズム 335

3.各種資料 341
ニュースレター 第 3号 . 343
ニュースレター 第 4号 . 350
平成 17年度 第 1回 全体会議 講演資料 . 358
平成 17年度 第 2回 全体会議 講演資料 . 381
NHC Spring School and Workshop on Discrete Algorithms 講演資料 413

ii

3. 各種資料

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

平成17年度 第１回 全体会議

日時 平成 17年 6月 16日 (木), 17日 (金)

会場 国立情報学研究所 12階会議室

プログラム

6月 16日 (木)
10:00 – 10:50 A01–A10班の研究紹介
11:00 – 12:00 ポスターセッション (A01–A10班)
12:00 – 14:00 幹事会
14:00 – 14:30 B01–B06班の研究紹介
14:40 – 15:40 ポスターセッション (B01–B06班)
16:00 – 16:55 C01–C11班の研究紹介
17:05 – 18:00 ポスターセッション (C01–C11班)

6月 17日 (金)
9:30 – 12:00 全体会議 　

13:30 – 14:15 時間枠つき配送計画問題に対するメタ戦略アルゴリズム
柳浦睦憲 (京都大学) . 359

14:15 – 15:00 孤立したクリークの線形時間列挙
伊藤大雄 (京都大学) . 364

15:30 – 16:15 Compact Encoding of Plane Triangulations with Efficient Query Support
中野眞一 (群馬大学) . 369

16:15 – 17:00 オンライン予測の理論と応用
瀧本英二 (東北大学) . 373

358

with
1q

2q

3q
4q

5q

6q
7q

8q

9q

10q

11q

12q

:

: V {0, 1,�, n} (0: , i 1:), M {1,�, m},

dij , tij , Qk , qi

:

q1 q2 q3 q4 Q1

q5 q6 q7 q8 Q2

q9 q10 q11 q12 Q3

t

i

)(tpi

pi(t):

)()()()(QTDstco

)(D

)(T

)(Q

2

5 9

12

1

3
7

8
6

10

11

4

0

125 92

6 10 11

8 7 3 1

4

359

:

(a) (b)

(a)

(b)

(c)

(c)
((a) (b))

-

-

-

-

N ()

N()

1

cross lL

))((22cross nLO

cross

2 Ll

Cross exchange

)(2nO

2-opt*

Oopt

pathpath Ll
ins

Oopt

ins lL

)(Oopt

ins

Oopt

path nLLO

Or-opt 2-opt

)(2optnLO

2optLl

:

Optimal Start Time Problem (OSTP)

: k

: k

)1(),(,),1(),0(kkkkkk nn

)()()()(QTDstco

OSTP

Ibaraki, Imahori, Kubo, Masuda, Uno & Yagiura, 2005

� OSTP

� isotonic median regression

� O(nk log nk)

� :
Garey, Tarjan & Wilfong 1988

Powell & Solomon 1992

Davis & Kanet 1993

Taillard, Badeau, Gendreau, Guertin & Potvin 1997

Tamaki, Komori & Abe 1999

Ahuja & Orlin 2001

Hochbaum & Queyranne 2003

:)(tf k

h k(0), k(1), �, k(h) t

11)),'()'((min)(

),[,0

),(,
)(

11
'

0

0

0

k

k

hh-

k

h
tt

k

h

k

nhtptftf

et

et
tf

)(tpk

h

0e

h

: h

: h h 1

:

360

))'()'((min)(11
'

tptftf k

hh-

k

h
tt

k

h

t
)(1 tf k

h

)(11 h

k

h tf

)()(11 tptf k

hh

k

h

)(tpk

h

)(tf k

h

p
en

a
lt

y

0 1 2 3 1knkn

: O(nk k)

k: k

(k O(nk))

nk: k

)(tf k

nk

)(kO

�)(0 tf k)(1 tf k

)(kO

)(2 tf k

)(kO

)(3 tf k

)(kO

)(1 tf k

nk

)(kO

- fh
k(t)

- (DP)

:

: O(k)

DP : O(nk k)

:

: O(log k)

DP : O(k log k)

:)(tbk

h k(h), k(h 1), �, k(nk 1) t

)(tf k

h

)(tf k

h

0 1 h h 1 nk nk 1

)(1 tbk

h

h

k :)()(min 1 h

k

h

k

h
t

tbtf

� O(k) O(log k)

� 2-opt*

fh
k(t)

DP:
pi(t): i fh

k(t):

fh
k(t)

- fh
k(t)

-

)()(11 tptf k

hh-

k

h

: O(log k)
: O(k log k)

�

- : TSP VRP

-

� fh
k(t)

- fh
k(t)

361

(ILS)

�

�

� C ; PC Pentium IV 2.8GHz

� ;

� :

� : 1

� Gehring & Homberger

Solomon

� :

� : 200, 400, 600, 800, 1000

� 60 300

CNV: cumulative number of vehicles

CTD: cumulative total distance

number of

customers

best

known

MB

(2003)

GH

(2002)

LC

(2003)
our ILS

CNV 692 694 696 694 694

CTD 169281 168537 179328 173061 170331

time (min) 5.88 3.83 21.66 33.3

CNV 1386 1389 1392 1390 1384

CTD 392444 390386 428489 408281 401285

time (min) 12.49 12.95 43.32 66.6

CNV 2076 2082 2079 2088 2070

CTD 799355 796172 890121 836261 827192

time (min) 29.39 23.53 64.97 100

CNV 2754 2760 2765 2766 2750

CTD 1429914 1535849 1361586 1475281 1426133

time (min) 42.32 106.53 86.63 133.3

CNV 3438 3446 3446 3451 3434

CTD 2106125 2078110 2290367 2225366 2169452

time (min) 440.82 361.2 108.29 166.6

200

400

600

800

1000

MB: Mester and Bräysy

GH: Gehring and Homberger

LC: Le Bouthillier and Crainic

�
-

-

�
-

-

ij(ti)

si sjti

ij(ti) �

� FIFO

it it

(a) (b)

t < t' t + ij(t) < t' + ij(t')

ij(ti) ij(ti)

qij(tij)

)(ijij tq

ijt
(a) (b) ijt

)(ijij tq

is js
tij

i j

362

�
- DP

- O(1)

�
-

NP ; DP

-

DP

�

�

� Gehring & Homberger

�

�

�

�

�

cf.

363

2005.6.16�172005.6.16�17

�

� (n1-) [Hastad 99]

�

� O(nm) [Tsukiyama, et al. 77]

� O(4) [Uno03])

� (O(3n/3)) [Moon, et al. 65]

Why Cliques?

� Inside: Densely connected.

� Inside-Outside: Sparsely connected.

S1
S2

Isolated cliques
� Let c>0 be a constant. A clique S V with k

vertices is an c-isolated clique if

|E(S)|<ck. (E(S)={edges between

S and V-S}.)

� 1-isolated cliques = isolated cliques.

S1
S2

|E(S1)=2<4 isolated clique

|E(S2)=9 5 non isolated clique

� Flake, Lawrence, Giles (2000)

� Community S V: |E(v,S)|>|E(v,V-S)| v S.

Community of Flake, et al. Isolated clique

Related work Preliminary Result

� Theorem 0.1. All isolated cliques can be

enumerated in linear time.

� Corollary 1. The # of isolated cliques is

O(m) for any graph.

364

Observation for Proving

Theorem 0.1

� Lemma 1. An isolated clique has a vertex

(called a pivot) that has no outgoing edge

from the clique.

� If v is the pivot of S, then S=N(v) {v}.

pivots

k-1

k

Strategy of enumeration

� Check each vertex whether or not it can be a

pivot.

� Sort and renumber all vertices as

d(v1) d(v2) � d(vn).

� If j>i, vj N(vi) (adjacent vertices of vi), vi

can be ignored (we can consider that the

vertex having the minimum index in a

isolated clique is the pivot): Test (a).

Observation 2

� Lemma 2. If S is an isolated clique and v

is the pivot, then w S

d(w) < (d(v)+1)2. (1)

� Proof. Let k=|S|=d(v)+1. w

S d(w)<k(k-1)+k=k2 =(d(v)+1)2.

Observation 2

� Lemma 3. If v has the minimum indices in

S=N(v) {v} and S satisfies (1), then

d(w)<2d(v)+1 w S.

� Proof. Let k=|S|=d(v)+1. If d(w)

2d(v)+1=2k-1 for a w S, w S

d(w) (k-1)2+2k-1=k2 =(d(v)+1)2,

contradiction.

Strategy 2

� If v passes Test (a), we check whether

S=N(v) {v} satisfies (1): Test (b). (This can

be done in O(d(v)) time.)

� If N(v) passes this test,

d(w)<2d(v)+1=O(d(v)) w N(v) from

Lemma 3.

Observation 3

� Lemma 4. If S={v=w1, ..., wk} is an isolated

clique and v is the pivot of S (d(w1) �

d(wk)), then Si={w1, ..., wi} has at most i-1

outgoing edges from S.

� Proof. Assume that |E(Si,V-S)| i. Then

d(wi) d(v)+1, and hence d(vj) d(v)+1 for all

j=i+1, ..., k. Therefore w

Sd(w)= w Sid(w)+ v S-Sid(w)

i+(k-i)=k, contradiction.

365

Strategy 3
� Assume that v passed Tests (a) and (b)

(primal tests).

� Let S=N(v) {v}={v=w1, w2, ..., wk}

(d(w1) d(w2) � d(wk)).

� Clique test: From i=1 to k,

� check whether (1) wi is adjacent to w1, ..., wi-1

(i.e., Si={w1, ..., wi} is a clique) and

� (2) Si has at most i-1 outgoing edges from S.

� If not, v is not a pivot and then skipped (finish

checking v).

Running time

� Sorting vertices by their degrees: O(m).

� Primal tests: O(d(v)) for each v V, i.e., O(m).

� Clique test: Assume the test breaks at wp.

d(w1)+d(w2)+�+d(wp)=O(wp
2) O(m2)?

More precise estimation!

Running time (Cont.)

� Assume the test is done until wp. (k=d(v1)+1)

(v=)w1 w2 w3 wp-1 wkwp

at most p-2

By v: O(d(w1)+d(w2)+� d(wp))=O(pk)

By other pivots: O((p-1)d(wp-1))=O(pk)
O(pk)

Amortize as O(k)=d(wi) for each vertex in S.

S

Running time (Cont.)

� Sorting vertices by their degrees: O(m).

� Primal tests: O(d(v)) for each v V, i.e., O(m).

� Clique test: O(d(v)) for each v V, i.e., O(m).

O(m). Theorem 0.1 is proved.

Extension

� Theorem 0.1. All isolated cliques can be
enumerated in linear time.

� For general c-isolated cliques?

� Maximal ones are important.

1.1-isolated clique

3.1-isolated clique

Results
� Theorem 1. All maximal c-isolated cliques of a

graph with n vertices can be enumerated in

O(c522cm) time.

� Corollary 1. For any constant c, all maximal c-

isolated cliques can be enumerated in linear time.

� Corollary 2. For any c=O(logn), all maximal c-

isolated cliques of a graph with n vertices can be

enumerated in polynomial time.

366

Results (cont.)
� Theorem 2. Let c, x, and y are functions of n s.t.

c=xy. There is a graph with m edges for which the #

of maxmal c-isolated cliques is ((2xy/c2)m).

� Cor. 3. If c= (1), there is a graph with n vertices

consisting of super-linear # of maximal c-isolated

cliques.

� Cor. 4. If c= (logn), there is a graph with n vertices

consisting of super-polynomial # of maximal c-

isolated cliques.

Results (cont.)

� Cor. 1. If c=O(1) , all maximal c-isolated cliques can
be enumerated in linear time.

� Cor. 3. If c= (1), there is a graph consisting of
super-linear # of maximal c-isolated cliques.

� c= (1) is the tight bound for enumerating all
maximal c-isolated cliques in linear time.

Results (cont.)

� Cor. 2. If c=O(logn), all maximal c-isolated cliques

can be enumerated in polynomial time.

� Cor. 4. If c= (logn), there is a graph consisting of

super-polynomial # of maximal c-isolated cliques.

� c= (logn) is the tight bound for enumerating all

maximal c-isolated cliques in polynomial time.

Proof of Theorem 2
� Theorem 2. Let c, x, and y are functions s.t. c=xy.

There is a graph with m edges for which the # of
maxmal c-isolated cliques is ((2xy/c2)m).

completely

connected

independent

set
x

y

Block

c-isolated clique

Proof of Corollaries 3 and 4

� If c= (1), then by

letting x=2, y=c/2 (2xy/c2)m becomes

super-linear.

� If c= (logn), then by

letting x=c/logn, y=logn (2xy/c2)m is

super-polynomial.

Other Results: Pseudo-

Clieques

� Let (k) and (k) are functions.

Pseudo-Clique PC(,) is a vertex-

proper-subset S V (|S|=k) s.t.

� avv S dG(S)(v) (k) and

� minv S dG(S)(v) (k).

367

Results for PC

� Theorem 3. Suppose f(k)= (1) and 0< <1 is a

constant.

� There is a graph including super-poly. # of

maximal isolated PC(k-f(k),k).

� There is a graph including super-poly. # of

maximal isolated PC(k-k ,k/f(k)).

� Proposition 1. All maximal isolated PC(,c1k) and

PC(k-c2,k) are enumerated in poly. time for

constant c1<1 and c2 1.

Results for PC (Cont.)

� Theorem 4. There is a graph including

super-poly. # of maximal isolated PC(k-

(logk)1+ ,k/(logk)1+) for any 0< .

� Theorem5. All maximal isolated PC(k-

logk,k/logk) can be enumerated in poly. time.

Summary
� Introduce f-isolated cliques with parameter

function c.

� All c-isolated cliques can be enumerated in

linear time for any constant c.

� c= (1) is the tight bound of linear time

enumeration.

� All c-isolated cliques can be enumerated in

poly. time if c=O(logn).

� c= (logn) is the tight bound of poly. time

enumeration.

368

Compact Encoding of Plane Triangulations

with Efficient Query Support

0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1

m

2m bit

2005/06/17

2 log n bit + (

n2 bit

1

2

3
4

1

2

3
4

1 2 3 4 NIL

2 NIL1 3 4

3 2 4 1 NIL

4 NIL1 3 2

�

(

� (bit /

YES!
0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1

log bit

= log

1.08 m bit [Tutte 62]

2m � o(n) bit

k

4m bit [Turan 84]

3.58m bit [Keeler 95]

1.53m bit []

1.33m bit [He 99]

1.33m bit [Poulalhon 03]

ICALP 2003

1.08m bit

2m +o(n)bit [Jacobson 89]

FOCS 89

2m+8n+o(n)bit [Munro 97]

FOCS 97

2m+2n+o(n)bit [Chiang 01]

SODA 01

2m+n+o(n)bit [Chuang]

2m+5n+o(n)bit ICALP 98

2m+o(n)bit [2005]

369

�

�

�

�

�

�

�

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

()

(() (()) (() ()) ((�.

1 2 2 3 4 4 3 5 6 6 7 7 5 8 9 10 10 �

1 2 2 3 4 4 3 5 6 6 7 7 5 8 9 10 10 �

s(1) s(2) l(2) s(3) s(4) l(4) �

0, 0, 5, 1, 1, 3,

[[[[[]] [[[[�.

5
s(5)=2

l(5)=3

2

3

4

5

6

7

8

9

10

11

12

13

7

s s l s s l l s s l s l l s

1

2

3

4

5

6

7

8

9

10

11

12

13

(() (()) (() ()) ((())) () () ())

1

2 4 6 7 10 11 12 13

953

8

1

2

3

4

5

6

7

8

9

10

11

12

13

]

]

]

]]

]

]

]]]

]]]

]]]

]]

]]]

[

[[[

[

[[

[

[

[[

[

[

[[[

[[[[[

370

3
1

2

3

4

5

6

7

8

9

10

11

12

13

]

]

]

]]

]

]

]]]

]]]

]]]

]]

]]]

[

[[[

[

[[

[

[

[[

[

[

[[[

[[[[[

[[[[[]] [[[[]]] []]] [[[[]]]]] [[[[[]] []]] []]]

2 3 4 4 3 5 6 6 7 7 5 8 9 10 10 9 8 11 11 12 12 13

[[[[[]] [[[[]]] []]] [[[[]]]]] [[[[[]] []]] []]]

2 3 4 4 3 5 6 6 7 7 5 8 9 10 10 9 8 11 11 12 12 13

00001 1 1 001 1 01 1 1 001 1 001 �..

[]

(() (()) (() ()) ((())) () () ())

1

2 4 6 7 10 11 12 13

953

8

- - l s s l l s s l s l l s s s l l l s l s l s l l

bit

� 2bit bit

� ----- ()

� ----- []

[Munro 97 + Chiang 01]

bit o(n) bit

rank(p), select(i)

o(n) bit

findclose(p), findopen(p), enclose(p),

wrapped(p)

2

3

4

5

6
7

8

10

11

12

13

2

3

4

5

6

7

8

9

10

11

12

13

1

2 4 6 7 10 11 12 13

953

8

[[[[[]] [[[[]]] []]] [[[[]]]]

2 3 4 4 3 5 6 6 7 7 5 8 9 10

1

1
(() (()) (() ()) ((())) () () ())

v v

2

3

4
6

7

8

10

11

12

13

2

3

4

5

6
7

8

9

10

11

12

13

1

2 4 6 7 10 11 12 13

93

[[[[[]] [[[[]]] []]] [[[[]]]

2 3 4 4 3 5 6 6 7 7 5 8 9 10

8

5

5

371

� O((v)
2m+n+o(n)bit [Chuan 98]

2m+o(n)bit [05]

�

�

�

372

!!

blog2Nc

m · N / 2
m

1 ·
m · blog2 N c

373

e-
0

m*
b c

Y

Z
L: Y × Z [0,]

t = 1, 2, 3, ...
1

2

N

x t,1
Z

xt,2

x
t,N

zt Z

yt Y

L(yt, zt)

i L(yt, xt,i)

374

A

1

2

N

x t,1

xt,2

x
t,N

yt

zt

t = 1, 2, ..., T

A

i

A

R T
A

small

LossT
A

= A

LossT
i

= i

m* = min
i
LossT

i

vt i

i
i

T
i

v ,i = 1/N

a()

c()

X
(a,c)

1

375

L(y,z) z

Hellinger

a()

c()

1

(cAA · cWAA)

cAA cWAA

|y z|

()2

L

v u

v u i vi vi ui

v

vt

vt

a

b

· v v

yt zt yt xt i

· c (v vt v vt)

v i

vt v* t

376

·

·

so she was considering in her _____?

mind
thought

own
office

:

0.232
0.183
0.129
0.073

:

i

Pr(á | context,
i
)

={1, ..., K}

t = 1, 2, 3, ...

A

1

2

N

x t,1

xt,2

x
t,N

zt

yt

zt(yt) = Pr(yt | y1, ..., yt-1, A)

i
xt,i

(yt) = Pr(yt | y1, ..., yt-1,
i
)

y1, y2, ..., yt-1 i
x
t i

(á) = Pr(á | y1,..., yt-1,
i
)

A

1

2

N

x t,1

xt,2

x
t,N

yt

zt

t = 1, 2, ..., T

A P(S | A) =
t

P(y
t
| y1..t-1, A) =

t
z
t
(y
t
)

i
P(S |

i
) =

t
x
t i

(y
t
)

A + = log2 P(S | A)

i
+ = log2 P(S |

i
)

= log2 P(S | A)
i

(log2 P(S |
i
))

S = (y1, ..., yT)

(Y, Z, L)

= = LossT
A

� LossT
i* · ln N

377

0

0

0 0 0 0

1

1

1111

1 0

N

0

1 2

3

14

Pr(y | 001,) = 2

Pr(y | 010,) = 4

= + O()

t

Mt-1 Mt

NTT

zt(1)
zt(2) zt(3)

zt(4)

K

Mt+1

j yt(j)

j Mt z (j)

(zt(1) + + zt(K) = 1)

yt(1)
yt(2) yt(3)

yt(4)

Mt+1 = Mt j yt(j) zt(j) = Mt (yt · zt)

A

1

2

N

x t,1

xt,2

x
t,N

zt

t = 1, 2, ..., T

yt

xt,i z

A MT+1 = M1 t zt · yt
i

MT+1,i = M1 t xt,i · yt

MT+1 / maxi MT+1,i

(·)

(Y, Z, L)

= e 1 / N

·

(Y, Z, L)

·

=

L* =

378

G

s t

1. s-t P zt(P)
2. dt(e) [0,1]

P s t yt(P) = d (e)

3. P yt(P) zt(P) = yt · zt

t yt · zt - minP t yt(P)

0.4

0.9

0.3

0.6

0.6

1.0

0.2

0.4

0.7

s t

P1 P2 P3

P4 P5 P6

P7

i Pi 1

N = s-t

B = maxP |P|

Y = [0,B]N

Z = s-t
L(y, z) = y · z

v

vt,P = e P at(e) v

s t

0.9

0.1

0.5

0.5

0.4

0.6

0.5

0.5

1.0

vt,P = 0.9 0.4 1.0 = 0.36

bt(e) = exp(- dt(e))

P =

(L(yt, xt,P) = e P dt(e))

379

: a = (a(e1), ..., a(em))

: v = (vP1, ..., v),

v = (a)

: b = (b(e1), ..., b(em))

Path Kernel

normalization factor

usource

sink

source

sink

u

u u�

e Ku�Ku

at(e)bt(e)

380

平成17年度 第２回 全体会議

日時 平成 17年 11月 21日 (月), 22日 (火)

会場 名古屋大学 野依記念学術交流館 / IB電子情報館 中棟 IB大講義室

プログラム

11月 21日 (月)
10:30 – 12:00 未解決問題セッション

Domain-Specific Image Segmentation and Shape Matching
浅野哲夫 (北陸先端科学技術大学院大学)

柔体を扱う計算幾何学
浅野哲夫 (北陸先端科学技術大学院大学)

線的施設配置問題
加藤直樹 (京都大学)

外面が四角形 (以上)である格子凸描画を求める線形時間アルゴリズム
の開発
三浦一之 (福島大学)

幾何的巡回セールスマン問題の厳密アルゴリズムについて
岡本吉央 (豊橋技術科学大学)

文字列検索における時間と領域のトレードオフ
定兼邦彦 (九州大学)

12:00 – 13:30 幹事会
13:30 – 15:50 未解決問題に対するグループ討論
16:00 – 17:30 全体会議

11月 22日 (火)
10:15 – 11:00 透過的データ圧縮

定兼邦彦 (九州大学) . 382
11:10 – 11:55 確率伝搬法の可能性について

渡辺治 (東京工業大学) . 387
13:30 – 14:15 RNA配列の比較アルゴリズム

浅井潔 (東京大学) . 390
14:30 – 15:15 3つの資源節点集合を持つ 4点連結グラフを均等分割する問題について

石井利昌 (豊橋技術科学大学) . 398
15:30 – 16:15 平面グラフ、曲面上のグラフ、マイナーに関して閉じているグラフに関す

る彩色問題
河原林健一 (東北大学) . 408

16:30 – 17:30 未解決問題グループ討論の結果報告

381

Transparent Data Compression

2005 11 22

K. Sadakane and R. Grossi: Squeezing Succinct Data Structures into

Entropy Bounds, Proc. ACM-SIAM SODA 2006, to appear.

2

� ()

�

� ()

� ()

� (CPU >)

�

�

3

�

�

�

�

4

� n S ()

� LZ78 [Ziv, Lempel 78]

� S i log n

(log n) (decode(S,i))

(: word RAM (log n))

�

bits
log

logloglog
O

n

knn
nH k

(Hk: S k)

5

� Succinct

� bit vector

�

�

�

6

Succinct

� D

� :

� L = log (D)

�

� ()

� : (o(L) bits)

382

7

Succinct

� D {1,2,...,n}

� ()

� member(D,i): D i

� rank(D,i): D i

� select(D,j): D j

� : n + o(n) bits [J89] [M96]

S: 01000110001001000001
1 ni

rank(D,i) = 3
8

Succinct

� n T

� O(n log n) bits

� T (Catalan)

� = 2n (log n) bits

� ()

� preorder

� : 2n o(n) bits [MR01] [GRR04]

n

n

n

n
4

2

1

1

a

eb

c d

((()())())
ba c d e

S

S

9

� :

� : D {1,2,...,n}

� m

� bits member,

rank, select [RRR02]

m

n

mn

n
mn

m

n
m

m

n
nmB logloglog, bits

nnnnmB log/loglogO,

FID (Fully Indexable Dictionary)
10

FID

n () m

� i S[i] = 1

� S FID select

� m = O(n/log n) FID

000000010000000000001000000000001000000000000100000000S

n

nn

n

nn

nn

n

n

n

nn

n

log

loglog
O

log

loglog
O

log/
log

log
O

)log/(O
log

11

: Succinct

?

� FID

� () B(n,2n) = 2n bits

� 2n + O(n log log n/log n) bits [GRR04]

�

� FID 0

� k

0

loglog,

nH

mn

n
mn

m

n
mnmB

12

� D {1,2,...,n} member, rank, select

� : nHk+O(n log log n/log n) bits (k=O(log log n))

� Hk D 0,1 S k

� EID (Entropy-Bound Indexable Dictionary)

� FID

nmBnHnHnH kk ,01

383

13

EID

�

� D 0,1 S nHk+O(n log log n/log n) bits

(log n)

� FID O(n log log n/log n) bits

�

� FID (S[i,i+log n 1]

decode(S,i))

�

14

Succinct

� FID

� 2n + O(n log log n/log n) bits [GRR04]

� EID

� S Hk (k=O(log log n))

� 2nHk + O(n log log n/log n) bits

�

� Hk

()

15

EID

� S = 010101...010101

� FID: nH0 = n bits (+ O(n log log n/log n))

� EID: nH1 = O(log n) bits (+ O(n log log n/log n))

� 2

� rank

(n log log n/log n) bits [Miltersen 05]

2

16

17

LZ77 [Ziv, Lempel 77]

LZ78 [Ziv, Lempel 78]

LZW[Welch 84]

compress

LZSS [Storer, Szymanski 82]

gzip

PPM[Cleary, Witten 84]

PPMD [Howard 93]

PPM*[Cleary, Teahan, Witten 95]

block sorting

[Burrows, Wheeler 94]

PPM (bzip2)

context tree weighting

[Willems, Shtarkov, Tjalkens 95]

PPM 18

LZ77

�

� =

....a compressed suffix tree consists of a compressed suffix

array, a Pat tree and edge-length information.

....a compressed suffix tree consists of [l=19, d=36]

array, a Pat [l=4, d=51] and edge-length information.

384

19

PPM

� 1

�

� k

�

abcababc

kAs Ac c

csk
p

pnnH
1

log

20

� k

�

c m sp ro e s ni o

k = 4

21

O(n)nHkCTW [WST95]

O(1)nHk

nHkBlock Sorting

[BW94]

O(n)nHkPPM [CW84]

O(n)nHkLZ78 [ZL78]

O(n)nHkLZ77 [ZL77]

log n

loglog
loglog

log
O

2

n
n

n
[GGV03]

22

LZ78 +

23

LZ78

�

�

�

1

2

a

3

a

7

b 4

b

5

b

8

b

S = aaabbbaaaabbbb
2 3 4 5

6

a

6 7 8

1 a 2 a 1 b 4 b 3 a 2 b 5 b

LZ-trie

24

LZ78

n S c

� : bits

� S (H)

� S k Hk

)(
log

nH
n

cc

loglog cc

)(loglog ckc
c

n
cnHcc k

[Kosaraju, Manjini 99]

n

n
cn

log

[Ziv, Lempel 78]

(:)

385

25

6

4

5

2

3

1

7

8

a

a

a

b

b

b

b

S = aaabbbaaaabbbb
R 2 3 6 7 4 5 8

P 1 2 4 5 7 10 12

2 3 6 74 5 8

E (((())())((())))
1

C a a a b b b b

T

T

T

T preorder

26

decode

S[i,i+log n 1]

1. S[i] p

2. p LZ-trie v

3. v

6

4

5

2

3

1

7

8

a

a

a

b

b

b

b

S = aaabbbaaaabbbb
R 2 3 6 7 4 5 8

P 1 2 4 5 7 10 12

27

Long phrase

� Long phrase: w = ½ log n

branching node ()

()

jump node (w/2)

micro tree (jump node)

28

Short phrase

� Short phrase: w = ½ log n

� S ½ log n short phrase O(log n)

� r > 1 short phrase

� R

�

� R : r log c bits

� : ½ log n bits

� ½ log n < r log c ()cn

29

�

� ()

�

�

�

�

� LZ77

386

387

388

389

390

391

392

393

394

395

396

397

()

()

()

Background

Districting Problem
political constituencies
school board boundaries
sales or delivery regions

Criteria
equity
contiguousness

k-bipartition Problem

Input:
i) graph G =(V, E)
ii) disjoint subsets T1,T2,T3,T4,..,Tk V

(Resource sets)
(|Ti |: even)

Output:
a partition {V1, V2} of V

s.t.
(1) |Ti V1|= |Ti V2|= |Ti |/2 for each i,
(2) Both of V1 and V2 induce connected graphs.

V1

V2

k-bipartition Problem

k-bipartition

k : # of resource sets, n=|V|, m=|E |

Testing whether a k-bipartition exists or not is NP-hard
even if k=1 [Dyer, Frieze 85][Chleikova 99]

Related Results

k : # of resource sets, n=|V|, m=|E |

Testing whether a k-bipartition exists or not is NP-hard
even if k=1 [Dyer, Frieze 85][Chleikova 99]

Sufficient condition for which a k-bipartition exists:

1-bipartition 2-connectivity suffices.

O (m) time [Suzuki et al.90][Wada, Kawaguchi94]

2-bipartition 3-connectivity suffices.
O (n2logn) time [Nagamochi et al. 02]

Related Results

Conjecture
Every (k+1)-connected graph admits a k-bipartition.

398

Our Recent Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition

A 1-vertex-connected graph which has no 1-bipartition of V

k=1

resource vertex

A 1-vertex-connected graph which has no 1-bipartition of V

k=1

resource vertex

k=2

A 2-vertex-connected graph which has no 2-bipartition of V

Our Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition

3-bipartition

3-vertex-connectivity does not suffice.

3-vertex-connected graph

399

3-bipartition

3-vertex-connectivity does not suffice.

3-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

4-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

4-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

4-vertex-connected graph

3-bipartition

5-vertex-connectivity does not suffice.

4-bipartition

5-vertex-connectivity does not suffice.

400

Our Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition

If G is a 4-vertex-connected graph and contains K4,

then there exists a 3-bipartition, and moreover,

a 3-bipartiton can be found in O (n3logn) time.

Theorem

Reduction to a geometrical problem [Nagamochi et al. 02]

Phase 1
Find an embedding of G into
the 3-dimensional space R 3

called �convex-embedding� .

Phase 2
Bisect V in R 3 into {V1, V2}
by a plane called
�ham-sandwich cut�.

Algorithm for finding a 3-bipartition

P1,P2,�,Pk : k subsets of points
Ham-sandwich cut with respect to P1,P2,�,Pk

hyperplane bisecting each Pi

Ham-sandwich cut

P1,P2,P3

P1,P2,�,Pk : k subsets of points
Ham-sandwich cut with respect to P1,P2,�,Pk

hyperplane bisecting each Pi

Ham-sandwich cut

P1,P2,P3

P1,P2,�,Pk : k subsets of points
Ham-sandwich cut with respect to P1,P2,�,Pk

hyperplane bisecting each Pi

Ham-sandwich cut

In Rk, a ham-sandwich cut w.r.t. P1,�,Pk always exists.
Theorem [Edelsbrunner87]

O(n3/2) if k=3 (n : #points) [Chi-Yuan et al.94]

P1,P2,P3

Reduction to a geometrical problem [Nagamochi et al. 02]

Phase 1
Find an embedding of G into
the 3-dimensional space R 3

called �convex-embedding� .

Phase 2
Bisect V in R 3 into {V1, V2}
by a plane called
�ham-sandwich cut�.

Algorithm for finding a 3-bipartition

(1) |Ti V1|= |Ti V2|= |Ti |/2

401

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �.
(ii) For v V � V (G�),

(iii) f (v) is strictly included in the convex hull of f (NG(v.

Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

G

G�

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �,
(ii)

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V(G�))

G

G�

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �,
(ii) For v V � V (G�),

f (v) is strictly included in the convex hull of f (NG(v)).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V)

G

G�

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �,
(ii) For v V � V (G�),

f (v) is strictly included in the convex hull of f (NG(v)).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

G

G�

f (V)

v

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �,
(ii) For v V � V (G�),

f (v) is strictly included in the convex hull of f (NG(v)).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V)

v

f (NG(v))

G

G�

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �,
(ii) For v V � V (G�),

f (v) is strictly included in the convex hull of f (NG(v)).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V)

v

f (NG(v))

G

G�

402

Convex Embedding

NG(v) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk,

if (i) the convex hull of f (V(G�)) is isomorphic to G �.
(ii) For v V � V (G�),

f (v) is strictly included in the convex hull of f (NG(v)).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V)

G

G�

f : V Rk : a convex embedding of G with boundaryG � into Rk.

{V1, V2} : a parition of V obtained by separating f (V) with an

arbitrary hyperplane.

Both of V1 and V2 induce connected graphs.

Lemma [Nagamochi et al.02]

f (V)

Convex Embedding

Algorithm for finding a 3-bipartition

Reduction to a geometrical problem [Nagamochi et al. 02]

Phase 1
Find an embedding of G into
the 3-dimensional space R 3

called �convex-embedding� .

Phase 2
Bisect V in R 3 into {V1, V2}
by a plane called
�ham-sandwich cut�.

