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平成17年度 第１回 全体会議

日時 平成 17年 6月 16日 (木), 17日 (金)

会場 国立情報学研究所 12階会議室

プログラム

6月 16日 (木)
10:00 – 10:50 A01–A10班の研究紹介
11:00 – 12:00 ポスターセッション (A01–A10班)
12:00 – 14:00 幹事会
14:00 – 14:30 B01–B06班の研究紹介
14:40 – 15:40 ポスターセッション (B01–B06班)
16:00 – 16:55 C01–C11班の研究紹介
17:05 – 18:00 ポスターセッション (C01–C11班)

6月 17日 (金)
9:30 – 12:00 全体会議 　

13:30 – 14:15 時間枠つき配送計画問題に対するメタ戦略アルゴリズム
柳浦睦憲 (京都大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

14:15 – 15:00 孤立したクリークの線形時間列挙
伊藤大雄 (京都大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

15:30 – 16:15 Compact Encoding of Plane Triangulations with Efficient Query Support
中野眞一 (群馬大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

16:15 – 17:00 オンライン予測の理論と応用
瀧本英二 (東北大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
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2005.6.16�172005.6.16�17

�

� (n1- ) [Hastad 99]

�

� O(nm) [Tsukiyama, et al. 77]

� O( 4) [Uno03] )

� (O(3n/3)) [Moon, et al. 65]

Why Cliques?

� Inside: Densely connected.

� Inside-Outside: Sparsely connected.

S1
S2

Isolated cliques
� Let c>0 be a constant. A clique S V with k

vertices is an c-isolated clique if 

|E(S)|<ck. (E(S)={edges between 

S and V-S}.)

� 1-isolated cliques = isolated cliques. 

S1
S2

|E(S1)=2<4 isolated clique

|E(S2)=9 5 non isolated clique

� Flake, Lawrence, Giles (2000)

� Community S V: |E(v,S)|>|E(v,V-S)| v S.

Community of Flake, et al. Isolated clique

Related work Preliminary Result

� Theorem 0.1.  All isolated cliques can be 

enumerated in linear time. 

� Corollary 1. The # of isolated cliques is 

O(m) for any graph. 
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Observation for Proving 

Theorem 0.1

� Lemma 1. An isolated clique has a vertex 

(called a pivot) that has no outgoing edge 

from the clique. 

� If v is the pivot of S, then S=N(v) {v}.

pivots

k-1

k

Strategy of enumeration

� Check each vertex whether or not it can be a 

pivot.

� Sort and renumber all vertices as

d(v1) d(v2) � d(vn). 

� If j>i, vj N(vi) (adjacent vertices of vi), vi

can be ignored (we can consider that the 

vertex having the minimum index in a 

isolated clique is the pivot): Test (a). 

Observation 2

� Lemma 2.  If S is an isolated clique and v 

is the pivot, then w S

d(w) < (d(v)+1)2. (1)

� Proof. Let k=|S|=d(v)+1. w

S d(w)<k(k-1)+k=k2 =(d(v)+1)2.

Observation 2

� Lemma 3.  If v has the minimum indices in 

S=N(v) {v} and S satisfies (1), then

d(w)<2d(v)+1 w S.

� Proof. Let k=|S|=d(v)+1. If d(w)

2d(v)+1=2k-1 for a w S, w S

d(w) (k-1)2+2k-1=k2 =(d(v)+1)2, 

contradiction. 

Strategy 2

� If v passes Test (a), we check whether 

S=N(v) {v} satisfies (1): Test (b). (This can 

be done in O(d(v)) time.)

� If N(v) passes this test, 

d(w)<2d(v)+1=O(d(v)) w N(v) from 

Lemma 3. 

Observation 3

� Lemma 4.  If S={v=w1, ..., wk} is an isolated 

clique and v is the pivot of S (d(w1) �

d(wk)), then Si={w1, ..., wi} has at most i-1 

outgoing edges from S. 

� Proof.  Assume that |E(Si,V-S)| i. Then 

d(wi) d(v)+1, and hence d(vj) d(v)+1 for all 

j=i+1, ..., k. Therefore w

Sd(w)= w Sid(w)+ v S-Sid(w)

i+(k-i)=k, contradiction.
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Strategy 3
� Assume that v passed Tests (a) and (b) 

(primal tests). 

� Let S=N(v) {v}={v=w1, w2, ..., wk}

(d(w1) d(w2) � d(wk)).

� Clique test: From i=1 to k, 

� check whether (1) wi is adjacent to w1, ..., wi-1

(i.e., Si={w1, ..., wi} is a clique) and 

� (2) Si has at most i-1 outgoing edges from S. 

� If not, v is not a pivot and then skipped (finish 

checking v). 

Running time

� Sorting vertices by their degrees: O(m).

� Primal tests: O(d(v)) for each v V, i.e., O(m).

� Clique test: Assume the test breaks at wp. 

d(w1)+d(w2)+�+d(wp)=O(wp
2) O(m2)?

More precise estimation!

Running time (Cont.)

� Assume the test is done until wp. (k=d(v1)+1)

(v=)w1 w2 w3 wp-1 wkwp

at most p-2 

By v: O(d(w1)+d(w2)+� d(wp))=O(pk)

By other pivots: O((p-1)d(wp-1))=O(pk)
O(pk)

Amortize as O(k)=d(wi) for each vertex in S.

S

Running time (Cont.)

� Sorting vertices by their degrees: O(m).

� Primal tests: O(d(v)) for each v V, i.e., O(m).

� Clique test: O(d(v)) for each v V, i.e., O(