(1) |Ti V1|= |Ti V2|= |Ti |/2

(2)V1 andV2 induce connected graphs

3-bipartition

G : a 4-connected graph which includes K4 (denoted
by G�).
G has a convex embedding into R 3 with boundary G�

Theorem

G

G�

Lemma Let G be a 4-vertex-connected graph G (K5), and

H be a subgraph of G with H=K4.

Then G has a contractible edge in E(G)-E(H) in such a sense

that its contraction preserves 4-vertex-connectivity.

K5

Key Lemma
Step 1 (contraction step)
Contract edges not contained in G� while preserving 4-connectivity

Algorithm for finding a convex embedding into R 3

G

G�

Step 2 (embedding step)
Embed vertices by backtracking the contraction step.

403

Embedding Step

Convex embedding f1
u* {u1, u2}

u*

G1

Given:
G

1
: graph obtained from G2 by contracting u1 and u2 into u*
such that (u1,u2) E, |NG(ui)| 4

f1: convex embedding of G1

Convex embedding of G2

u2u1

G2

Embedding Step

Convex embedding f1

u*

u* {u1, u2}
f 2

G1

Embedding Step

u*

u* {u1, u2}

i) f2 (u) = f1 (u) for u u1,u2

u2
u1

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

i) f2 (u) = f1 (u) for u u1,u2

ii) f2 (u1) = f1 (u*)

u2
u1

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

u2
u1

Finding a position for u2

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

u2
u1

Convex embedding f1 f 2

G1 G2

(a) u2 is in the convex hull of NG (u2)2

404

Embedding Step

u*

u* {u1, u2}

u2
u1

Convex embedding f1 f 2

G1 G2

(a) u2 is in the convex hull of NG (u2)2

|NG (u2)| 4
2

Embedding Step

u*

u* {u1, u2}

u2
u1

Convex embedding f1 f 2

G1 G2

(b) the convexity of node NG (u2)2

Embedding Step

u*

u* {u1, u2}

u2
u1

(b�) the convexity of u1

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

u2
u1

(b�) the convexity of u1

Convex embedding f1 f 2

G1 G2

|NG (u1)-{u2}| 3
2

Embedding Step

u*

u* {u1, u2}

u2
u1

G1 G2

Convex embedding f1 f 2

Embedding Step

u2

u1

If and are disjoint, ..

In G1, u* cannot be included in the convex hull of NG (u*).
contradicting that f1 is a convex-embedding.

1

G2

405

Our Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition
resource edge sets:
disjoint subsets
T1, T2, T3 of E

G =(V,E)

E2 = E - E1

connected

E1

connected

Edge-Version

Edge-Version

For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

G --> Line graph L(G)

(k+1)-edge-connected --> (k+1)-vertex-connected & Kk+1

Input: a graph and subsets Ti of resource edge sets
Output: a bipartition {E1, E2} of E

s.t. |E1 Ti |=|E2 Ti |
E1 and E2 induce connected graphs.

A 1-edge-connected graph which has no 1-bipartition of E

k=1, =1

resource edge

k=2, =2

A 2-edge-connected graph which has no 2-bipartition of E A 3-edge-connected graph which has no 3-bipartition of E

24 vertices
deg=5

=5

406

What we have done is ...

Every 4-vertex-connected graph G admits
a 3-bipartition if G has a K4

Every (k+1)-edge-connected graph G admits
a k-bipartition of E (k=1,2,3).

The vertex version implies the edge version.

5-vertex-connecitivity does not suffice for 3-bipartition
5-vertex-connecitivity does not suffice for 4-bipartition
5-vertex-connecitivity does not suffice for 5-bipartition

Open Problems

Sufficient condition for which a k-bipartition exists

Conjecture

Every (k+1)-vertex-connected graph with Kk+1 admits a k-

bipartition.

the edge version

Conjecture
Every (k+1)-edge-connected graph admits a k-bipartition.

Define f (k) be the smallest p such that every
p-vertex-connected graph admits a k-bipartition.

For k>3, bound f (k) from above by k+constant.

The same questions for the edge version.

For k>5, prove f (k) k+1.

f (1)=2, f (2)=3

f (3) 6, f (4) 6, f (5) 6

Open Problem

f (k) = O(|Ti |)

407

Approximating graph

coloring of minor-closed

graphs

Joint Work with Erik Demaine, Mohammad

Hajiaghayi, Bojan Mohar, Robin Thomas

Partially joint Work with Neil Robertson

and Paul Seymour

Ken-ichi Kawarabayashi

Tohoku University

E-mail: k_keniti@dais.is.tohoku.ac.jp

http://www.dais.is.tohoku.ac.jp/~k_keniti

Contents

(Mostly, FOCS paper)

Motivation (FOCS paper)

2-approx. of the chromatic number of minor-

closed graphs (FOCS paper)

Tree-width, Grid-minor, RS-structure.

Overview of Algorithm (Robertson-Seymour)

Approx. the list-chromatic number of minor-

closed graphs.

Toward Structural Theorem

Why is it accepted in FOCS?

It is building on math deep theory. (although NOT

AT ALL practical.)

Minor-closed graphs are natural. (a generalization

of planar graphs.)

It tells how to use RS� main structural theorem.

It is a bit easier to access (than RS� papers)

Nice approx. for graph coloring of minor-closed

graphs.

Lucky.

Motivation
Mathematical Motivation

1. Hadwiger�s Conjecture. (A far generalization of 4CT)

2. Graph Minor Theory (Robertson-Seymour)

Algorithmic Motivation

1. Chromatic number is hard to compute.

NP-complete even for deciding 3-colorability of Planar
graphs.

2. Even hard to approx.

NP-hard to approx. within constant factor.

3. NP-complete to decide the chromatic number of
minor closed graphs. (Even for planar graphs)

Can you approx. ?

Algorithmic Results

Theorem (Demaine, Hajiaghayi, KK, FOCS2005)

There exists a 2-approx. algorithm for the

chromatic number in minor-closed graphs. (graphs

with no Kk-minor)

The best known result was O(k logk) approx.

Proof uses the whole graph minor papers�.

Robertson-Seymour theory consists of 23 papers.

Most of them are published in JCTB.

Why is it 2-approx ?

The main theorem says that if G is Kk-minor-

free graphs, then it can be decomposed into

two graphs G1,G2 such that both G1 and G2

have tree-width at most f(k).

If tree-width is bounded, one can compute the

chromatic number in the linear time.

It remains to give an algorithm for the main

theorem�

408

Proof depends on

Robertson-Seymour theorem.

It gives a structural theorem for minor-closed

graphs.

Once we have this structure, the rest of proof

is not so hard (but not trivial.)

The main challenge is how to obtain RS-

structure.

It depends on the whole graph minor papers.

delete

Minors

A graph G has a minor H if
H can be formed by removing and contracting
edges of G

Otherwise, G is H-minor-free

For example, planar graphs are both
K3,3-minor-free and K5-minor-free

contract

H
minor of G

G

*

Graph Minor Theory
�

Seminal series of 20 papers

Powerful results on excluded minors:
Every minor-closed graph property
(preserved when taking minors)
has a finite set of excluded minors
[Wagner�s Conjecture]

Every minor-closed graph property
can be decided in polynomial time

For fixed graph H, graphs minor-excluding H have
a special structure: drawings on
bounded-genus surfaces + �extra features�

Highlights of Graph

Minor Theory

Theorem(The disjoint paths problem) For

fixed k, there is a polynomial time algorithm

for deciding the disjoint paths problem.

Minor testing can be done.

Tree-width and grid-minors are discovered.

Many mathematical and algorithmic

applications.

The disjoint paths

problems

�
�

�
�

S1

S2

SK-1

SK

T1

TK-1

TK

T2

Treewidth
�

Treewidth of a graph is the smallest

possible width of a tree decomposition

Tree decomposition spreads

out each vertex as a

connected subtree of a

common tree, such that

adjacent vertices have

overlapping subtrees

Width = maximum overlap 1

Treewidth 1 tree; 2 series-parallel; �

Graph
Tree

decomposition

(width 3)

409

Tree-Decomposition
Tree-Decomposition of

Graph
A tree-decomposition of a graph G is (T,W),
where T is a tree and W=(Wt : t V(T))
satisfies

t V(T) Wt = V(G)

If t� T[t,t�], then Wt Wt� Wt�

uv E(G) for some t V(t) s.t. u, v Wt.

The width is max(|Wt|-1 : t V(T)).

The tree-width of G is a minimum width.

Tree-width at most 1 < = > G is a forest.

Tree-width at most 2 < = > G is series
parallel.

Tree-width at most 3 < = > G has no minor
isomorphic to K , Octahedron, 5-prism, V .

Tree-width of the complete graph of order n is
n-1.

Tree-width is minor-monotone.

The (k k)-grid minor has the tree-width k.

Tree-Width

Discovered by Robertson-Seymour.

NP-hard to determine tree-width.

A linear time to decide whether tree-width is k
or not for fixed k.

Many NP-hard problems can be solved in
polynomial time if a given graph has small
tree-width. (even linear)

It is useful for structural results.

It is a key for the proof of RS.

It is closely related to grid.

Grid Minors

Why important ?
r r grid:

r2 vertices, 2 r (r 1) edges

Treewidth ~ r

r r grid is the canonical planar graph of
treewidth (r): every planar graph of
treewidth w has an (w) (w) grid minor
[Robertson, Seymour, Thomas 1994]

So any planar graph of large treewidth has
an r r grid minor certifying large treewidth

What about nonplanar graphs?

r

r

r

r

Grid Minors

Why important ?
For any fixed graph H, every H-minor-free

graph of treewidth w(r) has an r r grid
minor [GM5�Robertson & Seymour 1986]

Re-proved & strengthened [Robertson, Seymour,

Thomas 1994; Reed 1997;

Diestel, Jensen, Gorbunov, Thomassen 1999]

Best bound of these: w(r) = 20 5 |V(H)|3 r

[Robertson, Seymour, Thomas 1994]

New optimal bound: w(r) = (r)

[Demaine,Hajiaghayi KK 2005]

Grids certify large treewidth in H-minor-free graph

410

Huge Grid is important

Routing problem

The disjoint paths problem and its

generalization.

Actually, Robertson-Seymour use this

idea.

Structure of H-minor-free Graphs

�

Every H-minor-free graph can be written

as O(1)-clique sums of graphs

Each summand is a graph that can be

O(1)-almost-embedded

into a bounded-genus surface

O(1) constants depend only on |V(H)|

Almost-Embeddable

Graphs

A graph is O(1)-almost-embeddable into a

bounded-genus surface if it is

A bounded-genus graph

+ a bounded number of vortices:

Vortex = Replace a face in the

bounded-genus graph by

a graph of bounded pathwidth

The interiors of the replaced faces are disjoint

+ a bounded number of apices:

Apex = extra vertex with any incident edges

What do we need ?

Crosscaps

Handles

Genus

Vortex

Apex (easy)

But

There cannot be so many crossings that

are far apart.

The genus addition process stops quite

soon.

Otherwise, we would get a desired

minor, a contradiction.

We know that

Any long jump must be contained in the
handle. This tells how to detect a handle.

Any crossings and crosscaps are contained
in small area. This tells how we can find a
crosscap and a vortex.

If there is no crosscap in the small area, then
it is either vortex or planar graph.

There cannot be many non-planar small
areas that are far apart. This tells us that
there are bounded number of vortices.

411

In summary

1. Stating with huge grid H.

2. As long as there is a long jump, we shall
detect handles.

3. Otherwise the graph is embedded into a
surface such that all the non-planar graphs
are in small areas.

4. We shall look at each small area, and
detect either vortex or crosscap.

5. There are only finitely many vortices and
crosscaps. So the process stops.

Almost-Embeddable

Graphs

A graph is O(1)-almost-embeddable into a

bounded-genus surface if it is

A bounded-genus graph

+ a bounded number of vortices:

Vortex = Replace a face in the

bounded-genus graph by

a graph of bounded pathwidth

The interiors of the replaced faces are disjoint

+ a bounded number of apices:

Apex = extra vertex with any incident edges

Approx. list coloring

Theorem[Mohar and KK]

There is an O(k)-approx. for graphs without Kk-minor,
I.e., minor-closed graphs.

Actually, it is �almost� O(logk)-approx.

It is approximating within O(logk)c + O(k), where c is
optimal.

The best know appox. was O(k logk) approx.

Open: O(1) ? (Maybe NP-hard.)

Algorithm for List-coloring

Theorem[KK & BM]

There is an O() algorithm for the following:

Input : A graph G, vertex set Z with |Z| <= 4k,
precoloring of Z and each vertex in G has 16k-
colors available in each list.

Output : Determine either

G has a Kk-minor, or

Precoloring of Z can be extended to the whole
graph G, or

G has a subgraph H such that H has no Kk-minor
and has a vertex set Z� with |Z�| <=4k such that
some precoloring of Z� cannot be extended to H.

3
n

Algorithm for List Coloring

Corollary:

There is an O() algorithm for deciding
the following:

(1) G has a Kk-minor

(2) G has a 16k-list-coloring

(3) G has a subgraph H such that H has
no Kk-minor and no 12k-list-coloring.

It is easy to list-color by O(k logk) colors

3
n

412

NHC Spring School and Workshop

on Discrete Algorithms

Feb. 27th – Mar. 3rd, 2006

University of Electro-Communications / Chofu Creston Hotel

Spring School

Feb. 27th (Mon.)
09:00 – 12:30 Data-Driven Computing

Bernard Chazelle (Princeton University) . 415
12:30 – 14:00 Lunch
14:00 – 17:30 Sensor Networks: A Digital Bridge to the Physical World

Leonidas J. Guibas (Stanford University) . 423

Feb. 28th (Tue.)
09:00 – 12:30 Games in Networks: Routing, Network Design and Potential Games

Eva Tardos (Cornell University) . 456
12:30 – 14:00 Lunch
14:00 – 17:30 Polynomial Time Algorithms for Market Equilibria

Vijay V. Vazirani (Georgia Institute of Technology) 473
Workshop

Mar. 1st (Wed.)
09:00 – 12:30 Random Sampling Techniques and Approximation of MAX-CSP

Marek Karpinski (University of Bonn) . 509
12:30 – 14:00 Lunch
14:00 – 17:30 Discussion

Mar. 2nd (Thur.)
09:30 – 10:30 Games in Networks, Equilibria, and Inefficiency

Eva Tardos (Cornell University)
10:30 – 11:00 Break
11:00 – 12:00 Approximation Schemes for Metric Clustering and Partitioning

Marek Karpinski (University of Bonn) . 511
12:00 – 13:30 Lunch
13:30 – 14:30 Discrete Optimization and VLSI-Design

Bernhard Korte (University of Bonn)
14:30 – 15:00 Break
15:00 – 16:00 Approximation Algorithms for Facility Location

Jens Vygen (University of Bonn) .519
16:00 – 16:30 Break
16:30 – 17:30 Algorithms for a Networked World

Magnus M. Halldorsson (University of Iceland) .529

413

Mar. 3rd (Fri.)
09:30 – 10:30 Algorithms for String Manipulation and Related Problems

D. T. Lee (Academia Sinica) .530
10:30 – 11:00 Break
11:00 – 12:00 Dynamic Data Structures in Computational Geometry

Timothy M. Chan (University of Waterloo) . 553
12:00 – 13:30 Lunch
13:30 – 14:30 Geometric Networks: Integer Linear Programming and Combinatorial

Algorithms
Alexander Wolff (University of Karlsruhe) . 564

14:30 – 15:00 Break
15:00 – 16:00 Geometric Embeddings and Graph Expansion

James R. Lee (UC Berkeley) . 572
16:00 – 16:30 Break
16:30 – 17:30 Distance Trisector and Voronoi Diagram with Neurtal Zone

Takeshi Tokuyama (Tohoku University) . 575

414

 Copyright © Bernard Chazelle | Princeton, January 2006 | home | To appear in "Math Horizons," 2006 |

AAAS '06 slides

Could Your iPod Be Holding the

Greatest Mystery in Modern
Science?

by Bernard Chazelle

Tuturologists are an amiable bunch, so it is a puzzle why the future has

been so cruel to them. From flying cars and self-cleaning houses to that

bugaboo of workaholics—the leisure society—the soothsayer's trail is

littered with the carcasses of pet predictions turned roadkill.

Gordon Moore need not worry. The co-founder of Intel tried his hand at

crystal gazing once—and struck gold. His celebrated law makes the

outlandish prediction that every 18 months, like clockwork, white-clad

technicians will huddle in a silicon wafer clean room and cram twice as

many transistors onto a microchip.

Moore's Law has ruled the roost for the last 40 years. All the oohs and aahs

you hear about the digital revolution are nothing but the squeals humans

emit when tickled pink by Moore's Law. From the nice (medical imaging,

e-commerce, whole-genome sequencing) to the vital (Xbox, IM, iPod), its

rule has been a veritable ticklefest. Moore's Law has been the sizzling

cauldron in which savvy cooks have whipped up a dazzling variety of tasty

dishes. Without it, the Information Superhighway would be a back alley to

Snoozeville; the coolest thing about a computer would still be the blinking

lights.

Moore's law has had a good run but, alas, its days are numbered. By mid-

415

century, a repeal is all but certain. With the heady days of the Incredible

Shrinking Chip receding in the past, expect the revolution to grind to a halt;

expect pioneers to give way to tinkerers. Bye-bye ticklefest, hello slumber

party.

No tears please. Perched atop their towering achievements, computer

scientists (the cooks, remember?) will bask in the soothing certainty that

their glorious science died at its peak. With a tinge of sadness but not a

little pride, they'll chime in unison There is nothing new to be discovered

in computer science now.

If you think you've seen this movie before, you have. A few short years

before Einstein turned our world upside down, the great Lord Kelvin

bloviated this gem for the ages: There is nothing new to be discovered in

physics now. Not his lordship's finest hour.

Moore's Law has fueled computer science's sizzle and sparkle, but it may

have obscured its uncanny resemblance to pre-Einstein physics: healthy

and plump—and ripe for a revolution. Computing promises to be the most

disruptive scientific paradigm since quantum mechanics. Unfortunately, it

is the proverbial riddle wrapped in a mystery inside an enigma. The stakes

are high, for our inability to get what computing is all about may well

play iceberg to the Titanic of modern science.

Brilliant foresight or latest tripe from the Kelvin school of prophecy?

Computing is the meeting point of three Big Ideas: universality; duality;

self-reference. To this triad, the modern view adds the concept of

tractability and the revolutionary algorithmic paradigm. Here's how it

works:

Universality Few would mistake your iPod for an IBM Blue Gene/L—the

world's fastest computer. Yet, fundamentally, the two are the same. Why is

that? At the heart of your iPod is a written document made of two parts:

program, data . The data section stores the songs as long sequences of 0s

and 1s. The program section explains in words (again, 0s and 1s) how to

read the data and turn it into sound. Add to this mix a smattering of

hardware, the control, to read the program and follow its instructions, and

voilà: you've got yourself an iPod. The beauty of the scheme is that the

control need not know a thing about music. In fact, simply by downloading

416

the appropriate program/data document, you can turn your iPod into an

earthquake simulator, a word processor, a web browser, or a paperweight.

Your dainty little MP3 player is a universal computer.

Separating control (the hardware) from program (the software) was the

major insight of Alan Turing—well, besides this little codebreaking thing he

did in Bletchley Park that helped win World War II. The separation was the

key to universality. No one had seen anything quite like it before. At least

not since the Chinese philosopher opined: Give a man a fish and you feed

him for a day. Teach a man to fish and you feed him for a lifetime. In

Confucius's hands, the specialized view of fishing = river + fisherman finds

itself replaced by a universal one: fishing = river + fishing manual + you.

There you have it, computing = data + program + control. The control part

of your iPod is a marvel of electronics, but the shocker is that it need not be

so: universal computers can be built with control boxes vastly simpler than

a cuckoo clock. For all purposes, computing = data + program.

Duality Consider the iPod document Print this, Let 'em eat cake . Push

the start button and watch the words Let 'em eat cake flash across the

screen. Note how the program part of the document, Print this, is

interpreted as a command—printing is what it wants and printing is what it

gets. Contrast this with the data part, Let 'em eat cake, which is treated as

plain text: no one's eating anything (to Marie-Antoinette's later chagrin).

Strings of 0s and 1s are interpreted in one of two ways: as form (data) or as

content (program). Tapping into the comic, artistic, and academic potential

of this duality, great minds went to work: Abbott and Costello (Who's on

First?), Magritte (Ceci n'est pas une pipe), and Saussure (signified vs.

signifier). Staring at the sublime will, of course, send the deeper thinkers

among us rushing for the classics—such as Homer Simpson's immortal

quip: Oh Marge, cartoons don't have any deep meaning; they're just stupid

drawings that give you a cheap laugh.

Self-Reference Write the iPod document Print this twice, Print this

twice and press the start button. The screen lights up with the words:

Print this twice, Print this twice . Lo and behold, the thing prints itself!

Just like a computer virus (remember, I did not teach you this). The magic

word is twice. For example, the iPod document Print this, Print this

prints this: Print this —more Dr. Seuss than self-replication.

The Big Ideas were the air that the Gang of Four, Princeton branch,
417

breathed all day—that would be Alonzo Church, Alan Turing, Kurt Gödel,

and John von Neumann. Mother Nature, of course, figured it all out a few

billion years earlier. Reformat your genome by lining up the two strands of

DNA one after the other, so it looks like a regular program-data iPod

document (billions of letters long though):

ACAAGAT...GCCATTG, TGTTCTA...CGGTAAC .

The base pairings (A,T) and (C,G) ensure that the two strands spell the

same word with different letters. So, we lose no genomic information if we

translate the data part and rewrite the whole document as the duplicated

text

ACAAGAT...GCCATTG, ACAAGAT...GCCATTG .

This is the biological analog of Print this twice, Print this twice . Life's but

a walking shadow, Macbeth warned us. Not quite. Life's but a self-printing

iPod! Offended souls will bang on preachily about there being more to

human life than the blind pursuit of self-replication—though Hollywood's

typical fare would seem to refute that. Existential angst aside, duality is the

option we have to interpret the word ACAAGAT...GCCATTG either as genes

(the form encoding our genome) or as proteins (the content mediating

the DNA replication). Self-reference is the duplication embodied in the

base pairings. Viewed through the computing lens, life = duality + self-

reference.

In the 1953 Nature article that unveiled to the world the structure of DNA,

Watson and Crick signed off with this lovely understatement: It has not

escaped our notice that the specific pairing we have postulated

immediately suggests a possible copying mechanism for the genetic

material. Duality and self-reference embedded in molecules: what sweet

music to Turing's ears this must have been! Alas, our war hero was a little

distracted at the time, busy as he was enjoying the rewards that the British

authorities had lavished upon him for saving millions of lives during World

War II—generous rewards like a court conviction for homosexuality with a

sentence of forced estrogen injections. Almost one year to the day of

Watson and Crick's triumph, Alan Turing went home, injected cyanide into

an apple, ate it, and died. His mother preferred to believe it was an

accident.

418

Tractability The genesis of this fourth Big Idea was the ho-hum

observation that checking the validity of a math proof tends to be much

easier than finding the proof in the first place. But is it really? Amazingly,

no one knows.

Welcome to the most important open question in all of computer science!

Ever wondered if your iPod's 5000-tune library is rich enough to let you

compile a playlist of a thousand songs, no two which have ever been played

back-to-back on MTV? Let's hope not, because not even an IBM Blue

Gene/L could do the job in less time than has passed since dinosaurs were

last seen roaming the earth. To find such a playlist (proof-finding) seems

hopelessly hard, even on a computer, but to test whether a tentative playlist

fits the bill (proof-checking) is a cinch: simply match all possible pairs

against MTV's complete playlist, which is readily accessible on the web.

The twin reality of hard proof-finding and easy proof-checking is hardly an

MTV-induced aberration. Computer scientists have catalogued over 1000

problems just like it. Of course, courtesy of Murphy's Law, these Jurassic-

1K include all of the questions humanity is desperate to answer—in

artificial intelligence, computational biology, resource allocation, rational

drug design, etc.

OK, so life is tough. But since when has that observation qualified as a Big

Idea?

Since 1970, roughly. Just as Einstein rebuilt Newtonian mechanics around

the constancy of the speed of light, Cook, Edmonds, Karp, and Levin set out

to rebuild computing around the notion of tractability. A problem is

tractable if it can be solved in time growing polynomially in the input size,

which is a fancy way of saying 'reasonably fast.' None of the Jurassic-1K

appear to be tractable. At least those in the know believe they are not—of

course, not so long ago, those in the know believed the earth was flat. Sadly,

the great promise of computing seems to lie with problems afflicted with

exponentialitis: the dreaded ailment that places even small-size problems

beyond the reach of any computer.

This much we know: it's genetic. If a single one of the Jurassic-1K is

tractable then, wonder of wonders, all of them are. These tough puzzles are

nothing but different translations of the same Shakespeare play. Heady

419

stuff! The day your playlist question can be answered in a few hours will be

the day public-key cryptography dies, bringing down with it all of e-

commerce. That day will see biology conquer its highest peak, protein

folding, and mathematicians contemplate early retirement. Indeed, the day

the Jurassic-1K are shown to be tractable (P=NP in computer parlance),

proof-finding will be revealed to be no more difficult than proof-checking.

Andrew Wiles, the conqueror of Fermat's Last Theorem, will be found to

deserve no more credit than his referees. (Note that this says nothing about

understanding the proof.) To be P or not to be P, that is NP's question. It is

likely that P=NP would do for science what the discovery of the wheel did

for land transportation. Little wonder no one believes it.

To discover the wheel is always nice, but to roll logs in the mud has its

charms, too. Likewise, the intractability of proof-finding would have its

benefits. When you purchase a book from Amazon, the assurance that your

transaction is secure is predicated on more than your endearing naiveté.

For one thing, it relies critically on the intractability of factoring a number

into primes.

Just as modern physics shattered the platonic view of a reality amenable to

noninvasive observation, tractability clobbers classical notions of

knowledge, trust, persuasion, and belief. No less. For a taste of it, consider

the great zero-knowledge (ZK) paradox: two mutually distrusting parties

can convince each other that each one holds a particular piece of

information without revealing a thing about it. Picture two filthy-rich

businessmen stuck in an elevator. Their immediate goal is (what else?)

finding out who's the wealthier. ZK dialogues provide them with the means

to do so while revealing zero information about their own worth (material

worth, that is—the other kind is already in full view).

Here is a ZK question for the State Department: can a signatory to the

Nuclear Non-Proliferation Treaty demonstrate compliance without

revealing any information whatsoever about its nuclear facilities? Just as

game theory influenced the thinking of cold war strategists, don't be

surprised to see ZK theory become the rage in international relations

circles.

Tractability reaches far beyond the racetrack where computing competes

for speed. It literally forces us to think differently. The agent of change is

the ubiquitous algorithm.
420

The Algorithmic Revolution An algorithm is an iPod program with a

human face. If a computer could wash your hair, its program would look

like 0110001100100110... but the algorithm behind it might read: Rinse,

lather, repeat. (Don't try this at home if you're a computer scientist.) An

algorithm is a list of instructions that tells the computer what to do. It may

loop around and entertain alternatives, as in Rinse, lather, repeat if

unhappy, dry, go to office, answer question: why didn't you rinse the

shampoo off your hair? An algorithm is, in essence, a work of literature.

The library's bottom shelves might stack the one-line zingers—algorithmic

miniatures that loop through a trivial algebraic calculation to produce

fractals (pictures of dazzling beauty and infinite intricacy) or print the

transcendentally mysterious digits of . Algorithmic zingers can do

everything. For the rest, we have the sonnets on the middle shelves. With

names like FFT, RSA, LLL, AKS, they are short and crisp, and tend to pack

more ingenuity per square inch than anything else in the computing world.

The top shelves hold the lush, richly textured, multilayered novels.

Give it to them, algorithmic zingers know how to make a scientist swoon.

No one who's ever tried to compute the digits of by hand can remain

unmoved by the sight of its decimal expansion flooding a computer screen

like lava flowing down a volcano. And that's not even the awesome part. For

that, one must turn to the infamous Brazilian butterfly whose evil wing

flaps cause typhoons in China. Zingers embody the potential of a local

action to unleash colossal forces on a global scale: complexity emerging out

of triviality. Cellular automata, chaos theory, dynamical systems, and all

that.

For a glimpse of the fiction genre on the top shelves, check out PCP.

Suppose that, after popping the genius pill, you wake up one bright

morning with a complete proof of the Riemann hypothesis in your head

(that's the Notorious B.I.G. of math rap: the biggest open problem in the

field). Few number theorists are likely to listen to your story. That is, until

you offer them the PCP deal. You'll write down your proof in an agreed-

upon format, and then let a verifier pick 10 lines at random. On the basis

of these 10 lines alone, the verifier will decide whether your proof is correct.

The shocker: beyond any reasonable doubt, she will be right! (Randomness

plays a key role, but the chance of erring is less than that of the proverbial

monkey typing all of Hamlet flawlessly.)

421

The mind reels. If your proof is fine, then it will pass any test the verifier

can throw at it. But, based on only 10 lines, how can she know that you've

proven the Riemann hypothesis and not a baby cousin like 2+2=4? If your

proof is bogus, the intuition does not help much either. Presumably, the

agreed-upon format is designed to smear any bug all across the proof. But

how will the verifier be sure that you didn't play fast and loose with the

formatting rules? So many ways to cheat; so little evidence to check. The

PCP algorithm upends basic notions of evidence and persuasion, and

accomplishes what is usually philosophy's prerogative: to turn the

comprehended into the incomprehensible. Somewhere, Wittgenstein must

be smiling.

Moore's Law has put computing on the map. Algorithms will now unleash

its true potential. Physics, astronomy, and chemistry are all sciences of

formulae. Chaos theory moved the algorithmic zinger to centerstage. The

quantitative sciences of the 21st century (eg, genomics, neurobiology) will

complete the dethronement of the formula by placing the algorithm at the

core of their modus operandi. Algorithmic thinking is likely to cause the

most disruptive paradigm shift in the sciences since quantum mechanics.

And yes, you may trust the future to be kind to this prediction.

422

1

Sensor Networks: A Digital Sensor Networks: A Digital
Bridge to the Physical WorldBridge to the Physical World

Leonidas Guibas
Computer Science Dept.
Stanford University

Sensing Networking

Computation

NHC Spring School and
Workshop on Discrete Algorithms

2

Introduction

Distributed algorithms
Networking
Databases
Software radios
Software design

Low-power processors
Signal processing
Wireless communication
Information theory
Estimation theory

CS EE

Many good algorithmic and theoretical questions!

3

Lecture Outline

Part 1: Introduction to Wireless Sensor
Networks

Distributed monitoring applications; Sensor network
hardware; Research issues in sensor networks;
Naming and routing; Sensor tasking and control.

Part 2: Structure Discovery and Information
Brokerage

Morphological analysis (boundaries, holes, bridges);
Landmarks and local coordinates; Information
diffusion; Hierarchical hashing.

Part 3: Lightweight Spatio-Temporal Reasoning
Configuration spaces; Collaboration groups; Identity
management; Occupancy tracking; Conclusion

4

Rockwell HiDRA

Environmental sensing

Traffic, habitats, pollution,
hazards, security

Industrial sensing

Machine monitoring and
diagnostics (IC fab)
Power/telecom grid
monitoring

Human-centered
computing

Smart, human-aware spaces
and environments

Berkeley/Crossbow Motes

Untethered micro sensors will go anywhere and measure
anything -- traffic flow, water level, number of people
walking by, temperature. This is developing into
something like a nervous system for the earth. -- Horst

Stormer in Business Week, 8/23-30, 1999.

Smart Sensors and
Sensor Networks

UCLA WINS

Sensing Networking

Computation

TelosB Crossbow Mote

5

Wireless Sensor Networks

Distributed systems
consisting of small,
untethered, low-power
nodes capable of
sensing, processing, and
wireless communication

small

large

RFID

PDA

Sensoria Node

MS Spot Watch

Ember
transceiver

6

Monitoring the World

Monitoring the
environment and
other spaces
Monitoring objects
Monitoring
interactions between
objects, or between
objects and their
environment

423

7

Petrel Nesting Behavior at Great
Duck Island

8

Wireless Sensor Network
Deployment

Advantages:
sensors can be close to signal
sources, yielding high SNR
phenomena can be monitored
that are widely distributed
across space and time

a `macroscope’ [Culler]

a distributed architecture
provides for scalable, robust
and self-repairing systems
significant installation savings
on cabling, etc. are possible

British Columbia winery
with networked temperature
sensors

Other data collection and monitoring: temperature
in data centers (HP), oil tanker vibrations (BP/Intel),
soil contaminants, etc.

9

Integration with Current Networks

Access to unfiltered information, highly localized in time and space.
Plans for next generation Internet all include edge sensor networks.

10

More Demanding Sensor
Network Applications

Beyond simple data collection
and aggregation

dynamic, mobile foci of activity
(tracking mobile objects)
Amidst clutter of irrelevant
data
distributed attention: focus and
context
acting on the world (closing
the loop)

Network must adapt to highly
dynamic foci of activity
Sensing is driven by user
queries
Sensing and communication
tasks must be planned and
allocated
Resources must be
apportioned between
detection, tracking, etc.

11

Sensor Network
Hardware

12

Wireless Sensor Trends

Riding on Moore’s law, smart sensors get:

Of 9.6 billion µP’s shipped in
2005, 98% were embedded
processors!

Sensoria WINSNG 2.0
CPU: 300 MIPS
1.1 GFLOP FPU
32MB Flash
32MB RAM
Sensors: external

More powerful

Crossbow Mica2dot
mote
4 MIPS CPU (integer only)
8KB Flash
512B RAM
Sensors: on board stack
(accel, light , microphone)

Inexpensive & simple

Smart dust (in
progress)
CPU, Memory: TBD
(LESS!)
Sensors: integrated

Supercheap & tinyEasy to use

HP iPAQ w/802.11
CPU: 240 MIPS
32MB Flash
64MB RAM
Both integrated and off-
board sensors

424

13

Currently Popular: Crossbow Motes

51-pin MICA2 / GPIO
Connector

Buzzer

Light & Temperature
Sensor

Microphone

Chipcon CC2420
802.15.4 Radio

Atmel ATMega128L

(under)

14

Crossbow Stargate - Top View

Ethernet
RJ-45 USB

Serial Port RS-232

PCMCIA
SLOT

15

Crossbow Stargate - Bottom View

Compact
Flash Slot

SA 1111 StrongArm I/O
Chip

Intel PXA255 Xscale
Processor

51-pin MICA2 / GPIO
Connector

16

Specifications
Stargate

Embedded Linux OS
400 Mhz Intel Xscale
64 MB SDRAM
32 MB FLASH
Many different
interfaces

RS-232, Ethernet,
USB,…

MicaZ Mote
• TinyOS
• 16 Mhz Atmel ATMega128L
• 128 kB Program FLASH
• 512 kB Serial FLASH
• Current Draw

• 8 mA – Active Mode
• <15 uA – Sleep Mode

• Chipcon CC2420 802.15.4 Radio
• 250 kbps
• 26 Channels – 2.4 Ghz
• Current Draw – 15 mA

www.xbow.com
http://computer.howstuffworks.com/mote4.htm

17

Power Breakdown …

Panasonic CR2354
560 mAh

This means
– Lithium Battery runs for 35

hours at peak load and years at
minimum load, a three orders of
magnitude difference!

003 mAEE-Prom

0
0
0

4.5 mA (RX)
2 mA

Idle

0200 �ATemperature
0200 �APhoto Diode
04 mALED’s

5 �A7 mA (TX)Radio
5 �A5 mACPU

SleepActive

Rene motes data, Jason Hill

Computation/communication ratio per byte:

• Rene motes:

• Comm: (7mA*3V/10e3)*8=16.8�J per 8 bit

• Comp: 5mA*3V/4e6=3.8 nJ per instruction

• Ratio: 4,400 instructions/hop

• Sensoria nodes:

• Comm: (100mW/56e3)*32=58�J per 32 bit

• Comp: 750mW/1.1e9=0.7nJ per instruction

• Ratio: 82,000 instructions/hop 18

Architectural
Challenges

425

19

Sensor Network Challenges
Power management

communication 1000s of times
more expensive than
computation
load balancing across nodes
coordinated sleeping/awake
schedules
correlated sensor data

In-network processing
data aggregation
overcounting of evidence

Difficult calibration
localization
time-synchronization

Constant variability
networking
sensing

[Picture from CACM June 2004]

20

Dense Sampling: Multi-Hop RF
Advantage

() 1

()

()send Nr receive

send r receive

P Nr P
N

N P N r P

α

α

α

−

= =

⋅ ⋅

Power advantage:

send receive
P r P

α

∝Or equivalently,

, :3 5send

receive

P
P

r
α

α∝ −

RF power attenuation near ground:

receive
P

()send r
P

()send Nr
P

r

Nr

Oversimplified: fixed overheads, delay, etc.

21

Dense Sampling: Detection and SNR
Advantage

2

source

receive

P
P

r
∝Acoustic power received at distance r:

10log 10log 10log 10log 20log
r receive noise source noise

SNR P P P P r= − = − −

Signal-noise ratio (SNR):

20log 10log
r r

N

r
SNR SNR N

r

N

− = =

Increasing the sensor density by a factor of N gives a SNR
advantage of:

Sensors have a finite sensing range. A denser sensor field
improves the odds of detecting a target within the range. Once
inside the range, further increasing sensor density by N improves
the SNR by 10logN db (in 2D). Consider the acoustic sensing
case:

22

Collaborative Estimation
Structuring communication is very important:

In a setting where each node wishes to communicate
some data to another node at random, interference
hinders scaling:

the per node throughput scales as (Gupta & Kumar ‘99)

Effectively each node is using all of its energy to route
messages for other nodes.

In a sensor network, however, because data from
nearby sensors are highly correlated, more
intelligent information dissemination strategies are
possible.

1

N

23

Networking Sensor Networks

Network support for a small number
of collaborative tasks.
Data-centric, (as opposed to a
node-centric) view of the world.
Monitoring processes may migrate
from node to node, as the
phenomena of interest move or
evolve.
Communication flow and structure
is dictated by the geography of
signal landscapes and the overall
network task.

24

`Semantic’ Routing and
Networking

We want to address
spatial locations or
information, not individual
nodes
Content and address in a
message get intermixed –
unlike classical networks
In a distributed setting,
how do we help
information providers and
information consumers
find each other?

Directed diffusion
Geo-routing

426

25

In-Network Processing

Information aggregation can
happen on the way to a
destination and provide
substantial energy savings
Need to balance quality of
paths with quality of
information collected
But aggregation makes data
lineage harder to ascertain
Can we have “application-
independent” paradigms of
information aggregation? Temperature aggregation

26

Power-Aware Sensing,
Computing, and Communication

Variable power systems
Let most sensors sleep
most of the time; use
paging channels
Exploit correlation in
readings between nearby
sensors
Load-balance, to avoid
depleting critical nodes

Wireless
communication with
neighboring nodes

In-node
processing

27

Sensor Tasking and Control

Decide which sensors
should sense and
communicate, according
to the high-level task – a
non-trivial algorithmic
problem
Direct sensing of
relations relevant to the
task – do not estimate full
world state d ahead-of

e

c ahead-of
d

b ahead-of
c

a ahead-of
b

28

Enable Data-Base Like
Operations

Data only available right
after sensing operation
Dense data streams must
be sampled, or otherwise
summarized
Must deal with distributed
information storage –
“where is the data?”
Large flash memory
availability can make in-
network storage possible

Field isolines

29

Self-Configuration for Ad-Hoc
Deployment

Network size makes it
impossible to
configure each node
individually
Environmental
changes may require
frequent re-calibration
Network must recover
after node failures

Iterative localization

30

Structure Discovery

A sensor network is a
novel type of computing
device -- a sensor
computer
One of its first tasks is to
discover its own structure
and establish

information highways
sensor collaboration groups

as well as adapt to its
signal landscape

427

31

New System Architectures

Resource constraints
require close coupling
between the
networking
application layers
Can we define
application-
independent
programming
abstractions for
sensor networks?

In-network: application processing,
data aggregation, query processing

Adaptive topology, geo-routing

MAC, time and location services

Phy: comm, sensing, actuation, SP

User queries, external
databases

Data dissemination, storage, caching

A sensor net stack?
32

Various Issues

Integration of sensors
with widely different
modalities

High data-rate sensors
(cameras, laser
scanners)

Sensor mobility
Actuation

Distributed robotics

33

What Defines Sensor Networks?

Multi-hop communication
Many nodes act as routers
Multiple paths exist and must be considered

Bandwidth limitations
Volume of data sensed exceeds to capacity of the
network to transport

Power limitations
(At least some) nodes operate untethered and energy
conservation must be considered in all of sensing,
processing, and communication

A cooperative system
All nodes serve one, or a small number of tasks

34

Sensor Network Research
power awareness
sensor tasking and control
formation of sensor
collaboration groups
in-network, distributed
processing
node management,
service establishment,
software layers
coping with noise and
uncertainty in the
environment

Estimate full
world-state

Sense Answer query,
make decision

A key algorithmic problem is how to sense and aggregate
only the portions of the world-state relevant to the task at
hand, in a lightweight, energy-efficient manner.

35

Naming and Routing
in

Sensor Networks

36

Routing in Sensor Networks
Point-to-point routing protocols in communication
networks obtain route information between pairs of
nodes wishing to communicate. Such protocols can be

proactive: the protocol maintains routing tables at each node that
are updated as changes in the network topology are detected
reactive: the protocol constructs paths on demand only

Because of the high rate of topology changes, reactive
protocols are much more appropriate for sensor
networks
Several such protocols have already been developed for
ad hoc mobile communication networks. Examples are:

Ad hoc on demand distance vector routing (AODV)
Dynamic source routing (DSR)

both, however, may flood the network to discover paths

428

37

Geographic Routing
In sensor networks, naming and routing is frequently
based on a node’s attributes and sensed data, rather
that on some pre-assigned network address.
Geographic routing uses a node’s location to name the
node and discover paths to that node
We assume that

nodes know their geographic location
nodes know their 1-hop neighbors
routing destinations are specified geographically (a point, a
region)
each packet can hold a small amount (O(1)) of additional routing
info to record where it has been on the network
most of the time we will model the connectivity graph of the
nodes as a unit distance graph

38

Routing Desiderata

Guaranteed delivery
Path quality
Energy awareness
Robustness to low-level link volatility

39

Greedy Methods

t

s

t

?
s

In a greedy method, each node
forwards a packet to its best
neighbor

Greedy methods can get stuck
at “dead-ends”

Note that no flooding is involved
for route discovery

40

Greedy Unicast Geographic
Routing

To go from source s to
destination t, at each
intermediate node x

advance to the
neighbor y that
makes most progress
towards t.

greedy distance
routing (GPSR)
compass routing

s

t

x

y

41

Neighbor Choice

y

y’

x

d

greedy distance routing
compass routing

42

Greedy Protocols Can Get
Stuck

The intermediate node x
can be a local optimum
towards the destination
In general, local optima
will arise if the node
graph contains “holes” –
areas with no sensor
nodes
To prove that such
situations cannot happen
we need to assume
special properties about
the connectivity graph G

429

43

Delaunay Triangulations (DT)

In a Delaunay triangulation (dual to the Voronoi diagram
of the nodes), packets cannot get stuck
However, unless the nodes are spaced very closely, it is
unlikely that the UDG will contain all DT edges

44

Measures of Path Quality
First and foremost, a protocol should guarantee packed
delivery, whenever such delivery is possible
Second, the quality of the path produced should be good
when compared to the optimal path available. Different
path costs can be used:

These can be made roughly equivalent by assuming a
constant node density or a minimum node spacing

This can be attained by a node clustering process

0,1,2,3,4,...

() (),d

e

d

c l e

�

�

�

�

�� d = 0, hop length
d = 1, normal path length
d = 2, 3, 4 ..., energy costs

45

Planarizations

A planar straight-line graph has no crossing edges. It subdivides the
plane into regions called faces.

46

Traversing Planar Graphs:
Perimeter Routing

D

Right hand rule: if we walk
inside a face with right hand on
the wall, we will visit every wall
of the face

G

F

E
C

BA

Right

hand
ruleR

L

L

R

47

Routing in Planar Graphs
To guarantee packet
delivery, it may be
advantageous to disable
some connections, so as
to make the routing graph
planar
On a planar graph,
perimeter routing
guarantees delivery
Another variant is other
face routing
The quality of paths can
be bad, however

48

All necessary information is stored in the
message

Source and destination positions are given
Point of transition to next face needs to be chosen

Completely local:
Knowledge about direct neighbors‘ positions sufficient
Faces are implicit, only local neighbor ordering
around each node is needed

Perimeter/Face Routing Properties

“Right Hand Rule”

430

49

Planarizing the Communication
Graph

We must delete just enough edges to make the graph
planar

We must do so in as local a manner as possible 50

Planarization via Geometric Graphs

Gabriel Graph

Relative Neighborhood Graph
(RNG)

Restricted Delaunay Graph
(RDG)

• defined by local rules?

• distributed construction?

• path quality (spanning property)?

51

Larger RNG and GB Examples

Relative Neighborhood
Graph

Gabriel Graph

52

Adaptive Algorithms
We want the quality of paths
we discover to be nearly
optimal
Alternatively, we want to
discover optimal paths without
searching the whole
connectivity graph G
If the optimal path between s
and t has length L, then every
node in that path is within an
ellipse with foci s and t defined
by L. This ellipse limits the part
of G to be searched.
If L is not known, it can be
guessed, approximately

tss

In general, finding a path of length
L requires O(L2) work.

53

Average Path Quality
Not interesting when graph not dense enough
Not interesting when graph is too dense
Critical density range (“percolation theory”)

Shortest path is significantly longer than Euclidean distance

too sparse too densecritical density
54

Shortest path is significantly longer than
Euclidean distance

Critical Density: Shortest Path
vs. Euclidean Distance

431

55

Randomly Generated Graphs:
Critical Density Range

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 5 10 15

Network Density [nodes per unit disk]

S
ho

rte
st

 P
at

h
S

pa
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
eq

ue
nc

y

Greedy success

Connectivity

Shortest Path Span

critical

56

Combining Greedy and Planarization Strategies:

Greedy Perimeter Stateless Routing (GPSR)

Use greedy distance protocol on the full graph
G

If stuck, switch to perimeter protocol on a
planarization of G, until a node closer to the
destination than the stuck node is encountered

[Bose and Morin 1999,
Karp and Kung, Mobicom 2000]:
Planarize the connectivity graph G

57

Planarization Process Is Not
Robust

Gabriel and RNG
depend on the unit
disk communication
graph assumption
Localization errors
also cause serious
problems

58

Greedy Protocols May Overload
Critical Nodes

GPSR [Karp, Kung, ’00]
GOAFR+ [Kuhn, Wattenhofer, Zhang, and Zollinger, ’03]

59

Main Point

Knowledge of the nodes’ locations enables
many powerful mechanisms for message
transport and route discovery that avoid
expensive flooding operations yet require
no routing tables or other high-
maintenance data structures.

60

Sensor Tasking and Control

432

61

Programming Sensornets:
Where the Two Sides Meet

Platform View
Spend more time designing

system/component-level abstractions
Spend more time designing

application-level abstractions

Information Processing View

hardware

layers of

abstraction

application

algorithms

levels of

refinement

common substrates

software

synthesis

compilation

62

Collaborative Processing in Sensor Networks

What information is critical for
the high-level tasks?
What is the cost of accessing
the information?
Which nodes should participate
in sensing, processing, or
communication?
How should the information be
migrated?
What is routing or querying in
this context?

The information processing needs largely
determine the roles of nodes, as well as the
required support by other layers of a sensor
network

63

• Information needs and resource
constraints define who should
participate in the processing groups

• Group membership (e.g. location)
defines the behavior of a node

• Challenges
• Dynamic collaboration among nodes
• Global property from local execution
• Competing events/tasks
• Real-time constraints/adaptation

Collaborative Processing
Group Formation in Sensor Networks

64

Summary

Ubiquitous networked sensors provide a dense spatial
and temporal sensing of the physical world

They potentially provide low-latency access to
information that is highly localized in time and space,

and thus provide a way to sense and act on the physical

world beyond what has been possible up to now

Sensor networks raise many research issues at the

physical node level, the system architecture level, and
the algorithm deployment level

65

A Relevant Text

Wireless Sensor
Networks: An
Information
Processing Approach

Feng Zhao and
Leonidas Guibas

Morgan-Kaufmann 2004

66

The End

433

Structure Discovery and Information Structure Discovery and Information
Brokerage in Sensor NetworksBrokerage in Sensor Networks

Leonidas Guibas
Computer Science Dept.
Stanford University

Sensing Networking

Computation

Structure DiscoveryStructure Discovery

A sensor network is a
novel type of computing
device -- a sensor
computer
One of its first tasks is to
discover its own structure
and establish

information highways
sensor collaboration groups

as well as adapt to its
signal landscape

[From D. Estrin]

Information BrokerageInformation Brokerage
Information providers
(sources, producers) and
information seekers
(sinks, consumers) need
ways to find out about
and rendez-vous with
each other
Challenges:

Neither knows where the
other is
Highly dynamic
environment
Limited computation and
communication resources

Talk OutlineTalk Outline

Naming and Routing
Landmarks and local coordinates
Hierarchical landmarks

Sensor Layout Analysis
Boundary/hole detection

Information Dissemination and Aggregation
Sweep

Information Brokerage
Hierarchical geographic hashing
Double rulings
Information gradients

What if our sampling is
bad?

What if the network is
volatile?

A Dilemma: Which Structure?A Dilemma: Which Structure?

Nodes are embedded in
a physical space. Should
we adopt the naming and
routing structures
already available in the
host space?
Or should we invent a
space that better reflects
the true network
topology, and use that
instead?

Ordinary
communication
networks

Sensor
networks

Geometric
structures

Greedy Geographic RoutingGreedy Geographic Routing

t

s

In a greedy manner, each node
forwards a packet to its best
neighbor

Note that there is little global
state, yet no flooding is involved
for route discovery

Assume known node positions

s

t

434

Such Greedy Protocols Get Stuck, Such Greedy Protocols Get Stuck,
May Overload Critical NodesMay Overload Critical Nodes

GPSR [Karp, Kung, ’00]
GOAFR+ [Kuhn, Wattenhofer, Zhang, and Zollinger, ’03]

These require building a planar
subgraph of the connectivity
graph – not a robust process

Global Embedding ChallengesGlobal Embedding Challenges

• Routing on virtual coordinates

– Only works in 2-D space

– Planarization is tricky (CLDP, etc.)

– Sensitive to location inaccuracy

– Requires a global embedding of the
link connectivity graph in the plane

– Forcing a 2-D layout on a 3-D
deployment may ignore much of the
actual connectivity

• Routing on geographic coordinates

Naming an Routing Based on Naming an Routing Based on
Connectivity Information OnlyConnectivity Information Only

A two-tier approach utilizing combinatorial
Delaunay complexes and local
coordinates (GLIDER)
A hierarchical approach using the
Discrete Center Hierarchy (DCH)

I. Using Landmarks and Local I. Using Landmarks and Local
Coordinates: GLIDERCoordinates: GLIDER

Given a communication
graph on sensor nodes
with distances defined by
hop counts
Perform structure
discovery:

Select a set of landmarks
Construct the Landmark
Voronoi Complex (LVC)
Extract the Combinatorial
Delaunay Triangulation
(CDT) graph on
landmarks

G is connected G is connected ⇔⇔ CDT D(L) connectedCDT D(L) connected

D(L) is compact –
topology capture has
complexity dependent on
the number of large-
scale features in the
environment
D(L) is stable – low- level
link volatility unlikely to
affect the combinatorial
complex

D(L) is a global network atlas that can
be known to all landmarks, or even
all nodes

Local Routing with Global Local Routing with Global
GuidanceGuidance

Global Guidance
the D(L) encodes global connectivity
information that is accessible to every node
for proactive route planning on tiles.
Local Routing
high-level routes on tiles are realized as
actual paths in the network by using local
reactive protocols.

435

Information Stored at Each Information Stored at Each
NodeNode

The parents on the shortest
paths to its home landmark,
and its neighbor landmarks
A bit to record if the node is
on the boundary of a tile
Its coordinates and those of
its neighbors for intra-tile
greedy routing
Landmark nodes store the
atlas D(L)

GLIDER GLIDER ---- RoutingRouting

Routing
Global route plan
Local route

inter-tile
intra-tile

p

q
u1

u2

u3

Local virtual coordinates:

c(p)= (pL0
2– s,…, pLk

2– s)

(centered metric)

Distance function:

d(p, q) = |c(p) – c(q)|2

The Last Mile: Local The Last Mile: Local
Coordinates and Greedy Coordinates and Greedy
RoutingRouting

Greedy strategy: to reach q, do gradient descent on the function d(p, q)

L2

L1

p

L5

L4

L3

L0

q

Reference landmarks: L0,…Lk

T(p) = L0

Let s = mean(pL0
2,…, pLk

2)

Local Landmark Coordinates Local Landmark Coordinates ––
No Local MinimaNo Local Minima

Theorem: In the continuous
Euclidean plane, gradient descent
on the function d(p, q) always
converges to the destination q,
provided that there are at least three
non-collinear landmarks.

In the discrete case, we empirically
observe that landmark gradient
descending does not get stuck on
networks with reasonable density
(each node has on average six
neighbors or more).

Centered vs. Centered vs. UncenteredUncentered MetricsMetrics

����������	 �����
����	

436

Simulations Simulations –– Path Length Path Length
and Load Balancingand Load Balancing

GPSRGLIDER

Each node on average has six one-hop neighbors

Simulations Simulations –– Hot Spot Hot Spot
ComparisonComparison

Randomly pick 45 source and destination pairs, each separated by more
than 30 hops.

Blue (6-8 transit paths), orange (9-11 transit paths), black (>11 transit paths)

GPSRGLIDER

II. Naming and Routing via II. Naming and Routing via
Hierarchical DecompositionsHierarchical Decompositions
of Graphsof Graphs

Generalize quadtrees
No node geographic
coordinates assumed
Required properties:

Clusters in level i of the
decomposition have
diameter at most α � 2i,
where α is a constant
Each cluster in level i+1
contains a small (constant)
number of clusters in level i

Examples of Examples of HDsHDs

A quad-tree induces a HD
when the sensor field is
dense and node coordinates
are available.
Discrete Center Hierarchy:

A hierarchical sampling of the
nodes so that:

Nodes in level i are at least 2i

hops apart
Each node in level i is within
2i+1 hops from some node in
level i+1

Addressing SchemeAddressing Scheme
A HD yields an IP-type addressing scheme for nodes
Clusters are also assigned addresses

Neighboring Clusters andNeighboring Clusters and
Local Routing TablesLocal Routing Tables

Def: A cluster L at level k is a
neighboring cluster of a

node v if dist(v, L) � α �2k+1

A routing table is stored at each
node, providing hop distances
to all its neighboring clusters

Under mild assumptions, each
node has O(log n) neighboring
clusters

v

L

� α � 2k+1

diam(L) � α � 2k

437

Getting to Your DestinationGetting to Your Destination

Head in the
direction of the
cluster with the
longest prefix that
agrees with your
destination
address
Use local routing
tables to make
the best local
decision

1

1.4
1.4.2

going to 1.4.2

Routing SchemeRouting Scheme

Routing quality:
By proof:

Efficient: |path(u,v)| � 4 � |duv|

By simulation:
Balanced: Nodes high up in
the hierarchy do not get
overloaded
Robust: the failure of any
given link does not affect
many paths

HD path – Shortest path

Experimental ResultsExperimental Results

Paths generated are near optimal

Routing quality (2000 nodes)

degree 6.21

GPSR path

Quality = HD path length
Shortest path length

Hot SpotsHot Spots

GPSR HD

HD does not hug holes as much as GPSR

2000 nodes, perturbed grid
100 random paths
max load = 32

Routing ScalabilityRouting Scalability

Storage used grows slowly
Network initialization cost ~ storage used

0

10

20

30

40

50

60

70

80

100 1000 10000 100000

Number of nodes in network

S
to

ra
g

e
 p

e
r

n
o

d
e

 r
e

q
u

ir
e

d

Avg

Min

Max

Routing RobustnessRouting Robustness

Routing performance degrades gracefully
as node failure rate increases

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 0.05 0.1 0.15 0.2

Node failure rate

R
o

u
ti

n
g

 s
u

c
c

e
s

s
 r

a
te

deg-7

deg-8

deg-9

deg-12

438

HD Names and Routes SummaryHD Names and Routes Summary

HD effectively discovers the intrinsic
geometry of the network
Provides a hierarchy-based scheme with
provable approximation quality on the
routing paths
Node/link failures affect mostly the low
levels of the hierarchy

Sensor Layout AnalysisSensor Layout Analysis

Boundary/hole detection
Robust planarization of the
communication graph

Boundary DetectionBoundary Detection Information Dissemination and Information Dissemination and
AggregationAggregation

Most sensor network applications need a
robust and efficient implementation of
certain basic data operations
In such a data operations library one
needs to include:

data dissemination (code images, parameter
settings, etc.)
in-network data aggregation

Related WorkRelated Work

Tree-based approaches
TAG/DAG

Synopsis diffusion

• Epidemic approaches
– Trickle/Deluge

• Independent dominating sets

Data AggregationData Dissemination
TreeTree--Based Approaches Are Based Approaches Are

FragileFragile

Single links are
relied upon
Long interval
between
establishment and
use

439

Sweeps over a Sensor NetworkSweeps over a Sensor Network

Unswept nodes
Nodes in sweep
Swept nodes

Swept

Sweep front Unswept

Direction of sweep propagation[Skraba, Fang, Nguyen, G. 2006]

Global PictureGlobal Picture

Nodes are invited to join in the
sweep by already active
neighbors
Nodes remove themselves
from the sweep after they and
all their neighbors have been
processed
A select subset of the nodes
always holds the state of the
sweep
Active band moves across the
network as nodes join and
remove themselves
Locality of advancing tests
allows for parallelism

Sweep Requirements Sweep Requirements

Cover all nodes in a network, each
exactly once
Use a small active band
Robust to link volatility
Local, asynchronous control

PreprocessingPreprocessing

Structure discovery
Some global information
needs to be extracted from
the network

Boundary detection
source and sink for the
sweep

Auxiliary info for sweep
control

Potential Field for Potential Field for WavefrontWavefront
DiffusionDiffusion

Part of preprocessing
Potential field

Sense of direction
Ordering

Stable
Used for many sweeps

Potential Field ConstructionPotential Field Construction

Fix potential values at certain
boundary nodes
Regular nodes iteratively
average over neighbors’ values

Jacobi iteration

440

Intuition (Cont. Domain)Intuition (Cont. Domain)
Laplace’s equation with Dirichlet boundary conditions

Solving discretized version on communication graph
Smoothing

PropertiesProperties

Linear system
Static case: Convergence guaranteed

Convergence can be slow (but done only once)

Direct solution
No strict maxima or minima at regular nodes

Harmonic functions

Any non-plateau regular node has a strictly
monotone path to a maximum or minimum

PlateausPlateaus
All neighbors have same value
Do not occur in continuous case
Not strict extrema
Cons:

Potential field provides no
information

Pros:
Easy to detect
Can also be addressed by building
another potential within the
pleateau
Boundary nodes can also be
detected

Sweep AlgorithmSweep Algorithm

Begin Unswept
Receive invitation

Enter Sweep and send
data to inviter (aggregator)

Possibly issue new
invitations
If all upstream neighbors
have left the sweep

Forward data to
downstream neighbor

Leave Sweep

SimulationsSimulations

Stability of the potential
field
Robustness of the sweep
500 nodes
Varying degrees of
connectivity

TOSSIM implementation
20x20 grid
Different radio models
Robust to link
failures/collisions

ConclusionsConclusions

Class of global
operations on a WSN
Still uses a transient
local tree

But the tree is local
and is used soon after
it is built

Two-part solution
Potential field

Captures link connectivity
and global structure
Relatively stable

Sweep
Uses the potential field
for local control
Robust
Easily extendible

441

Information BrokerageInformation Brokerage
Information providers
(sources, producers) and
information seekers
(sinks, consumers) need
ways to find out about
and rendez-vous with
each other
Challenges:

Neither knows where the
other is
Highly dynamic
environment
Limited computation and
communication resources

Current Approaches:Current Approaches:
Directed DiffusionDirected Diffusion
[[IntanagonwiwatIntanagonwiwat, , GovindanGovindan, , EstrinEstrin ‘‘00]00]

Data-centric storage: data is named by
attributes

Current Approaches:Current Approaches:
Geographic Hash Tables (GHT)Geographic Hash Tables (GHT)
[[RatnasamyRatnasamy, Karp, , Karp, ShenkerShenker, , EstrinEstrin, , GovindanGovindan, Yin, Yu , Yin, Yu ‘‘03]03]

Event data is stored, by
name, at home nodes;
home nodes are selected
by the named attributes,
via a hash function
Queries also go to the
home nodes to retrieve
the data (instead of to
the nodes that detected
the events)
Routing usually done
using a geographic
routing protocol (GPSR)

Information Brokerage IssuesInformation Brokerage Issues

Find a good balance between
cost of information replication
(storage size) and cost of
information discovery (query
time)
Load balance
Robustness

Distance-Sensitive Information Brokerage:
if producer and consumer are at a distance d,

the query cost should be O(d)

Information brokerage is
intimately coupled with

how network nodes are
named

do we have coordinates?

how routing is done in the
network

Approaches to EfficientApproaches to Efficient
Information BrokerageInformation Brokerage

GLIDER-based
[Infocom 06]

Hierarchical Decompositions
of Graphs

Information Gradients

u
v

x

y

producer
consumer

Information DiffusionInformation Diffusion

Hash function:
Generates a random
valid address in a given
cluster for any
information type
µ: Σ x HD S

A producer hashes its
information to all of its
neighboring clusters

O(log n) hashes
Total path length to all
hashes is O(D), where D is
the diameter of the sensor
field

A producer hashes its information
to many nearby nodes and to
few far away nodes.

442

Information RetrievalInformation Retrieval

Consumer v looking for a
particular information
examines hash locations
of that information in
larger and larger clusters
containing v

Thm: The length of
retrieval path from v is at
most 4 � duv where u is
the producer (unknown
to v)

u

v

Brokerage CostsBrokerage Costs

Storage cost grows slowly
Cost of query is distance sensitive

Query time =
Path length from consumer to hash location

Shortest path length to producer

HD Brokerage SummaryHD Brokerage Summary

HD effectively discovers the intrinsic
geometry of the network
Provides a hierarchy-based scheme with
provable approximation quality on the
routing paths
Node/link failures affect mostly the low
levels of the hierarchy
Enables distance sensitive information
brokerage

Resource Discovery Using LocalResource Discovery Using Local
Double RulingsDouble Rulings

All red roads together cover
the network in a load-balanced
fashion
All blue roads together cover
the network in a load-balanced
fashion
For any pair of nodes A and B,
the red road from A has to
intersect the blue road from B

Associate with each node two
connected 1̀-d’ structures, call
them roads – the red and blue

A double ruling derived via a Morse
function � distance to boundary

Information providers and seekers
can meet by following blue and red
roads respectively

GLIDEGLIDE--based Brokerage: based Brokerage: At the CDT At the CDT
Level Level –– Do ContentDo Content--Based GHTBased GHT

Hashing on coarse data
types for structured data
storage

Both producers and consumers
of the same content type follow
the shortest path tree to the
hashed tile (the root of the tree).
Consumers return once the data
are retrieved, otherwise move on
towards the hashed tile.

Large-sized Animals

giraffes elephants ……

GHT at a coarse
data type level

Stored in the same tile
hash to

Within Each Tile Within Each Tile –– DoubleDouble--Ruling Scheme for Ruling Scheme for
Transit TilesTransit Tiles

Routes formed by following shortest paths to guides
The two sets of curves always meet

An example by simulation

u

consumer
producer

v

x

y

Guides v, x, y are landmarks selected
according to a set of rules based on hashing
and the CDT

443

DoubleDouble--Ruling Scheme in Hashed TileRuling Scheme in Hashed Tile

Producers and consumers
are guaranteed to meet by
following the two sets of
curves.

The consumers may not
need to reach the hashed
tile to fetch the data as the
data are available at some
transit tiles.

u
v

x

y

producer
consumer

Reducing Producer Cost Reducing Producer Cost –– En RouteEn Route Data Data
AggregationAggregation

Producers of the same
content type share the
shortest path tree (on
CDT) rooted at the
hashed tile.

Data of the same type
can be aggregated

Inside the tile if two
producers share one
Inside the tile of their
common ancestors

Locality Awareness Comparison with GHT byLocality Awareness Comparison with GHT by
SimulationsSimulations –– Transmission Cost by Individual NodeTransmission Cost by Individual Node

Scenario: one producer; all
nodes query for the producer
data; one big hole in the
network connectivity graph.

Note the y-scale in figure 1 is
twice of that in figure 2.

The total load is much lower
than using GHT.

The load is also more
balanced than using GHT.

1. GHT

2. Landmark-based

GLIDER Brokerage SummaryGLIDER Brokerage Summary

Distance-sensitive information brokerage is possible with
very modest data replication

Information discovery is closely coupled with the network
node naming and routing

In some ways, geometric methods and tools can be
effectively used even when the connectivity graph is all
we got

Information PotentialsInformation Potentials

Natural phenomena typically generate
continuous fields (temperature, pressure ...)
But it can be advantageous to also invent
artificial potentials that diffuse information about
event detections

Information DiffusionInformation Diffusion
Information sources can diffuse a
quantity that we can think of as
information strength via Laplace’s
equation (Dirichlet boundary c.)

Information seekers can ascend
the gradient of this potential to
find a source
A harmonic function � has no
local maxima or minima – its
gradient can guide a packet, or a
vehicle, to its maximum
Usually smooth � by computing a
square root, or logarithm

444

10−2 10−1 100 101 102
100

101

102

103

104

Converge Threshold %

R
el

ax
at

io
n

Ite
ra

tio
ns

x
ln(x)
sqrt(x)

Diffusion ChallengesDiffusion Challenges

Diffusion can be slow to
converge
What if there are multiple
sources with the same
type of information?
What if there are many
different types of
sources?
What about discretization
effects?

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Relaxation Iterations

C
ov

er
ag

e
P

er
ce

nt
ag

e
%

Dealing with Many Potential Sources:Dealing with Many Potential Sources:
Bloom Filters for Membership TestingBloom Filters for Membership Testing

Given a set S = {x1,x2,x3,…xn}
on a universe U, want to
answer queries of the form:

Is y � S?

Example: a set of detection
attributes
Bloom filter provides an
answer in

“Constant” time (time to
hash).
Small amount of space.
But with some probability of
being wrong.

Dealing with Many Potential Sources:Dealing with Many Potential Sources:
Network Coding to Save StorageNetwork Coding to Save Storage

Each node can compute a
random linear combination of
all the potentials it hears

If there are L active potential
sources, then a neighborhood
of size k around a node
provides �(k2) equations
relating the local potential
values
But in a neighborhood of size
k, the O(k) boundary values
determine all the interior
values for each potential
(harmonic function property)
So we have enough equations
to recover the unknown
potentials if k > L (k2

constraints vs. kL unknowns)

Diffusion Brokerage PerformanceDiffusion Brokerage Performance

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Source Speed (m/s)

Q
ue

ry
 S

uc
ce

ss
 R

at
e

Pure greedy routing
Greedy routing + Tail tracing
Greedy routing + Tail tracing + OHL

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Relaxation Iterations

Q
ue

ry
 S

uc
ce

ss
 R

at
e

x
lnx
sqrt(x)

Information Diffusion SummaryInformation Diffusion Summary

Diffused information potentials can guide
both virtual and physical information
seekers to the appropriate sources
Multiple sources can be handled by
having their potentials co-mingled and
then decoded as necessary
Sources may move and the potentials
adapt in a smooth manner

ConclusionsConclusions

Structure discovery and information brokerage are
fundamental problems for WSNs
With light preprocessing we can extract certain global
quantities that can significantly help with local decisions
These quantities reflect an understanding of the
geometry or topology of the sensor filed and do not
require localization
The same quantities are also robust to local volatility in
the network connectivity
Such approaches integrate very well with current
ǹarrow waist’ sensor net protocols, such as SP

(Berkeley)

445

Lightweight Lightweight SpatioSpatio--Temporal Temporal

Reasoning in Sensor NetworksReasoning in Sensor Networks

Leonidas Guibas
Computer Science Dept.

Stanford University

Sensing Networking

Computation

More Demanding Sensor

Network Applications
Beyond simple data collection
and aggregation

dynamic, mobile foci of activity
(tracking mobile objects)

Amidst clutter of irrelevant
data

distributed attention: focus and
context

acting on the world (closing
the loop)

Network must adapt to highly
dynamic foci of activity
Sensing is driven by user
queries
Sensing and communication
tasks must be planned and
allocated
Resources must be
apportioned between
detection, tracking, etc.

Five Quick Vignettes on

Lightweight Spatiotemporal Reasoning

1. Tracking Wide-Area
Phenomena

2. Counting Moving Objects

3. Distributed Identity
Management

4. Tracking Spatial Occupancy

Network structure
discovery

Uncertainty and multiple
hypotheses

Sensor selection

Sensor collaboration groups

Lightweight information
integration

V1. Large-Area Phenomena

A chemical plume blows
over a city after a factory

leak.

Networked sensors are

air-dropped to track its

extent and motion.

The sensors organize

themselves as
appropriate, in order to

perform this task.

Sensor dustSensor dust

Tracking a Large Shadow

We track a half-plane shadow across a field with light

sensors.

A projector is used to throw a

moving shadow onto a wall.

Sensor nodes are

Berkeley/Cossbow motes with a

radio and a light detector

[Liu, Cheung, G., Zhao, WSNA ’02]

shadow

Using Geometric Duality

Points � Lines

16

15

14

13 12

11

10

9

8

7

6

5

4

3

2

1

Shadow covering
Mote 6 and above

Shadow covering
Mote 16 only

72 inches

1

10

11

12

13

14

15

16 2

3

4

5 6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

12 15

14

16
13

In a dual configuration space, the

sensors become lines and the

edge of the shadow a moving

point, crossing cells in the

arrangement of the lines.

Shaded cells indicate the trajectory

of the shadow edge.

446

Selective Sensor Activation

Only sensors dual to the lines bounding

the current cell can be crossed next.

Thus, of all the sensors in the field, only

four on the average need be active at

once.

Dual view Primal view

dualspace

primalspace

Some Lessons and Issues

An appropriately chosen configuration space can
transform a wide-area phenomenon into a localized

one.

Only a small fraction of the nodes in the field need

be active at any one time.

Most message traffic is along the shadow
boundary: the physical phenomenon dictates the

communication paths.

V2. Target Counting

� A sensor network with

multiple targets present.

Targets can be stationary or

moving;

� Each sensor can detect the

local superimposed

amplitude of target signals

(e.g., acoustic) at any

instant of time;

Problem Spec:

Objective:

To determine the number of targets

and their approximate locations in the

field, forming an initial count and re-

computing the count when targets

move, enter, or leave the field.[Fang, Zhao, G., MobiHoc’03]

1. Signal attenuation rate, and the spacing and communication range of

sensors have big impact on “signal resolution”

2. Number of detected peaks may not equal number of targets due to

sampling artifacts and/or noise.

Acoustic Signal Field Landscape

Goal: count and track the significant signal peaks in the field

Combinatorial Signal Processing and Computational Topology

Scattered Amplitude Sampling

�

Under-sampling

Over-sampling

In 1-D, the number of peaks in sampled landscape cannot exceed the number of peaks

in the true landscape. However, this is possible in 2-D.

Peak Landscape Simplification

Some signal peaks may
be noise

Usually such peaks are
near other critical points
of the landscape

Topological ideas, such
as persistent homology
can be used to simplify
the landscape by
canceling saddles with
maxima, etc., removing
noise

h− −+ + ++

447

A sensor node is qualified as a leader, if its reading is higher than that of all its
one hop neighbors.

Local leader election is conducted by sensors exchanging information with their

neighbors via one hop broadcast.

1. Only sensors with myPr > threshhold will
participate

2. Each sensor emits a packet in each
protocol period, broadcasting its reading
Pr and its ID

3. Sensors pass on or drop a packet P from

their neighbors, according to the

following rule:

If (Pr recorded in the packet > myPr &
Pr of the sensor relaying this

packet > myPr)
broadcast(P);

else

drop(P);

Downhill Flooding Protocol (DFP)

pr = received signal power at

each node

1 1111 1 2 2 2 2 2 2

x1

x2
pr

x1 and x2 are elected leaders,

other nodes join one of the
groups formed by the leaders:
each node joins the highest
leader it can reach by a
monotone ascending path

Sensor Cluster Trees

For each node,

parent = the neighboring node with

maximum Pr (received signal power)

Bird’s eye view of the cluster tree
structure. Each node follows a strictly
upwards path to the highest peak it
can reach.

Leader

We call such groups of sensors aggregates, as they collaboratively perform a task.

2-D View of a Sensor Field with

Cluster Trees Formed Using DFP

Different colors mark different
sensor clusters formed

Each cluster has one leader

Target Counting Demo

Simulation with 9 moving targets (above);

Implementation on motes sensors (right)
jliebman

Some Lessons and Issues

Sensors naturally form collaboration groups.
Target localization and counting can be
performed in-network.

These sensor collaboration groups must be
maintained as the physical phenomena of
interest change over time.

Aggregates may be easier to sense than
individual objects

Equivalently, physical phenomena are
translated into networking behaviors.

Can such behaviors be programmed without
naming the nodes individually?

V3. Distributed Identity

Management
� Multi-target Tracking (MTT)

� Basic application of sensor

networks

� Data association problem � Target

mixing

� Multi-target Identity Management

� Represent and manage additional

quantity called target identity

� Simplified version

� Position estimates are given

� Fixed number of targets assumed

Mixing

?

?

Action at a distance?

Sensor confirms
tank

[Shin, Zhao, G., IPSN’03]

448

Approach A: Belief Matrix

�

� �
� �
� �
� �
��
�
�
�
�
�� �

Which ID goes with which track,

The belief matrix () is the main quantity that the algorithm maintains

 with what probability?

 () ()ij

B k

B k b k �
�
�
�
�
�

� �where () (ID((k))) and () is ID belief vector on track.ij j i thb k p x i b k i
��

Q: How to update (), given (1)?B k X k 	

1st Track …… Nth Track

Identity 1

……

Identity N

doubly stochastic

Distributed Management of B(k), I

1

1

(0) 0

0

b

 =

2

0

(0) 1

0

b

 =

3

0

(0) 0

1

b

 =

1 0 0

(0) 0 1 0

0 0 1

B

 =

time
0 1 2 3

= Leader nodes for vehicle tracking

Distributed Management of B(k), II

Local
Mixing !

time
0 1 2 3

1

1

(1) 0

0

b

 =

2

0

(1) 1

0

b

 =

3

0

(1) 0

1

b

 =

Distributed Management of B(k), III

time
0 1 2 3

1 1 2(2) (1) (1) (1) 1

0

b b b

α

α α α

 = + − = −

3 3

0

(2) (1) 0

1

b b

 = =

2 1 2

1

(2) (1) (1) (1)

0

b b b

α

α α α

−
 = − + =

Incorporating Local Evidence

0.1737 0.0947 0.3447 0.3869

0.3527 0.6473 0 0

0.3201 0.1744 0.3043 0.2011

0.1535 0.0836 0.3509 0.4120

 =

B4

1

3

2

1 42 3This is an elephant

Not doubly-stochastic � inconsistent!

0.1737 0.0947 0.3447 0

0.3527 0.6473 0 0

0.3201 0.1744 0.3043 0

0.1535 0.0836 0.3509 1

 =

B

Renormalization, Given Local

Evidence

1. Ideal solution: ,

 given the priors, all the mixing events in history

 and all the sensor evidence.

 Exact solution in this framework. (Bayesian

Baye

post

sian normaliz

erior)

 Used

ation

 as a reference - Desirable properties of the solution.

2. Realistic solution: (repeatedly normalize

 rows and columns)

[Sinkhorn 1964,19

Sinkhorn Iteration

67; Sinkhorn

and Knopp 1967]

449

The belief matrix represents a probability
distribution. The matrix A represents our a priori
belief, but violates sum constraints.

We would like to find the sum-constrained
(feasible) matrix B that is the closest distribution to
A (which is infeasible).

Use Kullback-Leibler distance (measure of
distance between distributions):

What Do We Want? Sinkhorn Scaling and the

Kullback-Leibler Distance

Theorem: Given a prior matrix , the matrix B

that satisfies the row and column sum constraints, and

minimizes the KL-distance from the prior matrix A is
always the solution of the Sinkhorn scaling process.

[Balakrishnan, Hwang,Tomlin ’04]

Solve by interior point methods:

Distributed Management of B(k), IV

time
0 1 2 3

1(3) 1

0

b

α

α

 = −

2

1

(3)

0

b

α

α

−
 =

3

0

(3) 0

1

b

 =

This is a
tank !

Distributed Management of B(k), V

time
0 1 2 3

Normalization message

(Group Management

Protocol)

1(3) 1

0

b

α

α

 = −

2

0

(3) 1

0

b

 =

3

0

(3) 0

1

b

 =

Distributed Management of B(k), VI

time
0 1 2 3

1

1

(3) 0

0

b

 =

2

0

(3) 1

0

b

 =

3

0

(3) 0

1

b

 =

Target Mixing Video

Particles filters
are used to keep
track about multiple
hypotheses about
the location of each
vehicle

450

Distributed Implementation of

Tracking and Normalization

Q: Which nodes store and/or

compute what information?

-- When do we track in joint

space?

-- How to distribute B(k)?

-- How to implement the

probabilistic normalization?

-- What is required at the

communication/network

layer to make the above

happen?
��������	�
 ��������	�
�����	�

Managing Sensor Groups

� We have distributed columns of

B(k) to leader nodes tracking targets.

� When a leader initiates a

normalization based on local

evidence, it has to know where are

the other leaders that have non-zero

mass on the evidence ID.

� Group Management Protocol:

Maintains the group membership

based on the ID probability mass.

� Communication needs to be

minimized.

RoamHBA protocol
[Fang, Liu, G., Zhao, IPSN’04]

Approach B: Information Matrix

Keep unnormalized

beliefs by simply

adding log-likelihoods

after each local

evidence event

No communication

necessary, except

when mixing events

occur or queries are

made

[Shin, Lee, Thrun, G. ’05 and Schumitch, Thrun, Bradski, Olukotun ’05]

Some Lessons and Issues

Collaboration groups need not always be physically
clustered.

Different attributes of a phenomenon can be tracked at
different rates (target location, identity).

A change of information representation can have a deep
impact on cost trade-offs.

How do information providers and information seekers
locate each other?

V4. Image Sensor Networks

CMOS technology enables
the production of small, low-

cost and low-power

integrated image sensors

Cameras (still or video) and

other image sensors are
becoming cheaper, smaller,

and nearly ubiquitous

However, truly distributed

networked systems of image
sensors are still not here

Wireless Camera Node

8 mm

Video Sensing
OV6650 CMOS

352 x 288

30 fps
20 mW

Computation
TI MSP430

10 KB

8 MHz
3 mW

Communication
RFM TR1001

300 m

20 Kbps
20 mW

Agilent ADCM 1650

CMOS image sensor
Small, cheap, battery-
powered

Integrated CPU and
radio

451

Current Multi-Imager Networks

Data is transported over a
wired network to a central

location

Human operators look at

the data

This approach
cannot scale:

vast amounts of
data to move

wiring is
expensive

automatic ways
to filter the data
are needed

Distributed Imager Challenges

Imagers are high data rate
sensors; therefore data must be
compressed and summarized

compression must take into
account shared data

goal of compression need not be
reconstruction

Vision algorithms can be
expensive to run on weak
capability, low power devices

Visibility is non-local and
discontinuous (occlusions, etc)

Issues of privacy, etc.

Collaborative, Task-Driven Image

Sensing
Large numbers of simple,
inexpensive cameras
collaborate over a wireless
network to accomplish a task

Data is compressed locally
and aggregated within the
network

Cameras are only tasked as
the situation demands

The system can be
expanded incrementally to
large numbers of nodes

The goal is to estimate certain

high-level, global attributes of

the environment.

The Initial Effort

Use a camera network to
obtain information about space

occupancy by people.

Useful for aggregate tracking,

counting, etc.

Crowd density implies multiple
occlusions – no one camera

by itself can do this.

No image reconstruction --just

high-level distributed spatial
reasoning.

Packard 013

The Experimental Setup

Web cameras:

16 firewire webcams with 49 degree FOV

Placed around a 22 x 19 foot room

Linux computers

A PC is connected to 2 webcams

A separate process is running for each webcam to
simulate an individual camera node

All processes can communicate with each other over

the network

System Architecture

Autonomous

Background

Subtraction,

Data Compression

Collaborative

Visual Hull

Estimation,

Camera Tasking

Problem

Solution

452

Local Processing

Perform background
subtraction

Collapse to a single scan-
line

640x480 RGB image �
640 bit scan-line (which

can be further

compressed)

Occupancy Representation:

The 2-D Visual Hull

A Visual Hull Example

Top view of room
with 5 people

Scanlines from
16 cameras

The Visual Hull Overestimates

Occupancy

Visual hull regions surround each object.

Visual hull regions may also be empty;

we call these the phantom regions

Pruning the Visual Hull

Using more cameras
reduces the

overestimation – but it

can never be fully
eliminated

Motion can allow the
pruning of phantom

regions

An Application: Counting People

Given occupancy, bound
the number of objects in

each polygon of the

visual hull

The bounds over time

can be used to constrain
the count, using a tree

data structure.

t

t+1

phantom

453

A Counting Example Localization – Where?

target

Noise in location

Noise in local data

Global: Target
localization

Best camera placement
Best camera tasking

Contributions
Analysis of target
localization error

Solutions for camera
placement and tasking

Localization w. Occlusions
Suppose M moving

objects in a room

Given priors on these

objects

And camera positions

We are interested in

localizing one of them

(blue prior)

Which k cameras are

best for localization?

Algorithm Animation

circular

Scaling to Large Camera Networks

Few foci of activity

Episodic events of interest

Camera control (aiming,
panning, zooming)

Camera selection (how
many, which ones)

•Analysis
•Simulation

•Real Experiments

Some Lessons and Issues

A surprising amount of spatial information can
be captured by cameras sharing very few bits.

Small subsets of cameras, when appropriately
tasked, can provide accurate estimates.

The system can perform counting without
tracking, thus raising no privacy issues.

Alternatively, low-res video cameras for
occupancy can be combined with a few high-res
still cameras that can be commanded to snap a
few high-detail photos, capturing the essentials
of a scene.

454

Five Quick Vignettes on

Lightweight Spatiotemporal Reasoning

1. Tracking Wide-Area
Phenomena

2. Counting Moving Objects

3. Distributed Identity
Management

4. Tracking Spatial Occupancy

Network structure
discovery

Uncertainty and multiple
hypotheses

Sensor selection

Sensor collaboration groups

Lightweight information
integration

Conclusions

Ubiquitous networked
sensors provide a dense
spatial and temporal
sampling of the physical
world

They allow low-latency
access to information that
is highly localized in time
and space, and thus
provide a way to sense
and act on the physical
world beyond what has
been possible up to now

Sensor networks raise many
research issues at the
physical node level, the
system architecture level,
and the algorithm
deployment level

A combination of global and
local methods promise to
provide robust tools for
network structure discovery,
understanding the global
aspects of sensor layouts
and signal landscapes

Acknowledgements

Stanford Students: Qing Fang, Jie Gao, Ali Ozer Ercan, Jaewon Shin,

Feng Xie, Danny Yang

Stanford Postdocs: Vin de Silva

External Collaborators: Patrick Cheung, Julia Liu (PARC), Jie Liu, Feng

Zhao (Microsoft), Hector Gonzales-Banos (Honda), Li Zhang (HP Labs),

John Hershberger (Mentor Graphics)

Funding Sponsors: NSF, DARPA, ONR, Stanford NRC, Honda, Xerox

The End

Another kind of sensor network exhibiting lightweight
spatiotemporal reasoning

455

1

Games in Networks:
Routing, Network Design, Potential Games,

and Equilibria and Inefficiency

Éva Tardos
Cornell University

2

Part I

� what is a game?

� Pure and randomized equilibria

� Load balancing and routing as games

3

Why care about Games?
Users with a multitude

of diverse economic
interests sharing a
Network (Internet)

� browsers
� routers
� servers

Selfishness:
Parties deviate from

their protocol if it is
in their interest

Model Resulting Issues as

Games on Networks

4

A simple game: load balancing

Each job wants to be on a lightly loaded machine.

2

2

1

3

machine 1 machine 2

With coordination we
can arrange them to
minimize load

Example: load of 4

5

A simple game: load balancing
Each job wants to be on a lightly loaded machine.

2

2

1

3

� Without coordination?

� Stable arrangement:
No job has incentive to switch

� Example: some have load of 5

6

Games: setup
� A set of players (in example: jobs)
� for each player, a set of strategies

(which machine to choose)
Game: each player picks a strategy
For each strategy profile (a strategy for each

player) a payoff to each player
(load on selected machine)

Nash Equilibrium: stable strategy profile:
where no player can improve payoff by
changing strategy

456

7

Games: setup
Deterministic (pure) or randomized (mixed)

strategies?

Pure: each player selects a strategy.
simple, natural, but stable solution may not exists

Mixed: each player chooses a probability distribution of
strategies.

� equilibrium exists (Nash),
� but pure strategies often make more sense

8

Pure versus Mixed strategies in
load balancing

� Pure strategy: load of 1

� A mixed equilibrium
Expected load of 3/2
for both jobs

1 1

1 1

50%

50% 50%
50%

Machine 1 Machine 2

9

Quality of Outcome:
Goal�s of the Game

Personal objective for player i:
min load Li or expected load E(Li)

Overall objective?

� Social Welfare: i Li or
expected value E(i Li)

� Makespan: maxi Li or
max expected value maxi E(Li) or
expected makespan E(maxi Li)

10

Example: simple load balancing
n identical jobs and n machines

1 11 1 1

All pure equilibria: load of 1 (also optimum)

A mixed equilibrium: prob 1/n each machine

expected load: E(Li)= 1+(n-1) <2 for each i

E(maxi Li): balls and bins: log n/log log n

1

1
n

11

Results on load balancing:
Theorem for E(maxi Li):
� w/uniform speeds, p.o.a log m/log log m

� w/general speeds, worst-case p.o.a. is

(log m/log log log m)

12

Results on load balancing:
Theorem for E(maxi Li):
� w/uniform speeds, p.o.a log m/log log m

� w/general speeds, worst-case p.o.a. is

(log m/log log log m)

Proof idea: balls and bins is worst case??

Requence of results by
[Koutsoupias/Papadimitriou 99],

[Mavronicolas/Spirakis 01],

[Koutsoupias/Mavronicolas/Spirakis 02],

[Czumaj/Vöcking 02]

457

13

Today:

focus on pure equilibria

Does a pure equilibria exists?
Does a high quality equilibria exists?
Are all equilibria high quality?

some of the results extend to
sum/max of E(Li)

14

Routing network:

e(x) = x
s t

1

Delay as a function
of load:

x unit of load
causes delay e(x)

load balancing and routing

Load balancing:

jobs

machines

e(x) = x

Allow more complex
networks

s t
x 1

x1
0

15

Atomic vs. Non-atomic Game

Atomic Game:
� Each user controls a unit of flow, and
� selects a single path or machine

Non-atomic game:
� Users control an infinitesimally

small amount of flow
� equilibrium: all flow path

carrying flow are minimum
total delay

s t
x 1

r=1

x1
0

s t
x 1

r=1

x1
0

80%

20%

Both congestion games: cost on edge e depends on the
congestion (number of users)

16

� One unit of flow sent from s to t

An envy free solution:

Infinite number of players
� will make analysis cleaner by continuous math

x

s t1
Flow = .5

Flow = .5

x

s t
1

Flow = 1

Traffic on lower
edge is envious.

Example of nonatomic flow on two

links

No-one is
better off

Flow = 0

17

s t
x 1

x1

Braess�s Paradox

Original Network

Cost of Nash flow

= 1.5

s t
x 1.5

x1
.5

.5
.5

Added edge:
.5 .5

.5 .5

Effect?

0

18

Braess�s Paradox

Original Network

Added edge:

Cost of Nash flow = 2

All the flow has increased delay!

s t
x 1

x1

1
1 10

Cost of Nash flow

= 1.5

s t
x 1.5

x1
.5

.5
.5

458

19

Model of Routing Game
� A directed graph G = (V,E)
� source�sink pairs si,ti for

i=1,..,k
� rate ri 0 of traffic

between si and ti for each
i=1,..,k

r1 =1s t
x 1

.5

x1 .5

.5

.5

� Load-balancing jobs wanted min load
� Here want minimum delay:

delay adds along path
edge-delay is a function e(�) of the load on
the edge e

20

Delay Functions
Assume e(x) continuous and

monotone increasing in load
x on edge

No capacity of edges for now

r1 =1

s t
x 1

.5

x1 .5

.5

.5

Example to model capacity u:

x

e(x)e(x)= a/(u-x)

u

21

Goal�s of the Game

Personal objective: minimize

P(f) = sum of latencies of edges along P
(wrt. flow f)

No need for mixed strategies

Overall objective:
C(f) = total latency of a flow f: = P fP� P(f)

=social welfare

22

Routing Game??
Flow represents
� cars on highways
� packets on the Internet

s t
x 1

x1
individual packets or small continuous model

User goal: Find a path selfishly minimizing user delay

true for cars,
packets?: users do not choose paths on the Internet:
routers do!

With delay as primary metric router protocols choose
shortest path!

23

Connecting Nash and Opt

� Min-latency flow
� for one s-t pair for simplicity

� minimize C(f) = e fe� e(fe)

� subject to: f is an s-t flow

� carrying r units

� By summing over edges rather than paths

where fe = amount of flow on edge e
24

Characterizing the Optimal Flow

� Optimality condition: all flow travels along

minimum-gradient paths

.5

s t
x 1.5

x1
0gradient is:

(x (x))�
= (x)+x �(x)

459

25

Characterizing the Optimal Flow

� Optimality condition: all flow travels along

minimum-gradient paths

.5

s t
x 1.5

x1
0

Recall: flow f is at Nash equilibrium iff all flow
travels along minimum-latency paths

gradient is:
(x (x))�

= (x)+x �(x)

26

Nash Min-Cost

Corolary 1: min cost is �Nash� with delay
(x)+x �(x)

Corollary 2: Nash is ��min cost�� with cost
(f) = e 0

fe
e(x) dx

Why?
gradient of:

(
0

fe
e(x) dx)� = (x)

27

Using function
� Nash is the solution minimizing

Theorem (Beckmann�56)
� In a network latency functions e(x) that

are monotone increasing and continuous,

� a deterministic Nash equilibrium exists,
and is essentially unique

28

Using function (con�t)
� Nash is the solution minimizing value of
� Hence,

(Nash) < (OPT).

Suppose that we also know for any solution
cost A

cost(Nash) A (Nash) A (OPT) A
cost(OPT).
There exists a good Nash!

29

Example: cost A

Example: e(x) =x then
� total delay is x· e(x)=x2

� potential is e() d = x2/2

More generally: linear delay e(x) =aex+be
� delay on edge x· e(x) = aex2+be x
� potential on edge: e() d = aex2/2+be x
� ratio at most 2

Degree d polynomials:
� ratio at most d+1

30

Sharper results for non-atomic

games
Theorem 1 (Roughgarden-Tardos�00)
� In a network with linear latency functions

� i.e., of the form e(x)=aex+be

� the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

460

31

Sharper results for non-atomic

games
Theorem 1 (Roughgarden-Tardos�00)
� In a network with linear latency functions

� i.e., of the form e(x)=aex+be

� the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

s t
x 1

r=1

x1
0

x
s t1

Flow = .5

Flow = .5

Nash cost 1 optimum 3/4 Nash cost 2 optimum 1.5
32

Braess paradox in springs (aside)

Cutting
middle
string

makes the weight rise

and decreases power flow
along springs

Flow=power; delay=distance

33

Bounds for spring paradox

Theorem 1� (Roughgarden-Tardos�00)
In a network with springs and strings cutting

some strings can increase the height by at
most a factor of 4/3.

Cutting
middle
string

34

General Latency Functions

� Question: what about more general

edge latency functions?

� Bad Example: (r = 1, d large)

xd

s t
10

1 1-
A Nash flow can
cost arbitrarily
more than the
optimal (min-cost)
flow

35

Sharper results for non-atomic

games

Theorem 2 (Roughgarden�02):
� In any network with any class of convex continuous

latency functions
� the worst price of anarchy is always on two edge

network

s t

x

1 s t

x

1
1

0

1-

36

Sharper results for non-atomic

games

Theorem 2 (Roughgarden�02):
� In any network with any class of convex continuous

latency functions
� the worst price of anarchy is always on two edge

network

s t

x

1 s t

x

1
1

0

1- Corollary:
price of anarchy for
degree d polynomials is
O(d/log d).

461

37

� Add a new fixed delay parallel edge

� fixed cost set =
e
(f
e
)

� Nash not effected

� Optimum can only improve

Another Proof idea

(x)=

Nash:
e
(x)f

e

e
(x)

f
e

Modify the network

38

� fixed cost set =
e
(f
e
)

� Optimum on modified network

splits flow so that marginal costs are
equalized

� and common marginal cost is =
e
(f
e
)

Modified Network

(x)=

Nash:
e
(x)f

e

e
(x)

e

f
e
-
e

39

Proof of better bound

� Theorem 2: the worst price of anarchy is

always two edge network

� Proof: Prize of anarchy on G is median of

ratios for the edges

(x)=

Nash:
e
(x)f

e

e
(x)

e

f
e
-
e

40

More results for non-atomic games

Theorem 3 (Roughgarden-Tardos�00):
� In any network with continuous,

nondecreasing latency functions

cost of Nash with
rates ri for all i

cost of opt with
rates 2ri for all i

Proof �

41

Proof of bicriteria bound

common marginal cost on two edges in opt is =
e
(f
e
)

� Proof: Opt may cost very little, but marginal
cost is as high as latency in Nash

� Augmenting to double rate costs at least as
much as Nash

(x)=

Nash:
e
(x)f

e

e
(x)

e

f
e
-
e

42

More results for non-atomic games

Theorem 3 (Roughgarden-Tardos�00):
� In any network with continuous,

nondecreasing latency functions

cost of Nash with
rates ri for all i

cost of opt with
rates 2ri for all i

Morale for the Internet:
build for double flow rate

462

43

Morale for IP versus ATM?

Corollary: with M/M/1 delay fns: (x)=1/(u-x),
where u=capacity

Nash w/cap. 2u opt w/cap. u

Doubling capacity is more effective than
optimized routing (IP versus ATM)

44

Part II

� Discrete potential games:

� network design

� price of anarchy stability

45

Continuous Potential Games

Continuous potential game: there is a function
(f) so that Nash equilibria are exactly the local

minima of

also known as Walrasian equilibrium convex then
Nash equilibrium are the minima. For example

(f) = e 0
fe

e(x) dx

46

Discrete Analog
Atomic Game

� Each user controls
one unit of flow, and

� selects a single path

Theorem Change in potential is same as function
change perceived by one user

[Rosenthal�73, Monderer Shapley�96,]
(f) = e (e(1)+�+ e(fe)) = e e

Even though moving player ignores all
other users

s
t

s

t

47

Potential: Tracking Happiness
Theorem Change in potential is same as function

change perceived by one user
[Rosenthal�73, Monderer Shapley�96,]

(f) = e (e(1)+�+ e(fe)) = e e

e

e�

Reason? Potential before move:

e(1)+� e(fe -1) + e(fe)

+ e�(1)+�+ e�(fe�)

48

Potential: Tracking Happiness
Theorem Change in potential is same as function

change perceived by one user
[Rosenthal�73, Monderer Shapley�96,]

(f) = e (e(1)+�+ e(fe)) = e e

Potential after move:

e(1)+� e(fe -1) + e(fe)

+ e�(1)+�+ e�(fe�) + e�(fe�+1)

Change in is - e(fe) + e�(fe�+1)

same as change for player

e

e�

Reason?

463

464

55

Network Design as Potential Game

Given: G = (V,E),
costs ce (x) for all e E,
k terminal sets (colors)

Have a player for each color.

Each player wants to build a
network in which his nodes
are connected.

Player strategy: select a
tree connecting his set.

56

Costs in Connection Game

Players pay for their trees,
want to minimize payments.

What is the cost of the edges?
ce (x) is cost of edge e for x users.

Assume economy of scale for costs:

ce (x)

x

57

Costs in Connection Game

Players pay for their trees,
want to minimize payments.

What is the cost of the edges?
ce (x) is cost of edge e for x users.

Assume economy of scale for costs:

ce (x)

x

How do players share
the cost of an edge?

58

A Connection Game

How do players share the cost
of an edge?

Natural choice is fair sharing,
or Shapley cost sharing:

59

A Connection Game

How do players share the cost
of an edge?

Natural choice is fair sharing,
or Shapley cost sharing:

Players using e pay for it evenly:

ci(P) = ce (ke) /ke

where ke number of users on edge e
[Herzog, Shenker, Estrin�97]

60

A Connection Game

How do players share the cost
of an edge?

Natural choice is fair sharing,
or Shapley cost sharing:

Players using e pay for it evenly:

ci(P) = ce (ke) /ke

where ke number of users on edge e
[Herzog, Shenker, Estrin�97]

This is congestion game: e(x) =ce(x)/x
with decreasing �latency�

465

61

A Simple Example

t

s

1 k

t1, t2, � tk

s1, s2, � sk

62

A Simple Example

t

s

1 k

t1, t2, � tk

s1, s2, � sk

t

s

1 k

One NE:
each player

pays 1/k

63

A Simple Example

t

s

1 k

t1, t2, � tk

s1, s2, � sk

t

s

1 k

One NE:
each player

pays 1/k

t

s

1 k

Another NE:
each player

pays 1
64

Maybe Best Nash is good?

cost of best selfish outcome

�socially optimum� cost
Price of Stability=

Do we care?

We know price of anarchy is bad.

Game is a potential game so maybe Price
of Stability is better.

65

Nash as Stable Design
Need to Find a Nash equilibrium

� Stable design: as no user finds it in their
interest to deviate

Need to find a �good� Nash
� Best Nash/Opt ratio? = Price of Stability

[ADKTWR 2004]
Design with a constraint for stability

66

Results for Network Design
Theorem [Anshelevich, Dasgupta, Kleinberg,

Tardos, Wexler, Roughgarden FOCS�04]
Price of Stability is at most O(log k) for k

players

proof:
� edge cost ce with ke > 0 users
� edge potential with ke > 0 users

e =ce·(1+1/2+1/3+�+1/k)
Ratio at most Hk=O(log k)

466

67

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

68

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

cost(OPT) = 1+

69

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

cost(OPT) = 1+
�but not a NE:

player k
pays (1+)/k,
could pay 1/k

70

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

so player k
would deviate

71

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

now player k-1
pays (1+)/(k-1),
could pay 1/(k-1)

72

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

so player k-1
deviates too

467

73

Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

Continuing this
process, all
players defect.

This is a NE!
(the only Nash)
cost = 1 + + � +

Price of Stability is Hk = (log k)!

1 1
2 k

74

Congestion games
Routing with delay:
� cost increasing with

congestion
e.g., ce(x)= x e(x) =xd+1

Network Design Game:
� cost decreasing with

congestion
e.g., e(x)= c(x)e/x

s t

xd 1

xd1
0

75

Contrast with Routing Games
Routing games
� ce(x) increasing
� Traffic maybe non-

atomic OK? to split traffic
� Nash is unique
� Price of Stability grows

with steepness of c:
� worst case on 2 links
� bicriteria bound

Design with Fair Sharing

� ce(x) decreasing
� Choice atomic

need to select single path
� Many equilibria
� Price of Stability

bounded by log n

x
s t1

Flow = .5

Flow = .5

76

Part III
Is Nash a reasonable concept?

Is the price of anarchy always small?
and what can be do when its too big
(mechanism design)

Examples:
� Network design and
� Resource allocation

77

Why stable solutions?
Plan: analyze the quality of Nash equilibrium.
But will players find an equilibrium?

� Can a stable solution be found in poly. time?
� Does natural game play lead to an equilibrium?
� We are assuming non-cooperative players,

what if there is cooperation?

78

Why stable solutions?
Plan: analyze the quality of Nash equilibrium.
But will players find an equilibrium?

� Can a stable solution be found in poly. time?
� Does natural game play lead to an equilibrium?
� We are assuming non-cooperative players,

what if there is cooperation?

Answer 1: A clean solution concept and exists
([Nash 1952] if game finite)
Does life lead to clan solutions?

468

79

Why stable solutions?

� Finding an equilibrium?

Nonatomic games: we�ll see that equilibrium can be
found via convex optimization [Beckmann�56]

Atomic game: finding an equilibrium is polynomial local
search (PLS) complete [Fabrikant, Papadimitriou, Talwar

STOC�04]

80

Why stable solutions?

� Does natural game play lead to equilibrium?

we�ll see that natural �best response play� leads to
equilibrium if players change one at-a-time

See also:
Fischer¥Räcke¥Vöcking�06, Blum¥Even-Dar¥Ligett�06

also if players simultaneously play natural learning
strategies

81

Why stable solutions?

� We are assuming non-cooperative players

Cooperation? No great models,
see some partial results on Thursday.

82

How to Design �Nice� Games?
(Mechanism Design)

Traditional Mechanism
Design (VCG):

� use payments to induce
all players to tell us his
utility for connection

� Select a network to
maximize social welfare
(minimize cost)

83

How to Design �Nice� Games?
(Mechanism Design)

Traditional Mechanism
Design (VCG):

� use payments to induce
all players to tell us his
utility for connection

� Select a network to
maximize social welfare
(minimize cost)

Cost lot of money; lots of
information to share

84

How to Design �Nice� Games?
(Mechanism Design)

Here:
� design a simple/natural

Nash game where users

select their own graphs

and

� analyze the Prize of

Anarchy

Traditional Mechanism
Design (VCG):

� use payments to induce
all players to tell us his
utility for connection

� Select a network to
maximize social welfare
(minimize cost)

Cost lot of money; lots of
information to share

469

85

Network Design Mechanism
How should multiple players
on a single edge split costs?

We used fair sharing �
[Herzog, Shenker, Estrin�97]

ci(P) = ce (ke) /ke

where ke number of users on edge e

which makes network design a potential game

86

Network Design Game Revisited

Another approach: Why not free market?
players can also agree on shares? ...any division

of cost agreed upon by players is OK.

Near-Optimal Network Design with Selfish Agents
STOC �03 Anshelevich, Dasgupta, Tardos, Wexler.

How should multiple players
on a single edge split costs?

We used fair sharing �
[Herzog, Shenker, Estrin�97]

87

Network Design without Fairness

Results [Anshelevich, Dasgupta, Tardos, Wexler
STOC�03]

Good news: Price of Stability 1 when all users
want to connect to a common source

(as compared to log n for fair sharing)

But: with different source-sink pairs
� Nash may not exists (free riding problem)
� and may be VERY bad when it exists
Partial good news: low cost Approximate Nash

88

No Deterministic Nash:
Free Riding problem

Network Design

[ADTW STOC�03]

Users bid contribution on

individual edges.

� Single source game:

Price of Anarchy = 1

� Multi source: no Nash

s1

t1

t2

s2

1
1

1
1

s1

t1

t2

s2

1
1

1
1

?

89

Mechanism Design

Example: Network design.

Results can be used to answer question:

Should one promote �fair sharing� or �free

market�?

90

Another Example: Bandwidth

Allocation

Many Users with diverse

utilities for bandwidth.

How should we share a

given B bandwidth?

470

91

Bandwidth Sharing Game

Assumption:

Users have a utility function Ui(x) for receiving x

bandwidth.

Ui(x)

xxi

Assume elastic users
(concave utility functions)

92

A Mechanism:

Many Users with diverse

utilities for bandwidth.

How should we share a

given B bandwidth?

Kelly: proportional sharing

� Players offer money wi

for bandwidth.

� Bandwidth allocated

proportional to payments:

� effective price p= (i wi)/B

� player allocation xi = wi /p

93

A Mechanism:

Many Users with
diverse utilities for
bandwidth.

How should we share a
given B bandwidth?

Kelly: proportional sharing
� Players offer money wi for

bandwidth.
� allocation proportional:

� unit price p= (i wi)/B
� player i gets xi = wi /p

Thm: If players are price-takers
(do not anticipate the effect
of their bid on the price)
Selfish play results in optimal
allocation

94

Price Taking Users
Given price p:

how much bandwidth does user i want?

Ui(x)

xxi

Assume elastic users
(concave utility functions)

Answer: keeps asking
for more until marginal
increase in happiness is
at least p:

Ui�(x)=p

slope p

95

Price Taking Users:
Kelly Mechanism Optimal

Equilibrium at price p:

each user i wants xi such
that Ui�(xi)=p

Total bandwidth used up at
price p
result optimal division of
bandwidth

Ui(x)

xxi

Assume elastic users
(concave utility functions)

slope p

Price taking users
standard assumption if many players

96

Kelly Proportional Sharing:

Players offer money
wi for bandwidth.

Bandwidth allocated
proportional to
payments

Johari-Tsitsikis, 2004:

what if players do
anticipate their effect
on the price?

Theorem: Price of Anarchy
at most ¾ on any
networks, and any
number of users

471

97

Kelly Proportional Sharing:

Players offer money wi
for bandwidth.

Bandwidth allocated
proportional to
payments

Theorem [Johari-Tsitsikis,
2004] Price of Anarchy at
most ¾ on any networks, and
any number of users

Why not optimal? big users
�shade� their price. User
choice

Ui�(xi)(1-xi)=p
assuming total bandwidth is 1

Worst case: one large user and
many small users

98

Summary

We talked about many issues

Price of Anarchy/Stability/Coalitions
in the context of some Network Games:

� routing, load balancing, network design,
bandwidth sharing

� Designing games (mechanism design)
� network design

99

Algorithmic Game Theory
� The main ingredients:

� Lack of central control like distributed computing

� Selfish participants game theory
� Common in many settings e.g., Internet

Most results so far:
� Price of anarchy/stability in many games,

including many I did not mention
� e.g. Facility location (another potential game)

[Vetta FOCS�02] and [Devanur-Garg-
Khandekar-Pandit-Saberi�04]:

100

Some Open Directions:

� Other natural network games with low
lost of anarchy

� Design games with low cost of anarchy

� Better understand dynamics of natural
game play

� Dynamics of forming coalitions

472

Algorithmic Game Theory

and Internet Computing

Vijay V. Vazirani

Polynomial Time Algorithms

For Market Equilibria

Markets

Stock Markets

Internet Revolution in definition of markets

473

Revolution in definition of markets

New markets defined by

Google

Amazon

Yahoo!

Ebay

Revolution in definition of markets

Massive computational power available

Revolution in definition of markets

Massive computational power available

Important to find good models and

algorithms for these markets

Adwords Market

Created by search engine companies

Google

Yahoo!

MSN

Multi-billion dollar market

Totally revolutionized advertising, especially

by small companies.

474

How will this market evolve??

The study of market equilibria has occupied

center stage within Mathematical Economics

for over a century.

The study of market equilibria has occupied

center stage within Mathematical Economics

for over a century.

This talk: Historical perspective

& key notions from this theory.

2). Algorithmic Game Theory

Combinatorial algorithms for

traditional market models

3). New Market Models

Resource Allocation Model of Kelly, 1997

3). New Market Models

Resource Allocation Model of Kelly, 1997

For mathematically modeling

TCP congestion control

Highly successful theory

475

A Capitalistic Economy

Depends crucially on

pricing mechanisms to ensure:

Stability

Efficiency

Fairness

Adam Smith

The Wealth of Nations

2 volumes, 1776.

Adam Smith

The Wealth of Nations

2 volumes, 1776.

�invisible hand� of

the market

Supply-demand curves

Leon Walras, 1874

Pioneered general

equilibrium theory

Irving Fisher, 1891

First fundamental

market model

476

Fisher�s Model, 1891

milkcheese

wine
bread

¢¢

$$$$$$$$$$$$$$$$$$

$$

$$$$$$$$

People want to maximize happiness � assume

linear utilities.Find prices s.t. market clears

Fisher�s Model

n buyers, with specified money, m(i) for buyer i

k goods (unit amount of each good)

Linear utilities: is utility derived by i

on obtaining one unit of j

Total utility of i,

i ij ij
j

U u x

iju

]1,0[x

xuu

ij

ijj iji

Fisher�s Model

n buyers, with specified money, m(i)

k goods (each unit amount, w.l.o.g.)

Linear utilities: is utility derived by i

on obtaining one unit of j

Total utility of i,

Find prices s.t. market clears, i.e.,

all goods sold, all money spent.

i ij ij
j

U u x

iju

xuu ijj iji

Arrow-Debreu Model, 1954

Exchange Economy

Second fundamental market model

Celebrated theorem in Mathematical
Economics

Kenneth Arrow

Nobel Prize, 1972

477

Gerard Debreu

Nobel Prize, 1983

Arrow-Debreu Model

n agents, k goods

Arrow-Debreu Model

n agents, k goods

Each agent has: initial endowment of goods,

& a utility function

Arrow-Debreu Model

n agents, k goods

Each agent has: initial endowment of goods,

& a utility function

Find market clearing prices, i.e., prices s.t. if

Each agent sells all her goods

Buys optimal bundle using this money

No surplus or deficiency of any good

Utility function of agent i

Continuous, monotonic and strictly concave

For any given prices and money m,

there is a unique utility maximizing bundle

for agent i.

: k

iu R R

Agents:
Buyers/sellers

Arrow-Debreu Model

478

Initial endowment of goods
Agents

Goods

Agents

Prices

Goods

= $25 = $15 = $10

Incomes

Goods

Agents

=$25 =$15 =$10

$50

$40

$60

$40

Prices

Goods

Agents

1 2: (, ,)i nU x x x

Maximize utility

$50

$40

$60

$40

=$25 =$15 =$10
Prices

Find prices s.t. market clears

Goods

Agents

$50

$40

$60

$40

=$25 =$15 =$10
Prices

1: (,)i nU x x

Maximize utility

Observe: If p is market clearing

prices, then so is any scaling of p

Assume w.l.o.g. that sum of

prices of k goods is 1.

k-1 dimensional

unit simplex

:k

479

Arrow-Debreu Theorem

For continuous, monotonic, strictly concave

utility functions, market clearing prices

exist.

Proof

Uses Kakutani�s Fixed Point Theorem.

Deep theorem in topology

Proof

Uses Kakutani�s Fixed Point Theorem.

Deep theorem in topology

Will illustrate main idea via Brouwer�s Fixed

Point Theorem (buggy proof!!)

Brouwer�s Fixed Point Theorem

Let be a non-empty, compact, convex set

Continuous function

Then

:f S S

nS R

: ()x S f x x

Brouwer�s Fixed Point Theorem Idea of proof

Will define continuous function

If p is not market clearing, f(p) tries to

�correct� this.

Therefore fixed points of f must be

equilibrium prices.

: k kf

480

Use Brouwer�s Theorem
When is p an equilibrium price?

s(j): total supply of good j.

B(i): unique optimal bundle which agent i

wants to buy after selling her initial

endowment at prices p.

d(j): total demand of good j.

When is p an equilibrium price?

s(j): total supply of good j.

B(i): unique optimal bundle which agent i

wants to buy after selling her initial

endowment at prices p.

d(j): total demand of good j.

For each good j: s(j) = d(j).

What if p is not an equilibrium price?

s(j) < d(j) => p(j)

s(j) > d(j) => p(j)

Also ensure kp

Let

S(j) < d(j) =>

S(j) > d(j) =>

N is s.t.

()
'()

p j
p j

N

'() 1
j

p j

() [() ()]
'()

p j d j s j
p j

N

() 'f p p
is a cts. fn.

=> is a cts. fn. of p

=> is a cts. fn. of p

=> f is a cts. fn. of p

: ()i B i

: ()j d j

: ii u

481

is a cts. fn.

=> is a cts. fn. of p

=> is a cts. fn. of p

=> f is a cts. fn. of p

By Brouwer�s Theorem, equilibrium prices exist.

: ()i B i

: ()j d j

: ii u is a cts. fn.

=> is a cts. fn. of p

=> is a cts. fn. of p

=> f is a cts. fn. of p

By Brouwer�s Theorem, equilibrium prices exist.

q.e.d.!

: ()i B i

: ()j d j

: ii u

Kakutani�s Fixed Point Theorem

convex, compact set

non-empty, convex,

upper hemi-continuous correspondence

s.t.

: 2Sf S

x S ()x f x

nS R

Fisher reduces to Arrow-Debreu

Fisher: n buyers, k goods

AD: n+1 agents

first n have money, utility for goods

last agent has all goods, utility for money only.

482

Combinatorial Algorithms for

Market Equilibria

Vijay V. Vazirani

Arrow-Debreu Theorem: Equilibria exist.

Arrow-Debreu Theorem: Equilibria exist.

Do markets operate at equilibria?

Arrow-Debreu Theorem: Equilibria exist.

Do markets operate at equilibria?

Can equilibria be computed efficiently?

Arrow-Debreu is highly non-constructive Arrow-Debreu is highly non-constructive

�Invisible hand� of the market: Adam Smith

Scarf, 1973: approximate fixed point algs.

Convex programs:

Fisher: Eisenberg & Gale, 1957

Arrow-Debreu: Newman and Primak, 1992

483

Used for deciding tax policies, price of new

products etc.

New markets on the Internet

Algorithmic Game Theory

Use powerful techniques from modern algorithmic

theory and notions from game theory to address

issues raised by Internet.

Combinatorial algorithms for finding market

equilibria.

Two Fundamental Models

Fisher�s model

Arrow-Debreu model,

also known as exchange model

Combinatorial Algorithms

Primal-dual schema based algorithms

Devanur, Papadimitriou, Saberi & V., 2002

Combinatorial algorithm for Fisher�s model

Auction-based algorithms

Garg & Kapoor, 2004

Approximation algorithms.

Approximation

Find prices s.t. all goods clear

Each buyer get goods providing

at least optimal utility.(1)

Primal-Dual Schema

Highly successful algorithm design

technique from exact and

approximation algorithms

484

Exact Algorithms for Cornerstone

Problems in P:

Matching (general graph)

Network flow

Shortest paths

Minimum spanning tree

Minimum branching

Approximation Algorithms

set cover facility location

Steiner tree k-median

Steiner network multicut

k-MST feedback vertex set

scheduling . . .

Main new idea

Previous: problems captured via

linear programs

DPSV algorithm: problem captured via a

nonlinear convex program

Fisher�s Model

n buyers, with specified money, m(i) for buyer i

k goods (unit amount of each good)

Linear utilities: is utility derived by i

on obtaining one unit of j

Total utility of i,

i ij ij
j

U u x

iju

]1,0[x

xuu

ij

ijj iji

Fisher�s Model

n buyers, with specified money, m(i)

k goods (each unit amount, w.l.o.g.)

Linear utilities: is utility derived by i

on obtaining one unit of j

Total utility of i,

Find prices s.t. market clears

i ij ij
j

U u x

iju

xuu ijj iji

Eisenberg-Gale Program, 1959

0:

1:

)(:

..

)(log)(max

x

x

xu

ij

i ij

ijj ij

i

ij

j

iui

ts

iuim

485

DPSV Algorithm

�primal� variables: allocations of goods

�dual� variables: prices

algorithm: primal & dual improvements

Allocations Prices

Buyer i�s optimization program:

Global Constraint:

Market Equilibrium

People Goods

$100

$60

$20

$140

Prices and utilities

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

utilities

Bang per buck

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

Bang per buck

Utility of $1 worth of goods

Buyers will only buy goods providing

maximum bang per buck

486

Equality subgraph

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

Equality subgraph

$100

$60

$20

$140

$20

$40

$10

$60

Most desirable goods for each buyer

Any goods sold in equality subgraph make

agents happiest

How do we maximize sales in equality

subgraph?

Any goods sold in equality subgraph make

agents happiest

How do we maximize sales in equality

subgraph?

Use max-flow!

Max flow

100

60

20

140

20

40

10

60

infinite capacities

Idea of Algorithm

Invariant: source edges form min-cut

(agents have surplus)

Iterations: gradually raise prices,

decrease surplus

Terminate: when surplus = 0, i.e.,

sink edges also form a min-cut

487

Ensuring Invariant initially

Set each price to 1/n

Assume buyers� money integral

How to raise prices?

Ensure equality edges retained

i

j

l

ij il

j l

u u

p p

How to raise prices?

Ensure equality edges retained

i

j

l

ij il

j l

u u

p p

� Raise prices proportionately
j ij

l il

p u

p u

ij il

j l

u u

p p

100

60

20

140

20x

40x

10x

60x

initialize: x = 1

x

100

60

20

140

20x

40x

10x

60x

x = 2: another min-cut

x>2: Invariant violated

100

60

20

140

40x

80x

20

120

active

frozen
reinitialize: x = 1

488

100

60

20

140

50

100

20

120

active

frozen
x = 1.25

100

60

20

140

50

100

20

120

100

60

20

140

50

100

20

120

unfreeze

100

60

20

140

50x

100x

20x

120x

x = 1, x

m

buyers goods

m p

buyers goods

ensure

Invariant

489

m p

buyers goods
equality

subgraph ensure

Invariant
m px

x = 1, x

}{ S()S

() (())x p S m S

}{ S()S

() (())x p S m S freeze S

tight set

}{ S()S

prices in S are market clearing x = 1, x

S()S

active

frozen

px

490

x = 1, x

S()S

active

frozen

px

x = 1, x

S()S

active

frozen

px

new edge enters equality subgraph

S()S

active

frozen

unfreeze component

active

frozen

� All goods frozen => terminate

(market clears)

� All goods frozen => terminate

(market clears)

� When does a new set go tight?

�Solve as parametric cut problem

491

Termination

Prices in S* have denominators

Terminates in max-flows.

,nnU

max { }ij ijU u

2 2Mn

Polynomial time?

Problem: very little price increase

between freezings

Polynomial time?

Problem: very little price increase

between freezings

Solution: work with buyers having

large surplus

Max flow

100

60

20

140

20

40

10

60

100

60

20

140

20

40

10

60

20

0

10

60

40

0

Max flow surplus(i) = m(i) � f(i)

100

60

20

140

20

40

10

60

20

0

10

60

40

0

40

60

20

70

492

surplus(i) = m(i) � f(i)

100

60

20

140

20

40

10

60

20

0

10

60

40

0

40

60

20

70

Surplus vector = (40, 60, 20, 70)

Balanced flow

A max-flow that minimizes l2 norm of

surplus vector

tries to make surpluses as equal as possible

Algorithm

Compute balanced flow
active

frozen

Active subgraph: Buyers with

maximum surplus

active

frozen

x = 1, x

px active

frozen

new edge enters equality subgraph

493

active

frozen

Unfreeze buyers having residual path to

active subgraph

active

frozen

Unfreeze buyers having residual path to

active subgraph

Do they have large surplus?

f: balanced flow

R(f): residual graph

Theorem: If R(f) has a path from i to j then

surplus(i) > surplus(j) active

frozen

New set tight

active

frozen

New set tight: freeze

Theorem: After each freezing, l2 norm of

surplus vector drops by (1 - 1/n2) factor.

Two reasons:

total surplus decreases

flow becomes more balanced

494

Idea of Algorithm

algorithm: primal & dual improvements

measure of progress: l2-norm of surplus vector

Allocations Prices

Polynomial time

2 2((log log))O n n U MnTheorem:

max-flow computations suffice.

Weak gross substitutability

Increasing price of one good cannot decrease

demand for another good.

Weak gross substitutability

Increasing price of one good cannot decrease

demand for another good.

=> never need to decrease

prices (dual variables).

Weak gross substitutability

Increasing price of one good cannot decrease

demand for another good.

=> never need to decrease

prices (dual variables).

Almost all primal-dual algs work this way.

Arrow-Debreu Model

Approximate equilibrium algorithms:

Jain, Mahdian & Saberi, 2003:

Use DPSV as black box.

Devanur & V., 2003: More efficient, by

opening DPSV.

495

Garg & Kapoor, 2004

Auction-based algorithm

Start with very low prices

Keep increasing price of good that is in demand

B has excess money. Favorite good: g

Currently at price p and owned by B�

B outbids B�

(1)p

p

B 'B

p(1)p

Outbid

Auction-based algorithm

Go in rounds:

In each round, total surplus decreases

by factor

Hence iterations suffice,

M= total moneytotal money

1 2, ,... nB B B

(1)

(1)log M

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)

Perform outbid and update agents� money

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)

Perform outbid and update agents� money

Any good with price >1 is fully sold

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)

Perform outbid and update agents� money

Any good with price >1 is fully sold

Eventually every good will have price >1

maxmax

min min

ij

ij

uprice

price u

496

Garg, Kapoor & V., 2004:

Auction-based algorithms for

additively separable concave utilities

satisfying weak gross substitutability

Kapoor, Mehta & V., 2005:

Auction-based algorithm for

a (restricted) production model

Q: Distributed algorithm for equilibria?

Appropriate model?

Primal-dual schema operates via

local improvements

497

Algorithmic Game Theory

and Internet Computing

Vijay V. Vazirani

New Market Models

Resource Allocation Markets

Fisher�s Model

n buyers, with specified money, m(i) for buyer i

k goods (unit amount of each good)

Linear utilities: is utility derived by i

on obtaining one unit of j

Total utility of i,

i ij ij
j

U u x

iju

]1,0[x

xuu

ij

ijj iji

Fisher�s Model

n buyers, with specified money, m(i)

k goods (each unit amount, w.l.o.g.)

Linear utilities: is utility derived by i

on obtaining one unit of j

Total utility of i,

Find prices s.t. market clears

i ij ij
j

U u x

iju

xuu ijj iji

Eisenberg-Gale Program, 1959

0:

1:

)(:

..

)(log)(max

x

x

xu

ij

i ij

ijj ij

i

ij

j

iui

ts

iuim

Via KKT Conditions can establish:

Optimal solution gives equilibrium

allocations

Lagrange variables give prices of goods

Equilibrium exists (under mild conditions)

Equilibrium utilities and prices are unique

Eisenberg-Gale program

helps establish:

498

Equilibrium exists (under mild conditions)

Equilibrium utilities and prices are unique

Rational!!

Eisenberg-Gale program

helps establish:
Kelly�s resource allocation model, 1997

Mathematical framework for understanding

TCP congestion control

Kelly�s model

Given:

network G = (V,E)

(directed or undirected)

capacities on edges

source-sink pairs (agents)

m(i): money/unit time agent i

is willing to pay

)1(m

t1

s2

t2

)(ecs1

)2(m

Kelly�s model

Network determines:

f(i): flow rate of agent i

Assume utility u(i) = m(i) log f(i)

Total utility is additivet1

s2

t2

s1

Convex Program for Kelly�s Model

0:,

)()(:

)(:

..

)(log)(max

f

f

p

i

p

p

i

i

pi

eceflowe

ifi

ts

ifim

Kelly�s model

t1

s2

t2

)(eps1 Lagrange variables:

p(e): price/unit flow

499

Kelly�s model

t1

s2

t2

)(eps1

Optimum flow and edge prices

are in equilibrium:

1). p(e)>0 only if e is saturated

2) flows go on cheapest paths

3) money of each agent is fully used

Let rate(i) = cost of cheapest path for i

m(i) = f(i) rate(i)

Kelly�s model

t1

s2

t2

)(eps1

Optimum flow and edge prices

are in equilibrium:

1). p(e)>0 only if e is saturated

2) flows go on cheapest paths

3) money of each agent is fully used

Let rate(i) = cost of cheapest path for i

f(i)�s and rate(i)�s are unique!

TCP Congestion Control

f(i): source rate

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas)

p(e):

TCP Congestion Control

f(i): source rate

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas)

Kelly: Equilibrium flows are

proportionally fair: only way of

increasing an agent�s flow by 5% is to

decrease other agents� flow by at least 5%

p(e):

TCP Congestion Control

f(i): source rate

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas)

Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

p(e):

TCP Congestion Control

f(i): source rate

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas)

Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

AIMD + RED converges to equilibrium

primal-dual (source-link) alg.

p(e):

500

TCP Congestion Control

f(i): source rate

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas)

Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

FAST: for high speed networks with large

bandwidth

p(e):

Combinatorial Algorithms

Devanur, Papadimitriou, Saberi & V., 2002:

for Fisher�s linear utilities case

Kelly & V., 2002: Kelly�s model is a

generalization of Fisher�s model.

Find comb. poly time algs!

Irrational for 2 sources & 3 sinks

s1 t
1

1

s2

t
2

1

t21 2

$1 $1

$1

Irrational for 2 sources & 3 sinks

s1 t
1

1

s2

t
2

1

t2

31

3

3

Equilibrium prices

1 source & multiple sinks

2 source-sink pairs

s

t1

t2

2

2

1
10$

10$

501

s

t1

t2

2

2

1
10$

10$

$5

$5

s

t1

t2

2

2

1
10$

10$

120$

s

t1

t2

2

2

1
120$

10$

$10

$40

$30

Jain & V., 2005: strongly poly alg

Primal-dual algorithm

Usual: linear programs & LP-duality

This: convex programs & KKT conditions

Ascending price auction

Buyers: sinks (fixed budgets, maximize flow)

Sellers: edges (maximize price)

s

t1

t2

t3

t4

rate(i): cost of cheapest path ts i

s

t1

t2

t3

t4

t

502

s

t1

t2

t3

t4

t

Capacity of edge =tt i

)(

)(

irate

im

s

t1

t2

t3

t4

t

min s-t cut

s

t1

t2

t3

t4

t

p

s

t1

t2

t3

t4

t

p

s

t1

t2 t3

t4

t

pp
0

prate
0

)2(

s

t1

t2 t3

t4

t

p
0

p prate
0

)2(

503

s

t1

t2 t3

t4

t

p
0

p
1

prate
0

)2(

ppraterate
10

)3()1(

s

t1

t2 t3

t4

t

p
0

p
1 p

s

t1

t2 t3

t4

t

p
0

p
1 p

2

nested cuts

s

t1

t2 t3

t4

t

p
0

p
1 p

2

prate
0

)2(

ppraterate
10

)3()1(

ppprate
210

)4(

Find s-t max flow

Flow and prices will:

Saturate all red cuts

Use up sinks� money

Send flow on cheapest paths

s

t1

t2

2

2

1
120$

10$

a

b

504

s

t1

t2

2

2

1 p
120

p
10

a

b

t

p

s

t1

t2

2

2

1 10
120

11010

a

b

t

10p

s

t1

t2

2

2

1 p10

120

1

a

b

t

10
0

p p

s

t1

t2

2

2

1
3

3010

120

1

a

b

t

10
0

p 30p

s

t1

t2

2

2

1
120$

10$

$10

$40

$30

Rational!!

505

Max-flow min-cut theorem

Other resource allocation markets

2 source-sink pairs (directed/undirected)

Branchings rooted at sources (agents)

Spanning trees

Network coding

Eisenberg-Gale-Type Convex Program

i
iuim)(log)(max

s.t. packing constraints

Eisenberg-Gale Market

A market whose equilibrium is captured

as an optimal solution to an

Eisenberg-Gale-type program

Megiddo, 1974: Let T = set of sinks (agents)

For define v(S) to be the max-flow

possible from s to sinks in S.

Then v is a submodular function, i.e., for

TS

)()()()(

,

,

AvtAvBvtBv

At

TBA

Simpler convex program for

single-source market

0)(:

)()(:

..

)(log)(max

ifi

SvifTS

ts

ifim

Si

i

506

Submodular Utility Allocation Market

Any market which has simpler program

and v is submodular

Submodular Utility Allocation Market

Any market which has simpler program

and v is submodular

Theorem: Strongly polynomial algorithm

for SUA markets.

Submodular Utility Allocation Market

Any market which has simpler program

and v is submodular

Theorem: Strongly polynomial algorithm

for SUA markets.

Corollary: Rational!!

Theorem: Following markets are SUA:

2 source-sink pairs, undirected (Hu, 1963)

spanning tree (Nash-William & Tutte, 1961)

2 sources branching (Edmonds, 1967 + JV, 2005)

3 sources branching: irrational

Theorem: Following markets are SUA:

2 source-sink pairs, undirected (Hu, 1963)

spanning tree (Nash-William & Tutte, 1961)

2 sources branching (Edmonds, 1967 + JV, 2005)

3 sources branching: irrational

Open (no max-min thoerems):

2 source-sink pairs, directed

2 sources, network coding

Theorem: Following markets are SUA:

2 source-sink pairs, undirected (Hu, 1963)

spanning tree (Nash-William & Tutte, 1961)

2 sources branching (Edmonds, 1967 + JV)

3 sources branching: irrational

Open (no max-min thoerems):

2 source-sink pairs, directed

2 sources, network coding

Chakrabarty, Devanur & V., 2006

507

EG[2]: Eisenberg-Gale markets with 2 agents

Theorem: EG[2] markets are rational.

EG[2]: Eisenberg-Gale markets with 2 agents

Theorem: EG[2] markets are rational.

Combinatorial EG[2] markets: polytope

of feasible utilities can be described via

combinatorial LP.

Theorem: Strongly poly alg for Comb EG[2].

EG

Rational

Comb EG[2]

SUA

EG[2]

3-source branching

Fisher

2 s-s undir

2 s-s dir

Single-source

Other properties:

Efficiency

Fairness (max-min + min-max fair)

Competition monotonicity

Open issues

Strongly poly algs for approximating

nonlinear convex programs

equilibria

Insights into congestion control protocols?

508

Random Sampling Techniques

and Approximation of CSP Problems

Marek Karpinski

University of Bonn

(NHC Spring School Lectures, Tokyo, March 1, 2006)

Abstract. We present some recent results and new sampling
techniques for absolute and relative approximation of general
Constraint Satisfaction Problems (CSP). The methods used are

threefold and based on: Smooth or Linearized Integer Programs,
combinatorial arguments, and special linear algebraic techniques.

In particular we apply those techniques to construct polynomial
time approximation schemes (PTASs) for certain instances of

both MAX- and MIN-CSP including dense and subdense in-
stances and general metric and quasimetric instances of those
problems. In that context we study the generic sample com-

plexity for approximating arbitrary CSP instances and try to
establish tight upper bounds for their underlying core-sample

sizes. We go also beyond CSP optimization problems and design
first PTASs for general metric and quasimetric size-constraint

Partitioning Problems.

1

509

Selected References

[1] N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski,
Random Sampling and Approximation of MAX-CSPs, J.

Computer and System Sciences 67 (2003), 212-243.

[2] S. Arora, D. Karger and M. Karpinski, Polynomial Time

Approximation Schemes for Dense Instances of NP-
Hard Problems, J. Computer and System Sciences 58
(1999), 193-210.

[3] W. F. de la Vega, R. Kannan, M. Karpinski and
S. Vempala, Tensor Decomposition and Approximation

Schemes for Constraint Satisfaction Problems, Proc.
27th ACM STOC (2005), 747-754.

[4] W. F. de la Vega and M. Karpinski, Approximation
Complexity of Nondense Instances of MAX-CUT, in

preparation, 2006.

[5] W. F. de la Vega, M. Karpinski and C. Kenyon, Approx-
imation Schemes for Metric Bisection and Partitioning,

Proc. 15th ACM-SIAM SODA (2004), 506-515.

[6] W. F. de la Vega, M. Karpinski, C. Kenyon and Y. Ra-

bani, Approximation Schemes for Clustering Problems,
Proc. 35th ACM STOC (2003), 50-58.

[7] M. Karpinski, Polynomial Time Approximation Schemes
for Some Dense Instances of NP-Hard Problems, Algo-

rithmica 30 (2001), 386-397.

�

2

510

0

APPROXIMATION SCHEMES

FOR METRIC BISECTION

AND PARTITIONING

MAREK KARPINSKI

UNIVERSITY OF BONN

1

APPROXIMATING METRIC

MAREK KARPINSKI

BISECTION AND RELATED

PARTITIONING PROBLEMS

UNIVERSITY OF BONN

(JOINT WORK WITH W.F. DE LA VEGA AND CLAIRE KENYON)

2

MOTIVATED BY

�BALANCED� METRIC

AND QUASIMETRIC

CLUSTERING

AND

PARTITIONING

PROBLEMS

2

MOTIVATED BY

�BALANCED� METRIC

AND QUASIMETRIC

CLUSTERING

AND

PARTITIONING

PROBLEMS

(MINIMIZING HAMILTONIANS)

3

MIN-BISECTION

OF

GRAPHS,

METRIC SPACES,

SET SYSTEMS, ...

´MIN-CONNECTIVITY´

50 % 50 %

3

MIN-BISECTION

OF

GRAPHS,

METRIC SPACES,

SET SYSTEMS, ...

´MIN-CONNECTIVITY´

50 % 50 %

511

4

METRIC SITUATIONS:

PARTITIONING

OF

FINITE METRIC SPACES .

�DENSITY�

! "dX,

5

METRIC PARTITIONING PROPERTY:

WE HAVE: OPT .

SO, OPT .

#
$

%
VV

yxdW ,),(

.),(#% yxdWA
AxA

OPT

&
'

(

1x

2x
3x

L R

OPT)*+ 4RL WW_
2

1
_ AvAv), & '

)++% 2RL WWW

W,
6

6

RED. TO ABSOLUTE (ADD.)

APPROX. TO WITHIN

FOR EVERY .

DENSE

METHOD.

- W)
- 0.

7

THE PROBLEM:

COMPUTING MIN/MAX BISECTION

OF A GIVEN METRIC SPACE .

THE PROBLEM

KNOWN TO BE NP-HARD EVEN

WHEN RESTRICTED

TO (1,2)-METRIC.

! "dV,

8

METRIC SPACE

EQUICUT:

PARTITIONING OF

WITH .

MINIMIZING/

MAXIMIZING

! "dV,

! "21,VV V

21 VV %

)/

0 1
! "

#
2,1

,

),(

VV
wv

wvd

BY
CUT

9

)/

0 10 1Ejixx ji 2%3% ,1

1%3 ji xx

! "ji xxd ,

jx
ix

0%ix 1%jx

512

10

MIN-CSP

GLOBAL CONSTRAINT:

)/

3

#
%

%
n

i
i

nx
1

2

MIN-BISECTION

11

GIVEN A FINITE

METRIC SPACE .! "dV,

HOW LARGE

A VALUE OF

AN ARBITRARY EQUICUT ?

11

GIVEN A FINITE

METRIC SPACE .! "dV,

HOW LARGE

A VALUE OF

AN ARBITRARY EQUICUT ?

! "#
2

%
Vy

x yxdw ,

x

#
2

%
Vx

xwW

12

! "#
$

%
LL

L yxdW ,,

! "#
$

%
RR

R yxdW .,

13

MIN-BISECTION() .! "dV,
6

W,

3x1x

L R

2x
4x

&

! " ! " ! " ! "42324131 ,,,, xxdxxdxxdxxd +++%&

! " ! " *+ 4321 ,, xxdxxd &

4*+ RL WW OPT

6*W OPT

! "4

13

MIN-BISECTION() .! "dV,
6

W,

3x1x

L R

2x
4x

&

! " ! " ! " ! "42324131 ,,,, xxdxxdxxdxxd +++%&

! " ! " *+ 4321 ,, xxdxxd &

4*+ RL WW OPT

6*W OPT

! "4

%(

5 6 E (
! "

2

4

n

WW RL +%

513

14

MIN-(,)-PART () ! "dV,

7
8
9

:
;
< =

+
=

+
,

k

kn

kn

k

W

12

kn=k

L R

%L k %R kn=
15

FIRST TRY

(BIASED SAMPLING):

PUTTING ARBITRARILY

IF .! " ! "RvdLvd ,, >

Vv2

nDCBA %%%%
26 n %OPT

B

C D

A

1

21

1

1

2

22
2

2

15

FIRST TRY

(BIASED SAMPLING):

PUTTING ARBITRARILY

IF .! " ! "RvdLvd ,, >

Vv2

nDCBA %%%%
26 n %OPT

B

C D

A

1

21

1

1

2

22
2

2

ON HOW NOT TO TRY.

15

FIRST TRY

(BIASED SAMPLING):

PUTTING ARBITRARILY

IF .! " ! "RvdLvd ,, >

Vv2

nDCBA %%%%
26 n %OPT

B

C D

A

1

21

1

1

2

22
2

2

ON HOW NOT TO TRY.

RL

! "
! " 24,

,3,

=%

%

nvd

nvd

R

L
v

15

FIRST TRY

(BIASED SAMPLING):

PUTTING ARBITRARILY

IF .! " ! "RvdLvd ,, >

Vv2

nDCBA %%%%
26 n %OPT

B

C D

A

1

21

1

1

2

22
2

2

ON HOW NOT TO TRY.

RL

w

v
! " >=% 13, nvd

R

L

! " ,3 vdn %

! " >=% 13, nwd

L

R

! " ,3 wdn %

15

FIRST TRY

(BIASED SAMPLING):

PUTTING ARBITRARILY

IF .! " ! "RvdLvd ,, >

Vv2

nDCBA %%%%
26 n %OPT

B

C D

A

1

21

1

1

2

22
2

2

ON HOW NOT TO TRY.

22

2

1
6 nn +%VALUE

B

C

514

16

IS

METRIC BISECTION

HARD TO APPROX. ?

17

A PTAS FOR GENERAL

METRIC BISECTION:

(VIA LINEARIZED

QUADRATIC

PROGRAMS)

! " ! " ! "! " ,11
2

1
, #

?

=+=%
ji

ijjiijdV xxxxwP

%
i

i
nx

2

17

A PTAS FOR GENERAL

METRIC BISECTION:

(VIA LINEARIZED

QUADRATIC

PROGRAMS)

! " ! " ! "! " ,11
2

1
, #

?

=+=%
ji

ijjiijdV xxxxwP

%
i

i
nx

2

([AKK95],

[FK00])

17

A PTAS FOR GENERAL

METRIC BISECTION:

(VIA LINEARIZED

QUADRATIC

PROGRAMS)

! " ! " ! "! " ,11
2

1
, #

?

=+=%
ji

ijjiijdV xxxxwP

%
i

i
nx

2

([AKK95],

[FK00])

(SMOOTH, BUT UNBOUND. WEIGHT PR.)

17

A PTAS FOR GENERAL

METRIC BISECTION:

(VIA LINEARIZED

QUADRATIC

PROGRAMS)

! " ! " ! "! " ,11
2

1
, #

?

=+=%
ji

ijjiijdV xxxxwP

%
i

i
nx

2

([AKK95],

[FK00])

(SMOOTH, BUT UNBOUND. WEIGHT PR.)

! "
#
2

%
iNj

ir ! "jx=1

18

BASIC METHOD:

METRIC SAMPLER FOR ESTIMATING

! "Uvd , , ,VU@

! " ! " ! "Uvd
w

v,ud

t

W
Uvd

 u U

U ,, *= #
2

-
T

WITH PR. .
-

821
 t

e
=

=,

U

T

v

WITH PR. ,Uu2
U

U

W

w
%

R

tUUT ,,1 ! %0 1

2

515

19

PARTITIONING OF :! "UU ,
L R

U

S 3% 2-

WE HAVE:

WITH PR. =,1 -

2-S 1,AU
L

S

U IS UNKNOWN, SO WE

TRY ALL POSSIBLE SUBSETS OF .T

L

S

L
U

R
U

UU WW ,
L R

19

PARTITIONING OF :! "UU ,
L R

U

S 3% 2-

WE HAVE:

WITH PR. =,1 -

2-S 1,AU
L

S

U IS UNKNOWN, SO WE

TRY ALL POSSIBLE SUBSETS OF .T

L

S

L
U

R
U

UU WW ,
L R

LUA% ST

T

20

1. CONSTRUCT A SET B OF �LARGE� WEIGHT

VERTICES WITH ; .

2. TAKE A RANDOM SAMPLE S OF SIZE (OF U)

WITH THE BIAS .

3. GUESS , .

Vv2 100Wwv , BVU \%2-

3 2-

Uu Ww

A%BBL L A%BBR R

OPT

L R

20

1. CONSTRUCT A SET B OF �LARGE� WEIGHT

VERTICES WITH ; .

2. TAKE A RANDOM SAMPLE S OF SIZE (OF U)

WITH THE BIAS .

3. GUESS , .

Vv2 100Wwv , BVU \%2-

3 2-

Uu Ww

A%BBL L A%BBR R

OPT

L R

! "RL BBd ,%4

AB L RAB

20

1. CONSTRUCT A SET B OF �LARGE� WEIGHT

VERTICES WITH ; .

2. TAKE A RANDOM SAMPLE S OF SIZE (OF U)

WITH THE BIAS .

3. GUESS , .

Vv2 100Wwv , BVU \%2-

3 2-

Uu Ww

A%BBL L A%BBR R

OPT

L R

! "RL BBd ,%4

AB L RAB

A%U LUL

? ?

A%U RUR

B L RB

21

RANDOM SAMPLE ON :S LU

UU WW ,
L R

LUA% STGUESS .

(ASSUME,).

CONSTRUCT ESTIMATORS:

! " ! "Bvd
t

W
e

u

U

v ,+% #
2 uw

uv,dL

T
L

516

21

RANDOM SAMPLE ON :S LU

UU WW ,
L R

LUA% STGUESS .

(ASSUME,).

CONSTRUCT ESTIMATORS:

! " ! "Bvd
t

W
e

u

U

v ,+% #
2 uw

uv,dL

T
L

ON U.

2-S

 3%()

22

LINEAR PROGRAM:

4. CONSTRUCT

! " ! " ! " ev,ud x v

Uu

u +*=#
2

11 -

1,0
2

**=%#
2

uvL
Uv

v xx,B
n

x

LP(U)::

+#
2

v
Uv

vex

! " ! " 4+=#
2Uv

Rv B,vd x1

MIN

WITH CONSTRAINTS:

23

COMPUTE OPTIMAL FRACTIONAL

SOLUTION , OF LP().Uv2! "*

vx

L

USE RANDOMIZED ROUNDING TO

OBTAIN A PARTITION OF

(A SOLUTION).

U

! "21,VV U

! "vy

RR

�BALANCE� A

PARTITION BY MOVING

THE SMALLEST WEIGHT VERTICES.

! "BVBV BB 21 , R

24

MAIN STEP IN ANALYSIS OF RR:

! "
2

* nyxE
Uv

vv *CD

E
FG

H =#
2

AND

W.H.P. (AT LEAST)100
89

! " Wxv 30* =,OPT c -

(PROVED BY METRIC SAMPLER ESTIMATIONS.)

25

RESULTING BISECTION

B

L

-

U UB
L

R

R

MOVING VERTICES

! "BA, ! "! "Vvyv 2I ,

CLAIM: APPROX. OPT

TO WITHIN .

! "BA,

W

26

RUNNING TIME:

COMBINATORIAL VERSION:

EXTENSION TO

METRIC MIN-PARTITIONING

(EXISTENCE OF PTASS)

! "nnn ,,, 21 ! K

2-
7
8
9:

;
<

)
1

2)LP(
O

n

2- 7
8
9:

;
<

)
1

2 2
O

n

517

26

RUNNING TIME:

COMBINATORIAL VERSION:

EXTENSION TO

METRIC MIN-PARTITIONING

(EXISTENCE OF PTASS)

! "nnn ,,, 21 ! K

2-
7
8
9:

;
<

)
1

2)LP(
O

n

2- 7
8
9:

;
<

)
1

2 2
O

n

27

EXTENSION TO

QUASIMETRIC PARTITIONING

AND CLUSTERING

! " ! " ! "! "zydyxdCzxd ,,, +*(

FOR SOME POSITIVE CONSTANT C)

INCLUDES ALL �POWERS� OF

METRIC FUNCTIONS LIKE l l

USED IN CLUSTERING APPLICATIONS.

!,,2 p

q2

28

IF IS

METRIC AND ,

THEN IS

A QUASIMETRIC.

! "y,xd

! "! "&y,xd

0.&

29

FURTHER RESEARCH:

1. DESIGN THE PTASS (?)

FOR �BALANCED�

METRIC CLUSTERING

(EXTENSION OF

[FKKR03]-TECHNIQUE ?)

! "nnn ,,, 21 ! K

2. IMPROVE EFFICIENCY

29

FURTHER RESEARCH:

1. DESIGN THE PTASS (?)

FOR �BALANCED�

METRIC CLUSTERING

(EXTENSION OF

[FKKR03]-TECHNIQUE ?)

! "nnn ,,, 21 ! K

2. IMPROVE EFFICIENCY

(CONSTANT TIME ALGS ?)

30

RANDOM CORE-SAMPLE COMPLEXITY :

IS ENOUGH FOR

MAX-KCSP, K ARBITRARY.

([AFKK02] , [FKKV05])

7
8
9:

;
<% 1~O 4-

S

S

518

Approximation Algorithms for Facility Location

Jens Vygen

University of Bonn

Outline

Introduction

Uncapacitated Facility Location

Capacitated and Universal Facility Location

Facility Location and Network Design with Service Capacities

Facility Location: Applications

� manufacturing plants

� storage facilities, depots

� warehouses, retail stores

� libraries, fire stations, hospitals

� servers in the internet

� base stations for wireless services

� buffers distributing signals on a chip

� ...

Goal: Optimum service for clients at minimum cost

Common features of facility location problems

� Two sets: clients and potential facilities

� Each client must be served.
� A potential facility can be opened or not.
� Clients can only be served by open facilities.

� Two cost components: facility cost and service cost.

� Opening a facility involves a certain cost.
� Serving a client from a facility involves a certain cost.

� The total cost is to be minimized.

But there are many variants

� Can a client’s demand be satisfied by more than one facility?

� Are there constraints on the total demand, or total service
cost, that a facility can handle?

� Do the service costs satisfy the triangle inequality?

� Are there finitely or infinitely many potential facilities?

� Do the facility costs depend on the total demand served?

� Is it allowed to serve only a subset of clients, and pay for
those that are not served?

� Is there a bound on the number of facilities that we can open?

� Does the total service cost of a facility depend on the sum of
the distances to its clients, or the length of a shortest tour, or
the length of an optimal Steiner tree?

� Are we interested in the sum of all service costs, or rather in
the maximum service cost?

� Do we need to serve facilities by second-stage facilities (etc.)?

Example 1: Fermat-Weber Problem
The most prominent example for continuous facility location

Locating a single facility in R
n: Given a1, . . . , am ∈ R

n and weights
w1, . . . , wm ∈ R+, find p ∈ R

n minimizing

m
∑

i=1

wi ||p − ai ||.

� For �1-norm solvable in linear time (Blum et al. 1973)

� �2-norm, n = 2, m = 3: Simple geometric solution (Fermat,
Torricelli, Cavalieri, Simpson, Heinen)

� For �2-norm: construction by ruler and compasses impossible
(Bajaj 1988)

� Approximate solution for �2-norm: Weiszfeld’s algorithm
(Weiszfeld 1937, Kuhn 1973, Vardi and Zhang 2001,
Rautenbach et al. 2004)

519

Example 2: Uncapacitated Facility Location (UFL)
The most prominent example for discrete facility location

Instance:

� a finite set D of clients;

� a finite set F of potential facilities;

� a fixed cost fi ∈ R+ for opening each facility i ∈ F ;

� a service cost cĳ ∈ R+ for each i ∈ F and j ∈ D.

We look for:

� a subset S of facilities (called open) and

� an assignment σ : D → S of clients to open facilities,

� such that the sum of facility costs and service costs

∑

i∈S

fi +
∑

j∈D
cσ(j)j

is minimum.

More examples discussed later

� Capacitated Facility Location

� Universal Facility Location

� Facility Location and Network Design with Service Capacities

These are more general and more realistic in many applications.

Approximation Algorithms: Definition

Let f be a function assigning a real number to each instance.
An f -approximation algorithm is an algorithm for which a
polynomial p exists such that for each instance I :

� the algorithm terminates after at most p(size(I)) steps,

� the algorithm computes a feasible solution, and

� the cost of this solution is at most f (I) times the optimum
cost of instance I .

f is called the approximation ratio or performance guarantee.
If f is a constant, we have a (constant-factor) approximation
algorithm.

Uncapacitated Facility Location is as hard as Set Covering

Set Covering: Given a finite set U, a family S of subsets of U
with

⋃

S∈S S = U, and weights w : S → R+, find a set R ⊆ S
with

⋃

R∈R R = U with minimum total weight
∑

R∈R w(R).

� No o(log |U|)-approximation algorithm exists unless P = NP.
(Raz, Safra 1997)

� Greedy algorithm has performance ratio 1 + ln |U|.
(Chvátal 1979)

� Set Covering is a special case of Uncapacitated

Facility Location: define D := U, F := S, fS = w(S) for
S ∈ S, cSj := 0 for j ∈ S ∈ S and cSj := ∞ for j ∈ U \ S .

� Conversely, the greedy algorithm for Set Covering can be
applied to Uncapacitated Facility Location:
Set U := D, S = F × 2D, and w(i , D) := fi +

∑

j∈D cĳ .
(Hochbaum 1982)

A natural assumption: metric service costs

Therefore we assume henceforth metric service costs:

cĳ ≥ 0

and
cĳ + ci ′j + ci ′j ′ ≥ cĳ ′

for all i , i ′ ∈ F and j , j ′ ∈ D.

Equivalently, we assume c to be a (semi)metric on D ∪ F .

Motivation:

� The general problem is as hard as Set Covering.

� In many practical problems service costs are proportional to
geometric distances, or to travel times, and hence are metric.

But: Greedy algorithm has performance guarantee
Ω(log n/ log log n) even for metric instances. (Jain et al. 2003)

Integer Linear Programming Formulation

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cĳxĳ

subject to
xĳ ≤ yi (i ∈ F , j ∈ D)

∑

i∈F
xĳ = 1 (j ∈ D)

xĳ ∈ {0, 1} (i ∈ F , j ∈ D)

yi ∈ {0, 1} (i ∈ F)

(Balinski 1965)

520

Linear Programming Relaxation

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cĳxĳ

subject to
xĳ ≤ yi (i ∈ F , j ∈ D)

∑

i∈F
xĳ = 1 (j ∈ D)

xĳ ≥ 0 (i ∈ F , j ∈ D)

yi ≥ 0 (i ∈ F)

The Dual LP

maximize
∑

j∈D
vj

subject to
vj − wĳ ≤ cĳ (i ∈ F , j ∈ D)

∑

j∈D
wĳ ≤ fi (i ∈ F)

wĳ ≥ 0 (i ∈ F , j ∈ D)

First Approximation Algorithm: LP Rounding

� Compute an optimum solutions (x∗, y∗) and (v∗, w∗) to the
primal and dual LP.

� By complementary slackness, x∗
ĳ > 0 implies v∗

j − w∗
ĳ = cĳ ,

and thus cĳ ≤ v∗
j .

� Let G be the bipartite graph with vertex set F ∪D containing
an edge {i , j} iff x∗

ĳ > 0.

� Assign clients to clusters iteratively as follows.
� In iteration k, let jk be a client j ∈ D not assigned yet and

with v∗

j smallest.
� Create a new cluster containing jk and those vertices of G that

have distance 2 from jk and are not assigned yet.
� Continue until all clients are assigned to clusters.

� For each cluster k we choose a neighbour ik of jk with fik
minimum, open ik , and assign all clients in this cluster to ik .

Analysis of the LP Rounding Approximation Algorithm

� The service cost for client j in cluster k is at most

cik j ≤ cĳ + cĳk
+ cik jk ≤ v∗

j + 2v∗
jk

≤ 3v∗
j ,

where i is a common neighbour of j and jk .
� The facility cost fik can be bounded by

fik ≤
∑

i∈F
x∗

ĳk
fi =

∑

i∈F :{i ,jk}∈E(G)

x∗
ĳk

fi ≤
∑

i∈F :{i ,jk}∈E(G)

y∗
i fi .

As jk and jk′ cannot have a common neighbour for k 	= k ′,
the total facility cost is at most

∑

i∈F y∗
i fi .

� The total cost is at most

3
∑

j∈D
v∗

j +
∑

i∈F
y∗

i fi ,

which is at most four times the LP value. Hence we get:

Theorem
This is a 4-approximation algorithm for metric UFL.

(Shmoys, Tardos and Aardal 1997)

Better approximation ratios for metric UFL

technique ratio RT authors year

LP-Rounding 3.16 – Shmoys, Tardos, Aardal 1997

LP-Rounding+Greedy 2.41 – Guha, Khuller 1998

LP-Rounding 1.74 – Chudak 1998

Local Search 5.01 ◦ Korupolu, Plaxton, Ra-
jaraman

1998

Primal-Dual 3.00 + Jain, Vazirani 1999

Primal-Dual+Greedy 1.86 + Charikar, Guha 1999

LP-Rounding+Primal-
Dual+Greedy

1.73 – Charikar, Guha 1999

Local Search 2.42 ◦ Arya et al. 2001

Primal-Dual 1.61 + Jain, Mahdian, Saberi 2002

LP-Rounding 1.59 – Sviridenko 2002

Primal-Dual+Greedy 1.52 + Mahdian, Ye, Zhang 2002

RT : running time; – : slow; ◦ : medium; + : fast

Primal-Dual Algorithm by Jain, Mahdian and Saberi (2002)

Start with U := D and time t = 0. Increase t, maintaining vj = t
for all j ∈ U. Consider the following events:

� vj = cĳ , where j ∈ U and i is not open. Then start to increase
wĳ at the same rate, in order to maintain vj − wĳ = cĳ .

�

∑

j∈D wĳ = fi . Then open i . For all j ∈ D with wĳ > 0:
freeze vj and set wi ′j := max{0, cĳ − ci ′j} for all i ′ ∈ F , and
remove j from U.

� vj = cĳ , where j ∈ U and i is open. Then freeze vj and set
wi ′j := max{0, cĳ − ci ′j} for all i ′ ∈ F , and remove j from U.

521

Improvement by Mahdian, Ye and Zhang (2002)

� Multiply all facility costs by 1.504.

� Apply the Jain-Mahdian-Saberi algorithm.

� Now consider the original facility costs.

� Apply greedy augmentation (Charikar, Guha 1999):
Let gi be the service cost saving induced by adding facility i .
Iteratively pick an element i ∈ F maximizing gi

fi
as long as

this ratio is greater than 1.

Theorem
This is a 1.52-approximation algorithm for metric UFL.

Lower bound on approximation ratios

Theorem
There is no 1.463-factor approximation algorithm for metric UFL
unless P = NP.

(Sviridenko [unpublished], based on Guha and Khuller [1999] and
Feige [1998])

Local Search as a general heuristic

Basic Framework:

� Define a neighbourhood graph on the feasible solutions.

� Start with any feasible solution x .

� If there is a neighbour y of x that is (significantly) better, set
x := y and iterate.

Features:

� Quite successful for many practical (hard) problems

� Many variants of local search heuristics

� Typically no guarantees of running time and performance
ratio.

Local Search in Combinatorial Optimization

Example: TSP

� Even simple 2-opt typically yields good solutions. Variants
(chained Lin-Kernighan) with empirically less than 1% error

� Worst-case running time of k-opt is exponential for all k.

� Performance ratio Ω(n
1

2k).

(Applegate et al. 2003, Chandra, Karloff, Tovey 1999)

Example: Facility Location

� Probably the first nontrivial problem where local search led to
constant-factor approximation algorithms.
(Korupolo, Plaxton and Rajamaran 2000, Arya et al. 2004)

� But: for metric UFL worse in theory (maybe also in practice)

� The only known technique to obtain a constant-factor
approximation for Capacitated Facility Location.

Capacitated Facility Location (CFL)

Instance:

� finite sets D (clients) and F (potential facilities);

� metric service costs cĳ ∈ R+ for i ∈ F and j ∈ D;

� an opening cost fi ∈ R+ for each facility i ∈ F ;

� a capacity ui ∈ R+ for each facility i ∈ F ;

� a demand dj for each client j ∈ D.

We look for:

� a subset S of facilities (called open) and

� an assignment x : S ×D → R+ with
∑

i∈S xĳ = dj for j ∈ D
and

∑

j∈D xĳ ≤ ui for i ∈ S

� such that the sum of facility costs and service costs

∑

i∈S

fi +
∑

j∈D
cĳxĳ

is minimum.

Splittable or Unsplittable Demands

Assume that facilities with given capacities are open.
Task: assign the clients to these facilities, respecting capacity
constraints.

� Splittable (or uniform) demand:
Hitchcock transportation problem.

� Unsplittable non-uniform demand:
Generalizes bin packing.

Consequence: CFL with unsplittable demands has no
approximation algorithm. It is strongly NP-hard to distinguish
between instances with optimum cost 0 and ∞.

Hence consider splittable demands only.

522

Universal Facility Location (UniFL)

Instance:

� finite sets D (clients) and F (potential facilities);

� metric service costs, i.e. a metric c on D ∪ F ;

� a demand dj ≥ 0 for each j ∈ D;

� for each i ∈ F a cost function fi : R+ → R+ ∪ {∞},
left-continuous and non-decreasing.

We look for:

� a function x : F ×D → R+ with
∑

i∈F xĳ = dj for all j ∈ D

(a feasible solution), such that c(x) := cF (x) + cS(x) is minimum,
where

cF (x) :=
∑

i∈F
fi

(

∑

j∈D
xĳ

)

and cS(x) :=
∑

i∈F

∑

j∈D
cĳxĳ .

UniFL: Facility cost function given by an oracle

fi (z): cost to install capacity z at facility i .

Given by an oracle that, for each i ∈ F , u, c ∈ R+ and t ∈ R,
computes fi (u) and

max{δ ∈ R : u + δ ≥ 0, fi (u + δ) − fi (u) + c|δ| ≤ t}.

Proposition

There always exists an optimum solution.

(Mahdian and Pál 2003)

UniFL: important special cases

� Uncapacitated Facility Location:
dj = 1 (j ∈ D), and fi (0) = 0 and fi (z) = ti for some ti ∈ R+

and all z > 0 (i ∈ F).

� Capacitated Facility Location:
fi (0) = 0, fi (z) = ti for 0 < z ≤ ui and fi (z) = ∞ for z > ui ,
where ui , ti ∈ R+ (i ∈ F).

� Soft-Capacitated Facility Location:
dj = 1 (j ∈ D), and fi (z) = � z

ui
�ti for some ui ∈ N, ti ∈ R+

and all z ≥ 0 (i ∈ F).

Simple local search operations

� Add: open a facility (CFL); add capacity to a facility (UniFL).

� Drop: close a facility (CFL).

� Swap: open one facility, close another one (CFL).

Even for CFL with non-uniform demands, these operations do not
suffice:
When closing one facility, it may be necessary to open many other
ones (and re-assign the demand along the edges of a star).

Previous approximation algorithms for CFL and UniFL

Kuehn, Hamburger 1963 add,drop,swap CFL —

Korupolu, Plaxton, Raja-
maran 1998

add,drop,swap CFL 8.001 uniform
capacities

Chudak, Williamson
1999

add,drop,swap CFL 5.829 uniform
capacities

Pál, Tardos, Wexler 2001 add,star CFL 8.532

Mahdian, Pál 2003 add,star UniFL 7.873

Zhang, Chen, Ye 2004 add,double-star CFL 5.829

Garg, Khandekar, Pandit
2005

add,double-star UniFL 5.829 not poly-
nomial!

Vygen 2005 add,comet UniFL 6.702

All based on
local search.

cometdouble starstar

Add Operation for UniFL

Let t ∈ D and δ > 0. Replace current solution x by an optimum
solution y of the transportation problem

min

{

cS(y)

∣

∣

∣

∣

∣

y : F ×D → R+,
∑

i∈F
yĳ = dj (j ∈ D),

∑

j∈D
yĳ ≤

∑

j∈D
xĳ (i ∈ F \ {t}),

∑

j∈D
ytj ≤

∑

j∈D
xtj + δ

}

.

We denote by

cx(t, δ) := cS(y) − cS(x) + ft

∑

j∈D
xtj + δ

 − ft

∑

j∈D
xtj

the estimated cost (which is at least c(y) − c(x)).

523

How to find a profitable Add operation

Lemma
Let ε > 0 and t ∈ F . Let x be a feasible solution. Then there is an
algorithm with running time O(|V |3 log |V |ε−1) that

� finds a δ ∈ R+ with cx(t, δ) ≤ −εc(x)

� or decides that no δ ∈ R+ exists for which cx(t, δ) ≤ −2εc(x).

(Mahdian, Pál 2003)

Pivot Operation

Let x be a feasible solution. Let A be a graph with V (A) = F and

δ ∈ ∆x
A :=

δ ∈ R
F

∣

∣

∣

∣

∣

∣

∑

j∈D
xĳ + δi ≥ 0 for all i ∈ F ,

∑

i∈F
δi = 0

.

Then we consider the operation Pivot(A, δ), which means:

� Compute a minimum-cost (w.r.t. c) uncapacitated δ-flow in
(A, c).

� W.l.o.g., the edges carrying flow form a forest.

� Scan these edges in topological order, reassigning clients
according to flow values.

� This increases the cost of the solution by at most the cost of
the flow plus

∑

i∈F
fi

(

∑

j∈D
xĳ + δi

)

− fi

(

∑

j∈D
xĳ

)

.

How to find a profitable Pivot operation

But: how to choose δ?

� δ cannot be chosen almost optimally for the complete graph
(unless P = NP).

� We show how to choose δ almost optimally if A is a forest.

Restrict attention to Pivot on arborescences

Let A be an arborescence with V (A) = F . Let x be a feasible
solution.
For δ ∈ ∆x

A define

cx
A,i (δ) := fi

(

∑

j∈D
xĳ + δi

)

− fi

(

∑

j∈D
xĳ

)

+

∣

∣

∣

∣

∣

∑

j∈A+
i

δj

∣

∣

∣

∣

∣

cip(i)

for i ∈ F and
cx(A, δ) :=

∑

i∈F
cx

A,i (δ).

Here A+
i denotes the set of vertices reachable from i in A, and p(i)

is the predecessor of i .

How to find a profitable Pivot for an arborescence

Lemma
Let ε > 0. There is an algorithm with running time O(|F|4ε−3)
that

� finds a δ ∈ ∆x
A with cx(A, δ) ≤ −εc(x)

� or decides that no δ ∈ ∆x
A exists for which

cx(A, δ) ≤ −2εc(x).

(Vygen 2005)

Bounding the cost of a local optimum

Let 0 < ε < 1. Let x , x∗ be feasible solutions to a given instance.

Lemma
If cx(t, δ) ≥ − ε

|F|c(x) for all t ∈ F and δ ∈ R+, then

cS(x) ≤ cF (x∗) + cS(x∗) + εc(x).

(Pál, Tardos and Wexler 2001)

Lemma
If cx(A, δ) ≥ − ε

|F|c(x) for all stars and comets A and δ ∈ ∆x
A, then

cF (x) ≤ 4cF (x∗) + 2cS(x∗) + 2cS(x) + εc(x).

(Vygen 2005)

524

The total cost of a local optimum

These two lemmata imply:

Theorem
If cx(t, δ) > − ε

8|F|c(x) for t ∈ F and δ ∈ R+ and

cx(A, δ) > − ε

8|F|c(x) for all stars and comets A and δ ∈ ∆x
A, then

c(x) ≤ (1 + ε)(7cF (x∗) + 5cS(x∗)).

By scaling facility costs by
√

41−5
2

we get a polynomial-time

(
√

41+7
2

+ ε)-approximation algorithm for UniFL.

How to bound the facility cost

Let x be the current solution and x∗ be an optimum solution.
Let b(i) :=

∑

j∈D(xĳ − x∗
ĳ) (i ∈ F).

Let y be an optimum transshipment from S := {i ∈ F : b(i) > 0}
to T := {i ∈ F : b(i) < 0}.
W.l.o.g., the edges where y is positive form a forest F .
The cost of y is at most cS(x∗) + cS(x).

Using F and y , we will define a set of pivot operations on stars
and comets, whose total estimated cost is at most
4cF (x∗) − cF (x) + 2cS(x∗) + 2cS(x).
An operation (A, δ) closes s ∈ S if δs = −b(s) < 0, and it opens
t ∈ T if 0 < δt ≤ −b(t).
Over all operations to be defined, we will close each s ∈ S once,
open each t ∈ T at most four times, and use an estimated routing
cost at most twice the cost of y .

How to define the operations (1)

Orient F as a set of arborescences rooted at elements of T .
Call a vertex weak if there is more flow on downward than on
upward incident arcs, otherwise strong. Let t ∈ T .
Open t up to twice if t is strong and up to three times if t is weak.
For each child s of t: Close s once, and open each child of s at
most once (if weak) or twice (if strong).
Example: t

weak weak weak strong strong strong strong strong

strongstrong weakweak

weak

How to define the operations (2)

weak weak strong strong strong strong strongweak

weak weak strong strong strong strong strongweak

weak weak strong strong strong strong strongweak

weak weak strong strong strong strong strongweak

weak

weak

weak

weak

t

t

t

t

VLSI Design: Distributing a signal to several terminals

blue: terminals red: facilities

Problem Statement
Instance:

� metric space (V , c),
� finite set D ⊆ V (terminals/clients),
� demands d : D → R+,
� facility opening cost f ∈ R+,
� capacity u ∈ R+.

Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E (Ti)) + d(Di) ≤ u

for i = 1, . . . , k such that
k

∑

i=1

c(E (Ti)) + kf

is minimum.

525

Complexity Results

(All the following results are by Maßberg and Vygen 2005)

Proposition

� There is no (1.5 − ε)-approximation algorithm (for any ε > 0)
unless P = NP.

� There is no (2 − ε)-approximation algorithm (for any ε > 0)
for any class of metrics where the Steiner tree problem cannot
be solved exactly in polynomial time.

� There is a 2-approximation algorithm for geometric instances
(similar to Arora’s approximation scheme for the TSP).
However, this is not practically efficient.

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . , en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . , n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
components.

Proof.
By induction on k. Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k-spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest. Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).

Lower bound: Steiner forests

A k-Steiner forest is a forest F with D ⊆ V (F) and exactly k
components.

Lemma
1
α

c(Fk) is a lower bound for the cost of a minimum weight
k-Steiner forest, where α is the Steiner ratio.

Lower bound: number of facilities

Let t ′ be the smallest integer such that

1

α
c(Ft′) + d(D) ≤ t ′ · u

Lemma
t ′ is a lower bound for the number of facilities of any solution.

Let t ′′ be an integer in {t ′, . . . , n} minimizing

1

α
c(Ft′′) + t ′′ · f .

Theorem
1
α

c(Ft′′) + t ′′ · f is a lower bound for the cost of an optimal
solution.

Algorithm A

1. Compute a minimum spanning tree on (D, c).

2. Compute t ′′ and spanning forest Ft′′ as above.

3. Split up overloaded components by a bin packing approach.

It can be guaranteed that for each new component at least u
2

of
load will be removed from the initial forest.

Analysis of Algorithm A

Recall: 1
α

c(Ft′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
α

c(Ft′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f
Lf .

The cost of the final solution is at most

c(Ft′′) + t ′′f +
2

u

(

c(Ft′′) + d(D)
)

f

= αLr + Lf +
2f

u

(

αLr + d(D)
)

≤ αLr + Lf + 2αLf

Theorem
Algorithm A is a (2α + 1)-approximation algorithm.

526

Algorithm B

Define metric c ′ by c ′(v , w) := min{c(v , w), uf
u+2f

}.

1. Compute a Steiner tree F for D in (V , c ′) with some
β-approximation algorithm.

2. Remove all edges e of F with c(e) ≥ uf
u+2f

.

3. Split up overloaded components of the remaining forest as in
algorithm A.

Theorem
Algorithm B has perfomance ratio 3β.

Using the Robins-Zelikovsky Steiner tree approximation algorithm
we get a 4.648-approximation algorithm.

With a more careful analysis of the Robins-Zelikovsky algorithm we
can get a 4.099-approximation algorithm in O(n210000

) time.

Algorithm C

Define metric c ′′ by c ′′(v , w) := min{c(v , w), uf
u+f

}

1. Compute a tour F for D in (V , c ′′) with some
γ-approximation algorithm.

2. Remove the longest edge of F .

3. Remove all edges e of F with c(e) ≥ uf
u+f

.

4. Split up overloaded components of the remaining forest as in
algorithm A.

Theorem
Algorithm C has perfomance ratio 3γ.

Using Christofides’ TSP approximation algorithm we get a
4.5-approximation algorithm in O(n3) time.

Comparison of the three approximation algorithms

� Algorithm A computes a minimum spanning tree.

� Algorithm B calls the Robins-Zelikovsky algorithm.

� Algorithm C calls Christofides’ algorithm.

� Then each algorithm deletes expensive edges and splits up
overloaded components.

algorithm metric perf.guar. runtime

A (R2, �1) 4 O(n log n)
A general 5 O(n2)

B general 4.099 O(n210000
)

C general 4.5 O(n3)

Experimental Results

Algorithm A on six real-world instances:

inst1 inst2 inst3 inst4 inst5 inst6

terminals 3675 17140 45606 54831 109224 119461
MST length 13.72 60.35 134.24 183.37 260.36 314.48

t ′ 117 638 1475 2051 3116 3998
Lr 8.21 31.68 63.73 102.80 135.32 181.45

Lr + Lf 23.07 112.70 251.06 363.28 531.05 689.19

facilities 161 947 2171 2922 4156 5525
service cost 12.08 54.23 101.57 159.93 234.34 279.93

total cost 32.52 174.50 377.29 531.03 762.15 981.61

gap (factor) 1.41 1.55 1.59 1.46 1.44 1.42

Reduction of power consumption

Algorithm A on four chips, compared to the previously used
heuristic:

chip Jens Katrin Bert Alex

technology 180nm 130nm 130nm 130nm
clocktrees 1 3 69 195
total # sinks 3805 137265 40298 189341

largest instance 375 119461 16260 35305

power (W, old) 0.100 0.329 0.306 2.097
power (W, new) 0.088 0.287 0.283 1.946

difference −11.1% −12.8% −7.5% −7.2%

527

Some Open Problems

� Close the gap between 1.46 and 1.52 for the approximability
of Uncapacitated Facility Location.

� Find better lower bounds than 1.46 for capacitated problems
(such as CFL).

� Is Universal Facility Location really harder than CFL?

� Improve the approximation ratio for the problem with service
capacities (in (R2, �1), with a practically efficient algorithm).

� In some real-world instances, there exists an interval graph on
the terminals, and we have to partition this graph into cliques.
Is there an approximation algorithm for the resulting problem?

� What other interesting problems combining facility location
with network design, or routing, can be approximated?

� What about multi-stage extensions?

Further Reading

� J. Vygen. Approximation Algorithms for Facility Location
Problems (lecture notes, with complete proofs and references).
Can be downloaded at
http://www.or.uni-bonn.de/~vygen

� B. Korte, J. Vygen. Combinatorial Optimization: Theory and
Algorithms (Chapter 22). Springer, Berlin, third edition 2006.
Also available in Japanese!

� J. Maßberg, J. Vygen. Approximation Algorithms for Network
Design and Facility Location with Service Capacities.
Proceedings of the 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization
Problems (APPROX 2005); LNCS 3624, Springer, Berlin
2005, pp. 158–169

528

Algorithms for a Networked World

Magnús M. Halldórsson

Dept. of Computer Science, University of Iceland

Abstract:

The realization of Moore�s law has ensured that computing ability has increased

dramatically in our times. The law has held not only for processor power and quantity of

internal and external memory, but also for the ability to communicate information. The

resulting impact on essentially all spheres of society and life has been nothing less than

astounding.

Along with increased connectivity, we are also seeing the introduction of a wide range of

compact computing entities, possibly mobile and often non-statically connected into

largely wireless networks. The explosion of the web and the internet as not only a source

of information but also as a resource of computational intelligence, is poised to lead to a

dramatic change in the way we view computation. The traditional view of an algorithm

with full random access to its input, operating serially on a single processor, is on the

retreat.

In comparison, it can be said that changes in CS theory are less dramatic. Surely, each

year and each conference brings new topics, new subjects, new treatments, and new

directions. Yet, we can also easily detect a great deal of consistency [one that is certainly

comforting at times], and a measured pace of change. Are we theoreticians then by nature

reactionaries? One of the theses of this talk is that the objects of study in CS theory are

inherently fundamental and long-lasting, applying also to this Panopticon world of global

and ubiquitous computing.

Yet, we cannot rest on our laurels, with self-satisfied smugness. We must find ways to

treat the new means, ways, possibilities and limitations of computation in a systematic

framework that continues to provide applied fields with rigorous guidance. The aim of

the talk is to discuss some objectives, measures, and paradigms that address the changing

nature of computing in a networked world. The concrete examples discussed will mostly

relate to problems of coloring and packing, the topics of main focus of the speakers

research.

This will by no means be a comprehensive overview � in fact, it is unlikely to be even a

balanced introduction. Instead, the hope is that by posing some questions, some members

of the audience will eventually be prompted to find some of the answers.

529

1

1

Algorithms for Sequence
Manipulation and Related Problems

D. T. Lee

Institute of Information Science
Academia Sinica

&
Department of Computer Science and Information Engineering

National Taiwan University

2006 NHC Spring School Workshop March 2-3, 2006

2/92

Combinatorial Optimization

n The combinatorial optimization typically
deals with problems of maximizing or
minimizing a function of one or many
variables subject to a number of inequality
constraints.

n Consider two categories of problems on
sequences:
n Optimization Problems
n Range Search Problems

3/92

Optimization on Sequences

n Given a sequence A = a1, a2, …, an, an
optimization problem on sequences is to
maximize or minimize some function, such
as: sum of subsequence, density of
subsequence, etc., with some constraints,
such as: length, weight, etc.

4/92

Range Search Problems

n A range (query) search problem is typically
to report the subset S' to count the total
number of elements of the subset S' of a set
S contained in a query range Q subject to
certain conditions.

530

2

5/92

Range Search on Sequences

n Given a sequence A = a1, a2, …, an, and a
range query, we want to report or count
some subsequences of A contained in the
query range satisfying certain conditions.

6/92

Focus of Talk
n Focus on the optimization and range search

problems on sequences, give a survey and present
efficient problem-solving techniques for them.

n Many elegant and sometimes sophisticated
techniques have been developed and applied to
these problems in the past decade.

n Key: To exploit the combinatorial nature of these
problems to obtain simpler and faster algorithms
or algorithms with faster query time for range
search problems.

7/92

Notations 2

n Let A be a sequence of n real numbers
a1, a2, …, an.

n segment of A(i, j) is a consecutive
subsequence ai, ai+1, …, aj

n width w(i, j) of A(i, j): j - i + 1
n density d(i, j) of A(i, j):

(ai + ai+1 + … + aj)/w(i, j)
n sum s(i, j) of A(i, j): ai + ai+1 + … + aj.

8/92

Notations 1

n Given two positive real numbers ℓ and u with
ℓ ≤ u, we say A(i, j) = ai, ai+1, …, aj of A is
feasible if ℓ ≤ w(i, j) = j-i+1 ≤ u.

n rank r(x, S) of an element x in a set S:
the number of elements in S no greater than x,
i.e., r(x, S) = |{y | y ∈ S, y ≤ x}|.

531

3

9/92

Optimization Problems on
Sequences

n Sum of subsequence,
n Density of subsequence
n Selection of subsequence
n subject to constraints on length, or weight

of subsequences.

10/92

Max-Sum Segment Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u.

n Output:
n a segment A(i*, j*) with maximum sum over all

O((u-ℓ) n) feasible segments such that s(i*, j*)
= max{ s(i, j) | A(i, j) is feasible.}

11/92

Example – Max-Sum Segment
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4

n Output: s(4, 5) = 11

n Sums of all feasible segments:
s(1, 2) = -1, s(1, 3) = -3, s(1, 4) = 2
s(2, 3) = -6, s(2, 4) = -1, s(2, 5) = 5
s(3, 4) = 3, s(3, 5) = 9
s(4, 5) = 11

12/92

Application: Max-Sum Segment

n Finding the most rich GC-rich region in a
DNA sequence can be cast as a maximum-
sum segment problem.

n Input sequence A corresponds to a given
DNA sequence, where ai = 1 if the
corresponding nucleotide in the DNA
sequence is G or C, ai = 0 otherwise.

n Output feasible segment corresponds to the
GC-rich region of the given DNA sequence.

532

4

13/92

Applications in Bioinformatics
n Useful applications in bioinformatics including

n finding tandem repeats, which are commonly
used to map disease genes

n locating DNA segments with rich CG content
is a key step in gene finding and promoter
prediction

n low complexity filter, which is most
commonly applied in sequence database search.

14/92

Max-Sum Segment Problem
n Prior Results:

n O(n) time for the special case ℓ = 1, u = n
Gries [Science of Computer Programming’82]

n O(n) time for the special case ℓ = 1, u = n
Bentely. [Commun. ACM ’84]

n O(n) time. Lin, Jiang and Chao. [Journal of
Computer and System Sciences ’02]

n O(n) time. Fan, Lee, Lu, Tsou, Wang, and Yao.
[CIAA ’03]

15/92

Technique Used – Lin et al.

n Lin, Jiang and Chao gave an O(n) time
algorithm based on a clever technique
called left-negative decomposition.
J. of Computer and System Sciences ’02

16/92

Lin et al. Algorithm [‘02]

n A sequence A= a1, a2, …, an is left-negative iff
the sum of each proper prefix a1, a2, …, ai is
negative or zero for all 1 ≤ i ≤ n-1.

n A partition of the sequence A= A1A2…Ak is
minimal left-negative if each Ai, 1 ≤ i ≤ k, is
left-negative, and, for each 1 ≤ i ≤ k-1, the
sum of Ai is positive.

533

5

17/92

Example – left-negative sequence

n The sequence -4, 1, -2, 3 is left-negative.
n The sequence -5, 3, 4, -1, 2, -6 is not left-negative.
n The partition (-5, 3, 4), (-1, 2), (-6) is minimal left-

negative.
n For every suffix of a sequence we can find a minimal

left-negative partition.
n (3)(4)(-1,2)(-6); (4)(-1,2)(-6); (-1,2)(-6), (2)(-6); (-6)

are all possible minimal left-negative partitions

18/92

Example – left-negative sequence
n Lemma: Every sequence of real numbers can be

uniquely partitioned in linear time into blocks of
minimal left-negative segments, and the right end of
a maximum sum segment must be at a block
boundary.

n (-5, (3), (4)), (-1, (2)), (-6)
n Prefix sum sequence S= 0, -5, -2, 2, 1, 3, -3
n Sum(1st) = 2, Sum(2nd) = 1, Sum(3rd) = -6
n Max-Sum segment is a2, a3 a4 a5 of sum s5 - s1 = 8

19/92

Max-Density Segment Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u.

n Output:
n a segment A(i*, j*) with maximum density over

all O((u-ℓ) n) feasible segments such that
d(i*, j*) = max{ d(i, j) | A(i, j) is feasible.}

20/92

Example –Max-Density Segment

n Input:
n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4

n Output: d(4, 5) = 11/2

n Densities of all feasible segments:
d(1, 2) = -1/2, d(1, 3) = -1, d(1, 4) = 1/2
d(2, 3) = -3, d(2, 4) = -1/3, d(2, 5) = 5/4
d(3, 4) = 3/2, d(3, 5) = 3
d(4, 5) = 11/2

534

6

21/92

Application: Max-Density Segment

n Finding the segment with the largest GC-ratio in a
DNA sequence can be cast as a maximum-density
segment problem.

n Input sequence A corresponds to the given DNA
sequence, where ai = 1 if the corresponding
nucleotide G or C; and ai = 0 otherwise.

n Output feasible segment corresponds to the region
with the largest GC-ratio.

22/92

Application in Bioinformatics

n Maximum-Density Segment Problem arises from the
investigation of non-uniformity of nucleotide
composition within genomic sequences, which was
first revealed through thermal melting and gradient
centrifugation experiments.

n Researchers observed that the compositional
heterogeneity is highly correlated to the GC content
of the genomic sequences, and this motivates finding
the segment with the largest GC-ratio.

23/92

Max-Density Segment Problem
n Prior Results:

n O(n ℓ) time algorithm for the special case u = n
Huang. [Computer Appl. in the Biosciences ’94]

n O(n log ℓ) time algorithm for the special case u = n
Lin, Jiang, and Chao. [J. Comp. and Syst. Sci. ’02]

n O(n log (u-ℓ)) time algorithm. Goldwasser, Kao, and
Lu. [J. of Comp. and Syst. Sci. ’03]

n O(n) time algorithm. Kim. [IPL ’03]– has a flaw
n O(n) time algorithm. Chung and Lu. [SICOMP ’04]

24/92

Technique Used – Kim. IPL ’03 3

n Construct a point set in the plane P = {pk | pk =
(k, sk), k = 1, 2, …, n, where sk = a1+a2+…+ak
is the prefix sum of sequence A.

n Construct lower hull of Pj = {pj-ℓ, pj-ℓ+1, …, pj-u}
and find tangent segment tj from pj to Pj.

n The tangent segment of the maximum slope is
the maximum-density segment of A.

535

7

25/92

Technique-- Kim. IPL ’03 2

Pj

pi = ptj

pj

pj-u

pj-ℓ

),1(
...1

jid
ij

aaa

ij

pp ijjij
+=−

+++
=−

− −

26/92

Technique-- Kim. IPL ’03 1

pi-1 = ptj-1

pj-1

pj-u

pj-ℓ

For each j,
(1) we need to do tangent query from pj

If pj lower than the line ptj-1
pj-1 we do nothing

If pj higher than the line ptj-1
pj-1 we do tangent query from pj

(2) we then delete pj-u from Pj and insert pj-ℓ+1 into Pj to obtain Pj+1

pj-u+1

pj-ℓ+1

pj

pj

27/92

Technique– Chung & Lu

n Based on a clever observation that
d(x, y), d(y+1, z) and d(x, z) with x ≤ y < z are
related as follows:

d(x, y) ≤ d(y+1, z)
⇔ d(x, y) ≤ d(x, z)
⇔ d(x, z) ≤ d(y+1, z)

n Chung and Lu, SIAM Journal on Computing ’04.

28/92

k-Maximum Sums Problem
n Input:

n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n k feasible segments such that their sums are the

k largest over all O((u-ℓ) n) feasible segments.

536

8

29/92

Example – k-Max. Sums
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n k = 3

n Output: s(4, 5) = 11, s(3, 5) = 9 , s(2, 5) = 5

n Sums of all feasible segments:
s(1, 2) = -1, s(1, 3) = -3, s(1, 4) = 2
s(2, 3) = -6, s(2, 4) = -1, s(2, 5) = 5
s(3, 4) = 3, s(3, 5) = 9
s(4, 5) = 11

30/92

k-Maximum Sums Problem

n Prior Results: (special case ℓ = 1, u = n)
n O(kn) time algorithm for the Bae and Takaoka.

[Int’l Symp. on Parallel Architectures,
Algorithms and Networks ’04]

n O(min {k + n log2n, nk1/2) time algorithm
Bengtsson and Chen. ISAAC 2004

n O(n + k log(min{n, k})) time algorithm
Cheng, Chen, Tien, and Chao. ISAAC 2005

31/92

Technique Used – Cheng et al.

n Prune-and-Search technique
n There are n subsequences A(1, n), A(2, n), …,

A(n, n) of A, where A(i, n) = ai, ai+1, …, an

n At iteration i, it prunes away a fraction (½) of
the n/2i-1 subsequences, so that no more than
2ik/n segments are in the set of feasible k-
maximum sum segments.

n Cheng, Chen, Tien, and Chao. ISAAC 2005.

32/92

Random Sampling Technique

n Recent Result:
n We obtain an O(n log (u - ℓ) + h) time randomized

algorithm based on random sampling technique.
Lin and Lee. ISAAC 2005

n Solve the kth-Sum Selection Problem using
random sampling technique.

n After finding the kth largest feasible segment s*,
we can find k largest sum segments by sum range
search algorithm, introduced later.

537

9

33/92

k-Maximum Densities Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n the k segments such that their densities are the

k largest over all O((u-ℓ) n) feasible segments.

34/92

Example – k-Max Densities
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n k = 3

n Output: d(4, 5) = 11/2, d(3, 5) = 3, d(2, 5) = 5/4

n Densities of all feasible segments:
d(1, 2) = -1/2, d(1, 3) = -1, d(1, 4) = 1/2
d(2, 3) = -3, d(2, 4) = -1/3, d(2, 5) = 5/4
d(3, 4) = 3/2, d(3, 5) = 3
d(4, 5) = 11/2

35/92

Random Sampling Technique

n Recent Result:
n We obtain an O(n log (u - ℓ) + h) time randomized

algorithm based on random sampling technique.

n Solve the kth-Density Selection Problem using
random sampling technique.

n After finding the kth largest density d*, we can
find k largest density segments by density range
search algorithm, introduced later.

36/92

kth-Sum Selection Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n the segment A(i*, j*) over all O((u-ℓ) n)

feasible segments such that the rank of the sum
s(i*, j*) in the set of sums of possible feasible
segments is k.

538

10

37/92

kth-Sum Selection Problem
n Prior Result:

n O(n log n) time randomized algorithm for the
special case ℓ = 1, u = n based on random
sampling technique by Lin and Lee. ISAAC
2005

n New results:
n We obtain an O(n log (u - ℓ)) time randomized

algorithm based on random sampling technique.

38/92

Technique – Random Sampling
n Contract initial interval [sl, sr] = (-∞, ∞) into a smaller

subinterval [sl', sr'] such that it contains the kth largest
feasible segment s* and the subinterval [sl', sr'] contains
at most O(n2/n1/2)= O(n3/2) feasible segments.

n Contract the interval [sl', sr'] into a smaller subinterval
[sl", sr"] such that it contains not only s* but also at
most O(n3/2/n1/2)= O(n) feasible segments.

n If both steps are successful, output all the segments in
[sl", sr"] and find the solution segment with an
appropriate rank, whose sum is s*, by using any
standard selection algorithm.

39/92

kth-Density Selection Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n the segment A(i*, j*) over all O((u-ℓ) n)

feasible segments such that the rank of the
density d(i*, j*) in the set of densities of
possible feasible segments is k.

40/92

Sum Finding Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a real number s*

n Output:
n the segment over all O((u-ℓ) n) feasible segments

such that its sum s(i*, j*) is closest to s*

539

11

41/92

Example – Sum Finding
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n s* = 1.5

n Output: s(1, 4) = 2

n Sums of all feasible segments:
s(1, 2) = -1, s(1, 3) = -3, s(1, 4) = 2
s(2, 3) = -6, s(2, 4) = -1, s(2, 5) = 5
s(3, 4) = 3, s(3, 5) = 9
s(4, 5) = 11 Open

42/92

Density Finding Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a real number d*

n Output:
n the segment over all O((u-ℓ) n) feasible segments

such that its density d(i*, j*) is closest to d*

43/92

Example – Density Finding
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n d* = 1.5

n Output: d(3, 4) = 3/2

n Densities of all feasible segments:
d(1, 2) = -1/2, d(1, 3) = -1, d(1, 4) = 1/2
d(2, 3) = -3, d(2, 4) = -1/3, d(2, 5) = 5/4
d(3, 4) = 3/2, d(3, 5) = 3
d(4, 5) = 11/2

44/92

Density Finding Problem

n Result to date:
n We obtain an O(n log2 (u-ℓ)) time and O(n log (u-ℓ))

space algorithm based on maintaining a data
structure of the left branch of an upper hull.

540

12

45/92

Technique – maintaining a data
structure of left branch of upper hull 3

n We first reduce this problem to a geometric slope
finding problem

n Input:
n Given a set of points P = {p0, p1, …, pn} in R2,

and
n two integers ℓ, u

n Output:
n a feasible line segment s(i, j) that minimizes the

slope m(i, j), where m(i, j) ≥ 0.

46/92

Technique – maintaining a data
structure of left branch of upper hull 2

n Let xi=a1+ …+ai, i=1, 2, …, n, and let x0=0.
n Let P = {x0, x1, …, xn}.
n Let Pj = {xj-u, xj-u+1, …, xj-ℓ}.
n Let Pj

+= {pi∈Pj | m(i, j) ≥ 0}.
n Let ptj

be the tangent point of the upper hull
UH(Pj

+) from pj.
n Lemma: ptj

must be a hull point on the left
branch of the upper hull UH(Pj

+).

47/92

Technique – maintaining a data
structure of left branch of upper hull 1

n m(tj, j) = min {m(i, j) | pi ∈ Pj
+ } = m(ij

*, j).
n Find m(tj, j) for each j and take the minimum.

ptj = pij*

Pj
+

pj

pj-u

pj-ℓ

UH(Pj
+)

48/92

Generalization to Higher Dimen.

n We can generalize the optimization problems on
sequences to higher dimensional space.

n Given an m×n matrix, the maximum subarray
problem is to find a rectangular subarray with the
largest possible sum among all such subarrays.

n For example, the 2D maximum-sum segment
problem with ℓ = 1, u = n, referred to as maximum
sum subarray problem, has many applications in
graphics and data mining.

541

13

49/92

Range Search Problems

n Single-shot mode query: O(n) query time is
optimal for this query mode.

n Repetitive mode query: Preprocessing
allowed, and obtaining an o(n) time query
time is the goal. A trade-off between
storage and query time is expected.

50/92

Sum Range Search Problem
single-shot mode

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers sl, sr with sl ≤ sr.

n Output:
n the segments over all O((u-ℓ) n) feasible

segments such that their sums are between sl
and sr.

51/92

Sum Range Search Problem
single-shot mode

n Related work :
n O(n log (u-ℓ) + h) time algorithm, where h is

the output size. Lin and Lee. ISAAC 2005
n Straightforward

n Ordinary binary search trees (order-statistic tree)

52/92

Technique – maintaining an
order-statistic tree 2

n prefix sum xi of the sequence A,
xi = a1+ …+ai, i=1, 2, …, n, and let x0 = 0.

n Let P = {x0, x1, …, xn}.
n Let Pj = {xj-u, xj-u+1, …, xj-ℓ}.

n Maintain an order-statistic tree T(Pj) on
Pj. by scanning the sequence of prefix sums.

542

14

53/92

Order-Statistic Tree

n An order-statistic tree is a balanced binary
search tree with size information, size[z],
stored in each node z of the tree, and
containing the total number of nodes in the
subtree rooted at z.

n For an internal node z, size[z] = size[left[z]]
+ size[right[z]] + 1

n For a leaf node z, size[z]= 1.

54/92

Order-Statistic Tree: Example

7
8

5
5

3
3

6
1

8
2

9
1

1
1

4
1

key

size

55/92

Technique – maintaining an
order-statistic tree 1

n To solve this problem, it suffices to iterate on each
j finding all xi ∈ Pj such that sl ≤ xj - xi ≤ sr.

n At each iteration j,
n maintain T(Pj) dynamically such that we can

find all the numbers xi ∈[xj - sr, xj - sl] by
binary search in O(log (u-ℓ) + hj) time

n delete xj-u and insert xj-ℓ+1 into T(Pj) to obtain
T(Pj+1) in O(log (u-ℓ)) time.

56/92

Basic Lemmas

n The rank r(x, Pj) = | {y | y ∈ Pj, y ≤ x} | of
any x not necessarily in Pj can be
determined using T(Pj) in O(log n) time.

n An element in T(Pj) of a given rank can be
found in O(log n) time.

n Both insertion and deletion operations in
T(Pj) can be done in O(log n) time.

543

15

57/92

Density Range Search Problem
single-shot mode

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers dl, dr with dl ≤ dr.

n Output:
n the segments over all O((u-ℓ) n) feasible

segments such that their densities are between
dl and dr

58/92

Density Range Search Problem
single-shot mode

n Recent result:
n We obtain an O(n log (u-ℓ) + h) time algorithm,

where h is the output size.
n Use problem transformation

n Maintain a priority search tree T(Pj) on Pj.

59/92

Problem Transformation

n Transform the Density Range Search Problem
into a geometric slope range query problem as
follows.

n Consider the point set P = {p0, p2, ..., pn} in R2

based on the prefix sums of the sequence A, where
pi = (xi, yi) = (i, a1 + a2 + … + ai), i=1, 2, ..., n and
p0 = (0, 0).

n Slope of segment connecting pi and pj corresponds
to density d(i+1,j)

60/92

Geometric Slope Range Search

n Input:
n A point set P = {p0, p2, ..., pn} in R2,
n two integers ℓ, u
n two real numbers dl, dr,

n Output:
n find all feasible line segments s(i, j) such that

their densities m(i, j) satisfying dl ≤ m(i, j) ≤ dr.

544

16

61/92

Point-Line Duality Transform

n We can further transform this geometric
slope range search problem into its dual
problem, by mapping a point pi = (xi, yi)
into its dual line ℓi: y = xix - yi.

n For any two points pi, and pj, their
corresponding dual lines ℓi, ℓj will intersect
at the x-coordinate xij = (yj - yi)/(xj - xi)
which equals m(i, j).

62/92

Dual of Geometric Slope Range
Search– Intersection Search

n Input:
n a set of lines L = {ℓ0, ℓ1 ,..., ℓn} in R2, where

each line ℓi: y = xix - yi,
n two integers ℓ, u
n two real numbers dl, dr,

n Output:
n find all intersection points pij=(xij, yij) of two

feasible dual lines ℓi, ℓj such that their abscissae
xij lie in [dl, dr].

63/92

Intercept to Point Transform

n Let uk = xkdl - yk denote the y-intercept of
line ℓk at dl and vk = xkdr – yk .the y-intercept
of line ℓk at dr

n Denote Q = {q0, q1 ,..., qn} ,
where qk = (uk, vk) = (xkdl - yk, xkdr - yk).

n Let Qj ={qj-u,qj-u+1,..., qj-l} = Qj-u, j-l

64/92

n By the monotonically increasing property of
the slopes of lines in L, i.e., the slope of ℓj is
larger than each ℓi∈Lj for i < j, any dual line
ℓi in Lj intersects ℓj in [d1, dr] iff ui ≥ uj and
vi ≤ vj.

545

17

65/92d1 dr

uj-l

uj

uj-u

vj

vj-u

vj-l

lj

qj-l

qj-u

Rj

qj

66/92

Algorithm for Intersection Search

n The Intersection Search problem is now
equivalent to an orthogonal range search of
the form Rj = [uj, ∞) ×(-∞, vj] to report all
the points of Qj which lie in Rj for each j = 1,
2, …, n.

n We use a data structure called priority
search tree to support the above orthogonal
range queries in logarithmic time.

67/92

Priority Search Tree - Definition

n A priority search tree for a set of ordered
pairs {(xi, yi) | i = 1, 2, …, n} is a hybrid of
a heap (say in y) and a balanced binary
search tree (say in x) used for orthogonal
range query where at least one of sides of
the query range is unbounded.

68/92

Priority Search Tree - Construction

n The priority search tree T({Pj}) can be constructed in
O(n log n) time using any balanced binary search
tree as follows:
n For a given set S of points Pj, if S is empty, then the

priority search tree T(S) is null.
n Otherwise, let point Pi be the point in S with the smallest

y-coordinate and xm be the median of the x-coordinates of
the remaining point set S\{Pi}. Let Sl = { Pk (xk, yk) ∈
S\{Pi} | xk ≤ xm } and Sr = { Pk (xk, yk) ∈ S\{Pi} | xk > xm }.

n The root of T(S) contains Pj (and key xm) and its left child
is T(Sl) and right child is T(Sr).

546

18

69/92

Priority Search Tree: Example

p4

p3

p2

p1

p5

p6

p6

p1 p4

p2 p3 p5

70/92

Sum Range Search Problem
repetitive mode -- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers sl, sr with sl ≤ sr

n Online Query:
n for an intervals [sl, sr], reports the segments

over all O((u-ℓ) n) feasible segments such that
their sums are between sl and sr.

71/92

Sum Range Search Problem
repetitive mode

n Work to Do:
n Try to preprocess A into an appropriate data

structure such that the query time is o(n + h).

72/92

Density Range Search Problem
repetitive mode -- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers dl, dr with dl ≤ dr.

n Online Query:
n for an intervals [dl, dr], reports the segments over all

O((u-ℓ) n) feasible segments such that their densities
are between dl and dr.

547

19

73/92

Density Range Search Problem
repetitive mode

n Work to Do:
n Try to preprocess A into a nice appropriate

structure such that the query time is o(n + h).

74/92

Aggregate Range Search Problem
-- definition

n Given S and a range query Q, compute an
aggregate function on the subset S'=S∩Q
An aggregation function can be Min, Max,
Sum, Count, Mean, Median (of S’), etc.

75/92

Range Minimum Search Problem
-- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an.

n two real numbers i, j, i ≤ j.

n Online Query:
n for each query interval [i, j], reports the index k

with i ≤ k ≤ j such that ak achieves minimum.

76/92

Range Minimum Search Problem
-- example

RMSA(3, 7) = 4

3 1634 137 19 10 128 5

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

RMSA(1, 6) = 2

Sequence A

548

20

77/92

Range Minimum Search Problem

n Related work :
n O(n) preprocessing time and O(1) query time

under the unit-cost RAM model. -- Gabow,
Bentley, and Tarjan. STOC 1984

n O(n) preprocessing time and O(1) query time
under the unit-cost RAM model. -- Bender and
Colton. In Proc. the 4th Latin American
Symposium on Theoretical Informatics 2000

78/92

Technique Used
n ±1RMS problem: adjacent elements of the input sequence A

differ by +1 or -1
n Least Common Ancestor (LCA) problem reduces to ±1RMS

problem by depth first search traversal of input tree T of
LCA.

n An (O(n log n), O(1))-time table-lookup algorithm for RMS
n Using the above algorithm on a smaller array A' obtained by

partitioning A into 2n/logn blocks, each of size (log n)/2 and
making use of the ±1 property, we can solve ±1RMS in
(O(n), O(1))-time.

n RMS reduces to LCA building the Cartesian tree of A.

79/92

Problem Reduction

n LCA problem reduces to ±1RMS problem
n Observation: The LCA of nodes u and v in

T is the lowest node encountered between
the visits to u and to v during a depth first
traversal of T, where the depths of the nodes
in T differ by exactly one.

80/92

(O(n log n), O(1))-time
Algorithm for RMS

n Table-lookup algorithm
n Pre-compute the n by log n matrix M[i, j],

1 ≤ i ≤ n, 0 ≤ j ≤ log n
M[i, j] = RMS(i, i + 2j)

n For any RMS(i, j) query:
n Let k = max {r| 2r < j-i+1}
n RMS(i, j) = min{M(i, k), M(j-2k+1, k)}

549

21

81/92

Problem Reduction
n RMS can be reduced to LCA by building a

Cartesian tree of A.
n The root of a Cartesian tree is the minimum

element of the array. The root is labeled with
the position k of this minimum element.

n The left and right children of the root are the
roots of recursively constructed Cartesian trees
of the left and right subarrays respectively.

82/92

Range Maximum-Sum Segment
Search Problem -- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an to

be preprocessed.
n real numbers i, j, i ≤ j and k, l, k ≤ l.

n Online Query:
n for two query intervals [i, j] and [k, l], reports

A(x, y) with i ≤ x ≤ j and k ≤ y ≤ l that
maximizes s(x, y).

83/92

Range Maximum-Sum Segment
Search Problem

n Related work :
n O(n) preprocessing time and O(1) query time

under unit-cost RAM model by Chen and Chao.
ISAAC 2004

84/92

Technique Used

n Let S = s1, s2, …, sn be the sequence where
sk = a1+a2+…+ak is the prefix sum of sequence A.

n Disjoint case: by min= RMinS(S, i, j),
max= RMaxS(S, k, l), Ans.= smax - smin

n Overlapping case: Divide into 3 possible cases and
take minimum of the outputs of these three cases.
n [i, k] and [k, l]: by RMinS(S, i, k), RMaxS(S, k, l)
n [k, j] and [j, l]: by RMinS(S, k, j), RMaxA(S, j, l)
n [k, j] and [k, j]: by RMSSS(k, j), a special case!

550

22

85/92

Range Maximum-Sum Segment
Search Problem- A Special Case

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two real numbers i, j, i ≤ j.

n Online Query:
n for any query interval [i, j], reports A(x, y) with

i ≤ x ≤ y ≤ j such that A(x, y) is the maximum-
sum segment of A(i, j).

86/92

Range Maximum-Sum Segment
Search Problem- A Special Case

n Related work :
n O(n) preprocessing time and O(1) query time

under the unit-cost RAM model by Chen and
Chao. ISAAC 2004

n They solved RMSSS by using RMinS and
RMaxS.

87/92

Algorithm
n Let C[⋅] be the array of prefix sum of A.
n Define: left bound L[k] of A at index k to be the

largest index l with 1≤ l ≤k-1 such that C[l] ≥ C[k],
and L[k]=0, if no such l exists.

n Define: partner P[k] of A at index k to be the
largest index p with L[k]+1 ≤ p ≤ k that minimizes
C[p-1].

n A(P[k], k) is a candidate segment of A at index k
with sum M[k] = s (P[k], k), for 1≤ k ≤ n.

88/92

RMax-SumSegSearch
n Algorithm of RMSSS(A, i, j)

r ← RMaxS(M, i, j), i.e. M[r] is maximum
if P[r] < i then

p ← RMinS(C, i-1, r-1)+1
s ← RMaxS(C, i-1, r-1)+1
if C[r]-C[p-1] < M(s)
then output (P[s], s)
else output (p, r)

else output (P[r], r)

551

23

89/92

Range Maximum-Density Segment
Search Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n Online Query:
n for two intervals [i, j] and [k, l], reports A(x, y)

with i ≤ x ≤ j and k ≤ y ≤ l that maximizes
d(x, y).

90/92

Range Maximum-Density Segment
Search Problem- A Special Case

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two real numbers i, j, i ≤ j.

n Online Query:
n for any query interval [i, j], reports A(x, y) with

i ≤ x ≤ y ≤ j such that A(x, y) is the maximum-
density segment of A(i, j).

91/92

Generalization

n We can also generalize the above
aggregation range search problems to other
aggregation functions or consider the
dynamic range query problems which
support insertion, deletion, concatenation
operations.

92/92

Conclusion
n We considered optimization and range

search problems on sequences, gave a
survey and presented recent results for these
problems.

n Open problems
n Sum Range Search Problem (repetitive mode)
n Density Range Search Problem (repetitive mode)
n Range Maximum-Density Segment Search Problem
n Problems for which the elements are each chosen from

an (error) interval

552

���������
	 ���������������������������	 �������
��������	 ������ "!#�����
�$��%�

&(')+*�, -�."/10�2�-$3%4
5�6 -�*�*%7�*98(2�*%);:�<�, = > 5�6 ' = 4 6 =
?�4�' @�= > A ' , ."*98CB139, = > 7 *�*

D�E9F G HJI K L%M�F N9KPO NRQ S%T�U�L�K F G�I Q O F N%Q F;V%N%S W�I�K X�Y K�WCFZQ Y9N[TPY O N9K Y O N[Y;I F K�S \�]�G F Y ^�N%L�T�_�F G I;` O N
a b M�cCK S�I L�U�U�S%G K�O N%I F G K O S%N%IdY9N%M"M�F ^ F K O S%N%I�O NZeZ` ^ S9fC]�c�K O T�FdY9N%MZI F Y9G Q X�F I�O NPe"` ^ S9f�]�cCK O T�F9g�_9HPX%O I h9X%F G
\ Y E9S%G O K FdV9O N%M;S \C_�Y ^ Y9N�Q F M+I F Y9G Q XZK G F F I i�j�X%F�L�N�M�F G ^ H%O N�fZk�L�F I K O S%NZO N"K X%O I(K Y ^ VPO I lCK S�W(X�Y K�F m%K F N9K�Q Y9N
K X%O I�_�Y I O Q�G F I L%^ KCX%S9^ MPO NdM�O T�F N�I O S%NZ_�F H9S%N%M�S%N%F nZo N�S9K X%F G$WCS%G M�I g \ S%G$W(X�Y K�U�G S%_%^ F T�I�O N�Q S%TPU�L%K Y K O S%N�Y ^
f9F S%T�F K G H�Q Y9N"WCF�TPY O N9K Y O NZI S9^ L%K O S%N�I�F pZQ O F N9K ^ H;L�N%M�F G�O N%I F G K O S�N%I(Y9N%M"M�F ^ F K O S%N%IdS \�M�Y K Y9n
o N;K X%F�q�G I KdU�Y9G KdS \CK X%F�K Y ^ V�g�W�FPf9O E9FPY"G S%L�f%X"O N9K G S%M�L%Q K O S%NJK SZK X%O Id\ L�N%M�Y9T�F N%K Y ^CY9N%M;O TPU�S%G K Y9N9K

K S%U%O Q(Q Y ^ ^ F M�r M�H�N�Y9T�O Q�Q S%TPU�L%K Y K O S%N�Y ^�f9F S%T�F K G H%s�g9W(X%O Q X"X�Y I�_�F F N"F m%K F N%I O E9F ^ HZI K L%M�O F M"\ S%G�S E9F G�K X�G F F
M�F Q Y M�F I i"tJFZS%_9E%O S�L%I ^ HJM�SJN%S9K�X�Y E9F�K O T�FPK S+f9O E%FPY"Q S%TPU�G F X�F N%I O E9F"I L�G E9F H�` M�F I U%O K F"W(X�Y KdK X%FPK O K ^ F
I Y H%I c g%_�L%K�K X%FdU�L�G U�S%I FdO I(K S�U�G S E%O M�FdI S%T�F(F m�Y9T�U%^ F I�K S�O ^ ^ L�I K G Y K FdW(X�Y K�K H�U�F I�S \�U�G S%_%^ F T�I(X�Y E9F�_�F F N
I K L%M�O F MgW(X�Y K(K H�U�F IdS \�G F I L%^ K I�Y9G F�U�S9I I O _%^ F9g�Y9N%M;W�X�Y Kdf9F N%F G Y ^�K F Q X�N%O k�L%F I�Y9G F�Y E Y O ^ Y%_%^ F9iPu(L�G�\ S%Q L%I
O IdS%NP\ L%^ ^ H+M�H�N�Y9T�O Q�Y ^ f9S%G O K X�T�I�K X�Y K(X�Y E9F�f%L�Y9G Y9N9K F F M"K O T�FP_�S%L�N%M�I(\ S�G�Y9G _%O K G Y9G H+L�U�M�Y K F�I F k�L%F N%Q F I i
tJF�T�F N9K O S%N"K X%F�\ S9^ ^ S W�O N%f"G F I L%^ K I l

v�w S%G�x y z {%x |9x }�~9��y ~ }�|9�d� � ~ y � {9� }�|PS%GC� b MZ�%x9� }�zC� x � ~9z � x }�g%M�H�N�Y9T�O � Y K O S%N"W�O K X"U�S9^ H%^ S9f%Y9G O K X�T�O Q�L�U b
M�Y K F�K O T�FCO ICG F ^ Y K O E9F ^ H�F Y I H9g9_9HdM�O G F Q K ^ HZY9U�U%^ H%O N%f�I K Y9N%M�Y9G M�_�Y ^ Y9N%Q O N%f�K G O Q V9I�K S�f9F S%T�F K G O QCI F Y9G Q X
K G F F Id` I L%Q XZY I�G Y9N%f9F(K G F F ICS�G�I F f%T�F N9K�K G F F I c � \ S%G�K X%F I FdU�G S%_%^ F T�I g�G F I F Y9G Q X�O I�K X%L%I�Y ^ ^�Y9_�S%L%K�G F b
T�S E%O N%f�^ S9f%Y9G O K X�T�O QC\ Y Q K S%G I�� a � g a � g a � g a � � i�j�X%F(WCF ^ ^ b V%N%S W(N�M�H�N�Y9T�O Qd� b M+� x }�� � ��{9��� �$U�G S%_�^ F T
� a � g � g�� � Y ^ I S�q�K I�O N"K X%O I�Q Y K F f9S%G H9i

v1� O TPU%^ FZM�H�N�Y9T�O � Y K O S%NRI K G Y K F f9O F IZ` K X%FRr ^ S9f�Y9G O K X�T�O Q+T�F K X%S%M�s+Y9N�M[K X%FRr I k�L�Y9G F b G S�S9KdT�F K X%S%M�s%c
Y9G F�Y9U�U%^ O Q Y9_%^ F�K SZY�f9F N%F G Y ^$Q ^ Y I I�S9\��9� � x ����x � ~%� � �(� � ~ y � {ZU�G S%_%^ F T�I�� � � i

v�w S%G�I S%T�F�N�S%N b M�F Q S%TPU�S9I Y9_%^ FZU�G S%_�^ F T�I g$^ O V F"� b MR� �P~9� � � � zC� }�� � x � � }�|Z� � y � � �ZY9N%MJ� b M[� � }$� ~ y���y x �
| y ~ ����� }�|�g�M�H�N�Y9T�O � Y K O S%N+Q Y9N+I K O ^ ^�_�F�S%_%K Y O N%F MR_9H"G F M�L%Q O N%f+K X%F T�K SZM�F Q S%T�U�S9I Y9_%^ FPU�G S%_%^ F T�I
K X�G S%L%f%XZU�Y9G Y9T�F K G O Q�I F Y9G Q X;� a � � i

v�� f9F N%F G Y ^�K F Q X�N%O k�L%F�_9H�DCU�U%I K F O N+� a � � Q Y9N�I S9^ E9F�M�H�N�Y9T�O Q(TPY m b T�Y m b S%G�T�O N b T�O N b K H�U�F�U�G S%_%^ F T�I
^ O V FZ� � � {9y x ��~9z � ��� � x � � � z���~ � y�i � V F HZO M�F YZX%F G FdO I�K SZX�Y9N%M�^ F�M�F ^ F K O S%N%I�_9H"G F b O N%I F G K O S%N%I i

v�w S%G�I S%T�F�S9K X%F G�N%S%N b M�F Q S%TPU�S9I Y9_%^ F�U�G S%_%^ F T�I g�^ O V F�� b M;��� �9z {;� � � Y9N%M;y � � z ~ }�|9� ��� x }�}�� � z � � � z �"� � � g
U�S9^ H%^ S9f%Y9G O K X�T�O Q�M�H�N�Y9T�O � Y K O S%N"O I(N%S9K�V�N%S W�N�g�_�L%K�I L�_%^ O N%F Y9GdL�U�M�Y K F�K O T�F(O I(U�S9I I O _%^ F9i

v�w S%G�F E9F N[T�S%G F+Q X�Y ^ ^ F N%f9O N%f�U�G S%_%^ F T�I;` ^ O V FJ� b M1� ��~9� � � � z�� }�� � x � � }�|+y � � z ~ }�|9� � c g�T�O N b TPY m b K H�U�F
U�G S%_�^ F T�I�` ^ O V F�� b MJ� � � � y � z ��� � � � }�z � y9c g�Y9N%M"N%S%N b Q S%N9E9F mPS�U%K O T�O � Y K O S�N"U�G S%_%^ F T�I�` ^ O V F�� b MJ� ~ y |9� � z
� �(��z �Z� � y � � � c g%N%S%K X%O N%fPO I(V%N%S W�NZY K�Y ^ ^ g�F m%Q F U%K�O NZI U�F Q O Y ^�Q Y I F Id` I L%Q XZY ICK X%FdO N%I F G K O S%N b S%N%^ H"Y9N�M
S �PO N%F(I F K K O N%f9I cd� � � i

o NJK X%FZI F Q S%N%M[U�Y9G KdS \(K X%FPK Y ^ V�g�W�F�\ S%Q L%I�I U�F Q O q�Q Y ^ ^ H�S%NJK X%FZM�H�N�Y9T�O Q"� b MJ��x � z(x ��� �+U�G S%_%^ F T"g
Y9N�M;M�O I Q L%I I�O NRT�S%G F�M�F K Y O ^CY+N%F W�M�Y K YZI K G L%Q K L�G FZG F Q F N9K ^ H;M�O I Q S E9F G F MR_9H;K X%O IdI U�F Y9V F GP� � g$W(X%O Q X;O I

a
553

� ������� � �
	��� �� ������� � � ����� ��� � � �� ������� ������������	 � ��!� � �"� ��� ����� � ��� � � �#�$� � ��� %&	���� ��� �
� �#� ���$'(��� �) � ���
	� ������*�� �+� ��	�	 ��� �,� -�� � �,��� ��� � � �#��� � ����!����,.���� � � � � �0/ 1(�2�+� � ����) ���)2 � % � � ���2� � ����� % ��� ��� � � ����*�� �,� ���
� � �2!��43�� � ���)5� �,�6)���������� �+7 8)9� ����3�� -9���� �	 � ��!� � �4� :;�����+	�� � 3�� ������� �� ��� � ���<!��2=������ ���
����)
> � � ��� ?� � �4@ A B
����� ��� �����#�,)�� � �)��,� ���#��� ��C4/ D E :�������� � � F �)+��	�) � � ��� � ��������)4C4/ ����D�:�. ��� � �4� � ����*
����C4/ ����G�D�:�������� � � F �)6� 	�) � � ��� � ��������)6C4/ D E :�.���� � �4� � ����*�% ���������#� -��)4H,I0J������������ �K� �� ��� � ���
� � ��C4/ ����LMDM:�������� � � F �)9� ��� � � � � ���9� � ����*(C4/ ����NMDM:�������� � � F �)9)�� � � � ���9� � ����*
����)9C#/ ��� G D�:�.���� � �
� � �����+�����4� � � ����� .���� �,� ��3��� 3��)9� ��� ��)��+� � ��� 3�� ���5O ��� ����8)�� ��� � � PQ� � ��� ��� �6/ % �� � ��� ���Q=������ ��� (����)
> � � ��� ?� � �4@ A B : * ������)� � ���4)�� � � � ������!��6� � 8 � ��� � � � � �����,/ � ��� �+'(�� � � � �2@ A R B : * ����)+��� � ���#��� ����� � � � �$� ���� �
 � ���4O � ���,	� � ����P4����)9O � ����S � � �� � � � � PQ/ � �
� �Q@ A�A * T *MA U B : �

V ��� ����� ��)���!��4��� ��� � ����� ���4��	�	� � � � � � ������� %�) ��������� ��) � � �$� � � ��� � � � � ��� �4� ���$)�� � � ���#� %���� ����� � � � �
� ����� � � ����� * ����)6!��# � � � � ���4� �����$��	�� �6	�� ��!� � ����� �4� ������� � ���

W"X(Y X�Z&X
[�\�X(]

^ _ `�a b c�b d(e f g h&f i f j�k�l�b�m�f n o p�qr s t b u(v j�f w�x y�z�f i { | r } f y s g f j�e s g s } o g n x j�e�f j�k�x n r f }�} i x y f n x o j r b�~(� � � � � � ����� � � �_ � � � � � � � � � ��_ � � � b�� d
i r o�x j����
���#_ � � � b �
^ � `�l�b(� s j n i s v+f j�k+l�b(� f � s b<u s y o w } o r f ��i s�r s f g y z�x j�e } g o ��i s w r�� � r n f n x y | n o | k�v j�f w�x y$n g f j r { o g w�f n x o j�b2���

~
� � � � � � ����� � _ � � ��_ ��� � � ��_ � � � b
^ � `� �b���b��&g o k�f i�f j�k,¡
b�l f y o ��b&u
v j�f w$x y } i f j�f g&y o j ¢ s ��z p�i i b � j,� �
�(��� � � � b
^ � `�£�b�m#bM�&z�f j�b�¡�f j�k�o w r f w } i x j�e���z�f i { r } f y s g f j�e s g s } o g n x j�e���f j�k#y o j r n g p�y n x o j6o {�� ¤¦¥�� | i s ¢ s i r x j4n z�g s sk�x w s j r x o j r b�§�¨ ~
©ª���&«&� ��¬� � � ��� � � � ®�_ � � ¯ � � � � ��_ b�� d(i r o�x j����
���#_ � � � b �
^ � `�£�b&m#bM�&z�f j�b6u
v j�f w$x y } i f j�f g�y o j ¢ s �4z p�i i&o }�s g f n x o j r x j6j s f g | i o e f g x n z�w�x y�f w�o g n x ° s k4n x w s b#���&~�«�©��

� � � _ ��_ � ��� � ��_ b(� d
i r o�x j,� �
�(�,_ � � � b �
^ ® `�£�b�m#b��&z�f j�b&u
v j�f w$x y r p���e g f } z�y o j�j s y n x ¢ x n v�h�x n z�e s o w s n g x y(f }�} i x y f n x o j r b � j,� £(���2� � � � b
^ ¯ `�£�b�m#b��&z�f j�b$d<{ p�i i v�k�v j�f w�x y�f i e o g x n z�w¦{ o g } i f j�f g
h(x k�n z�b�±�� � � � ² � ²�«M� �(¬� � �
³�² � ��� ��� � � _ ¯ ��� ����� � � � b� d(i r o�x j�� o �(<� � ��_ b �
^ � `�£�b�m#b �&z�f j�b�� s w�x | o j�i x j s w$f x j n s j�f j�y s o {&e s o w s n g x y
o } n x w�f�f j�k�w s f r p�g s r b�§�¨ ~(©;���&«&� ��¬� � � � � � � ¯ � � �

¯�_ ® ��� � � � b�� d(i r o�x j�����u�d<� � � � b �
^ � `�£�b�m,b��&z�f j�bMu
v j�f w$x y�k�f n f r n g p�y n p�g s r { o g�� | k�y o j ¢ s �$z p�i i r f j�k�� | k$j s f g s r n
j s x e z ��o g&´ p s g x s r b � j�����u�d� � � ® b
^ _ � `�µ�b | l�b��&z�x f j�e�f j�k�¡
b�£Mf w$f r r x f�b�u
v j�f w$x y�f i e o g x n z�w r x j�y o w } p�n f n x o j�f i�e s o w s n g v b�¶�� � � ��¨ ·M·M·���� � � _ ��_ � �_ � � ��� _ � � � b
^ _ _ `�c�b(¸�b(�&i f g t r o jQf j�kQa b&¹9b���z�o g b<d }�} i x y f n x o j r o {�g f j�k�o w r f w } i x j�e,x j6y o w } p�n f n x o j�f i�e s o w s n g v � � � b±�� � � � ² � ²�«M� ��¬� � �M³(² � ������� � � ¯ � � ��_ ��_ � � � b
^ _ � `�u�b º }�}�r n s x j�b$u(v j�f w�x y�º�p�y i x k s f j,w�x j�x w�p�w r } f j�j�x j�e�n g s s r f j�k s � n g s w$f�o {&��x j�f g v�{ p�j�y n x o j r b�±�� � � � ² � ²«&� ��¬� � �&³�² � �$� � _ � � _ _ _ ��_ � � ��_ � � � b�� d(i r o�x j����
���#_ � � � b �
^ _ � `�l�b�m�f n o p�qr s t b�¸�x j s f g�o } n x w$x ° f n x o j�´ p s g x s r b�����~
� � � � � � ����� ��_ ��� � � � � � � � ��_ � � � b
^ _ � `�c�b�m s z�i z�o g j�b<±�� � �6§�� � � � � ² ��� »�¼4~(� � � � � � ������½ ¾#©# � � � ¿ ±�� ��² » � � � »�� �(§�² � � � ��� » �6� »�¼2«M� �(¬� � � � � � »�� �

³(² � ��² � � À b&� } g x j�e s g | Á s g i f e�� _ � � ��b
^ _ � `��
b(¹9b�m�o g n s j r s j�bª��p�i i v | k�v j�f w�x y�n h�o+k�x w s j r x o j�f i�o g n z�o e o j�f i�g f j�e s f j�kQi x j s#r s e w s j n$x j n s g r s y n x o jg s } o g n x j�e$x j�i o e f g x n z�w�x y&n x w s b � j,���
u(d<� � � � b
^ _ ® `�m#b�Â�b��(¢ s g w$f g r b�Ã���²�±�² � � � »,� Ä(±
À »�� ��� ��±�� � �$§�� � � � � ² � �M� } g x j�e s g | Á s g i f e�� _ � � � b
^ _ ¯ `�m#b Â�b��(¢ s g w�f g r f j�k�l�b�¢ f j$¸ s s p h s j�b�m�f x j n s j�f j�y s o { y o j Å�e p�g f n x o j r x j�n z s(} i f j s b�����«M� �(¬� � ��§�À � ��§�� � � �� � � _ ® ® � � � ����_ � ��_ b�� d(i r o�x j�� £
�
�<_ � � � b �
^ _ � `�º�b�¡�f w�o r bM�(j�g f j�e s g s } o g n x j�e���g f v r z�o o n x j�e ��f j�k�¥ | i s ¢ s i y o j r n g p�y n x o j�b � j�� o �� 0_ � � � b

R
554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

Geometric embeddings and graph expansion

James R. Lee

jrl@ias.edu

Institute for Advanced Study (Princeton)

and University of Washington (Seattle)

Abstract

Beginning in the early-90’s, it became gradually apparent that techniques from high-dimensional
geometry were highly relevant for a variety of computational tasks. At the center of this connection
is the study of graph partitioning problems which involve breaking a graph into two or more large
parts while minimizing the size of the “interface” between them. These problems are of central
importance in numerous computational settings like data clustering, divide and conquer algorithms,
and packet routing in networks. Additionally, the techniques involved have applications to areas
like Markov chains, nearest-neighbor search, and learning theory.
We will discuss an approach to these problems based on geometric embeddings. The basic idea

is to represent a graph G = (V,E) as a geometric object by mapping the vertices of G to points
in a high-dimensional Euclidean space, and then to use geometric techniques to find good cuts in
G—these are cuts which separate G into “large” pieces while minimizing the number of edges that
are cut.

In the Sparsest Cut problem, the input is given as a graph G = (V,E) along with a subset of
pairs of vertices D ⊆ V × V called demands. For a subset S ⊆ V , let E(S, S̄) be the set of edges
crossing from S to its complement S̄, and let D(S, S̄) be the set of demands crossing from S to S̄.
The sparsity of a cut (S, S̄) is defined as the ratio

Φ(S) =
|E(S, S̄)|

|D(S, S̄)|
,

and the goal of the Sparsest Cut problem is to find the cut (S, S̄) which minimizes Φ(S). Since
solving this problem exactly is NP-hard, we will instead search for a set S ⊆ V for which Φ(S) is
approximately optimal, i.e. is within some factor C of the sparsest cut.
During the talk, I will first explain the relationship between geometric embeddings and the

Sparsest Cut problem, and then I will discuss the current state-of-the-art techniques in constructing
such embeddings. These employ a beautiful mix of semi-definite programming, high-dimensional
convex geometry, probability theory, and combinatorics. A brief outline of the talk (with references)
now follows.

572

The relation of geometric embeddings to the Sparsest Cut problem was first realized in the two
papers [LLR95, AR98]. The basic approach follows.

1. Associate a metric to the graph G. This is a value d(u, v) for every pair of vertices u, v ∈ V

which is symmetric, i.e. d(u, v) = d(v, u) and satisfies the triangle inequality

d(u, v) ≤ d(u,w) + d(w, v)

for every triple of points u, v, w ∈ V . This metric is closely related to the structure of multi-

commodity flows in G, and is the solution to a linear programming relaxation of the Sparsest
Cut problem.

2. Given the metric d, we can think of (V, d) as a metric space. The second step is to embed this
space into Rn (where n = |V |) such that the embedding preserves the structure of (V, d). Such
a mapping is called a low-distortion embedding. This is a map f : V → R

n which satisfies

d(u, v) ≤ ‖f(u)− f(v)‖ ≤ C · d(u, v) for all u, v ∈ V.

The factor C is called the distortion of the map f , and our goal is to make C as small as
possible. (Note that ‖f(u)− f(v)‖ is the Euclidean distance between f(u) and f(v).)

3. The final step is to use the geometric embedding to find a cut in G. One way to do this is
by projecting the image of G (under the embedding f) onto a randomly oriented line. If we
number the points of G from left to right on the line 1, 2, . . . , n then there are n − 1 cuts of
the form ({1, 2, . . . , i}, {i + 1, i + 2, . . . , n}). The final step of the algorithm returns the cut
(S, S̄) among these which has the smallest sparsity Φ(S).

Remarkably, it turns out that with high probability, the cut we return after step (3) will be
within a factor C of optimal, where C is the distortion of the embedding from step (2)!

After discussing this general approach, we will examine the new techniques that achieve the
best-known approximation factor for Sparsest Cut. These are based on semi-definite programming
and novel high-dimensional arguments from [ARV04] (see also [Lee05, CGR05]), as well as new
techniques for constructing low-distortion embeddings [KLMN05, Lee05, ALN05].

References

[ALN05] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the Sparsest Cut. In 37th An-

nual Symposium on the Theory of Computing, pages 553–562, 2005. Full version available at
http://www.cs.berkeley.edu/∼jrl.

[AR98] Yonatan Aumann and Yuval Rabani. An O(log k) approximate min-cut max-flow theorem and
approximation algorithm. SIAM J. Comput., 27(1):291–301 (electronic), 1998.

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings, and
graph partitionings. In 36th Annual Symposium on the Theory of Computing, pages 222–231,
2004.

[CGR05] S. Chawla, A. Gupta, and H. Räcke. Embeddings of negative-type metrics and an improved
approximation to generalized sparsest cut. In Proceedings of the 16th Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 102–111, Vancouver, 2005.

2

573

[KLMN05] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding
method for finite metrics. Geom. Funct. Anal., 15(4):839–858, 2005.

[Lee05] James R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In
SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 92–101, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

[LLR95] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

3

574

Distance Trisector curve and

Voronoi diagram

with neutral zone

Takeshi Tokuyama (Tohoku U)
joint work with Tetsuo Asano (JAIST)

and Jiri Matousek (Charles U)

Grand Challenge of NHC project

� Throw right on Computational Barriers

� Identifying barriers (something looking impossible)

� Breaking/proving/avoiding barriers

� Making properties of barriers clearer

� Well-known barriers in TCS
� Computability

� P vs NP, NP vs PSPACE etc

� Approximation hardness, approximation ratio

� Randomness (P vs PP, primarity checking, Yao�s minmax principle)

� Lower bounds for online algorithms

� Cryptographic barriers (Discrete log etc)

� Hopefully, find some more new barriers, because they will
help progress of TCS

Classical barriers in math history

� Incomputable geometric/arithmetic problems

� Compute diagonal length of a unit square

� Find a cube of volume 2

� Dilemma of Pythagoreans

� Draw a circle with the unit area

� It is easier to square the circle than to get round a

mathematician. August de Morgan

� Draw regular n-gon

� Trisect a given angle

Let no one ignorant of Mathematics enter here. (plato)

Progress in math history

� Necessity is the mother of invention.

� Diagonal length computation

� Cube with volume 2

� Unit area circle Transcendental number

� Draw regular n-gon

� Trisect a given angle

Complex numbers, Groups, Elliptic functions

God created the integers, all else is the work of man.

(Leopold Kronecker)

Solvability of

algebraic equations

Irrational numbers

Radicals

Inventing tools to measure what we cannot directly measure.

Same in CS: NP-complete theory, Proof checking,�.

Story of this talk
� In a computational geometric problem , we find

a simple and natural geometric tool named

distance trisector curve.

� A new transcendental curve??

� Some initial results have been obtained

� Existence and uniqueness of the trisector curves

� An algorithm to compute it.

� Use of the trisector curves.

� A new possibility in computational geometry

� Relaxed �computability� of geometric problems.

Tool to resolve a small but curious barrier. Voronoi diagram
� Subdivision of plane (space) into cells

� S = {p1,p2,�pn} points in the plane

� V(pi) = { x : d(x, pi) < d(x, pj) for all j i}

� Voronoi cell: dominating region of pi

� Great geometric structure with many applications

� Mesh generation , Graphics,

� Simulating economic/political equilibrium

� Simulating biological cells / crystallization

� Efficient algorithm : O(n log n) time

� Many variants: VD of lines/discs/regions, higher
dimension, non-Euclidean metric, power diagrams.

575

576

N-Voronoi diagram on 7 points

Questions

� Bisector ??

� Distance trisector curves:

� Known or unknown?

� As easy as angle trisection?

Ruler, Compass, and

red-ink (Archimedes)

Distance trisector

� Different from Apollonius�s circle

� Natural and simple definition (see next slide)

� Surprisingly, seems to be a new curve

Apollonius s circle

Distance Trisector Curves

Equally-spaced curves CP and CQ:

for any point p on CP, dist(p, P) = dist(p, CQ) and

for any point q on CQ, dist(q, Q) = dist(q, CP).

where dist(p, C) is the distance from p to a point on C

that is closest to p.

PQ

Q P P(1,0)Q(-1,0)

y=x+1y=-x+1

Note:

Drawing curves

was not easy.

Only possible

after revealing

some theoretical

results

577

P(1,0)Q(-1,0)

normal line

to the curve CQ

bisector of

segment

X�P

Observation: Each point X on CP is the intersection of

the normal line of CQ at its partner point X� and the

perpendicular bisector of X�P

X�

X

Corollary.

If we exactly

determine CP at a

small neighbor of P,

we can determine

whole CP

We have a system of

differential equation

P(1,0)Q(-1,0)

tangent line

from P

to the curve

CQ

Implication

�No point beyond

the tangent point A

can be a partner

point of a point of

NV(P)

A

Indeed, it suffices

to compute CP for

x<5.65

Nice nature of the curve

� Convex and smooth (revealed to be analytic)

� Satisfies a system of differential equations

� Specialists did not know how to solve it

� It suffices to compute in the range [0, 5.65]

� Important curves satisfy this

� sin (x) [0, 2], log x [1,10]

� Problems: Existence, uniqueness, computation

Existence and uniqueness

� P=(0,1), Q = (0,-1)

� y=f1(x) is x-axis (bisector of PQ)

� y = g1(x) :bisector parabola of P and x-axis

� y=fj(x): bisector curve of P and y=-gj-1(x)

� y=gj(x):bisector curve of P and y= -fj(x)

Lemma. The trisecting curve CP must be

above f j (x) and below gj(x)

P = (0,1)

(0, -1)
y= -gi-1(x)

y=gi(x)

y=fi(x)

y= -fi(x)

578

579

N-Voronoi diagram on many

points

Now we have trisector curves.

Can we draw N-Voronoi diagram of

more than two points by using them??

What happens if the

third point is given

Insertion of a new

point

New enemy may contribute to you

Basic properties

� Boundary curve of NV(pi) is the bisector

between pi and (the union of) boundary
curves of other regions

� Each region is convex and nonempty

� It may happen that there is no unbounded
region (different from an ordinary Voronoi
diagram)

580

Voronoi edges

� Definition: If p is a boundary point on NV(pi)

and q is its nearest point among other region

boundaries, we call q the partner point of p.

� Definition: The boundary of NV(pi) is

decomposed into curve segments each of which

consists of points whose partner points are in a

same region. The connected components are

called Voronoi edges.

Combinatorial complexity

� Theorem. Number of Voronoi edges is O(n) in

an N-Voronoi diagram on n points.

Proof: Rays towards nearest enemy�s-boundary

do not cross each other (cheating a little)

reduced to the linearity of number of edges in a

planar graph +Davenport-Schinzel sequence

argument.

Questions

� N-Voronoi diagram always exists?

� Yes

� Unique for a given point set?

� Yes

� Efficient algorithm exist?

� Yes, if we are given some oracles

� Really efficient in practice?

� No��

Existence
Given a set of regions R1,R2,�Rn

such that

Rj contains pj, consider an operator F

F(R1, R2, � Rn) = (Q1, Q2, � Qn)

where Qj = { x: d(x, pj) < d(x, y) for

y i Ri }

Theorem. F has at least one fixed point

From Schauder-Kakutani�s fixed point theorem

Corollary. N-Voronoi diagram is given as a fixed

point of F

Note: Fixed point theorem

Brower(1910),Schauder(1930),Kakutani(1941)

Z: Banach space,

K: Compact convex subset of Z (nonempty)

F: K K continuous map

Then, F has a fixed point

� Z: space of n-tupple of convex regions (R1,R2,..Rn)

� We need to introduce norm, and define convexity etc�

� Continuous dimensional space (Shauder-Kakutani�s version)

581

Uniquness

� Fixed point theorem does not assure uniqueness.

� Uniqueness is given in a constructive fashion

� Crystallization algorithm:

� Growing radius of disks

� Analogous to the space-sweep algorithm for

computing a (classical) Voronoi diagram as a lower

envelope of parabolic cylinders.

582

Curves in a N-Vonoroi diagram

F consists of :

�Distance trisectors of pairs of input points are in F.

�Bisector curves of an input point and a curve (or

point) C in F.

� Intersection points of curves in F.

Property 1: N-Voronoi diagram is a subset of an

arrangement of curves in a curve family F

Property 2: The number of applications of bisector

operations is finite to obtain F

Analysis of crystallization algorithm

� For planar case, the algorithm shows uniqueness of

N-Voronoi diagram

� Number of �structural changes� is O(n)

� Terminates in finite steps if we can draw

1. bisector curve of a point and given point

2. distance trisector curve

� Terminates in polynomial time if we assume that

we can draw an �generalized� trisector curve

Generalized trisector curves

Generalized trisector curves
Some more ideas and problems

� Computability of geometric problems

� Is the N-Voronoi diagram computable?

� Bisector of a point and a curve not easy

� Not difficult in digital (pixel) geometry

� Especially, the trisector curves are only given
by point-wise enumeration

� Same situation as sin and cos curves.

� Current algorithm needs iterative computation
of bisectors accumulating error!

� Is there fundamental difference from some
�paper algorithms� in computational geometry?

583

Generalized N-Voronoi diagram

� S = {p1,p2,�pn} points in the plane

� GNV(pi) = { x : d(x, pi) < d(x, y)

for every y GNV(pj) for j i}

if Voronoi diagram.

y
x

Convexity fails in an N- Voronoi diagram for 1.5

Multi-sector curves

� Given two points P and Q in the plane and an integer n,

draw n equally-spaced curves C1, C2, ... , Cn between them

s.t. for any point p on a curve Ci,

dist(p, Ci-1) = dist(p, Ci+1)

C0 = P, and Cn+1 = Q

Trisector is the case where n=2

Q P

Conclusion

� N-Voronoi diagram: Interesting generalization

of Voronoi diagram that admits a neutral zone.

� Many unsolved questions:

� Is the trisector curve really transcendental?

� Concrete analysis of N-Voronoi diagram algorithms.

� Uniqueness of N-Voronoi diagram of a given point

is not clear for high-dimensional cases

� Generalization for (convexity fails)

� N-sector curves

584

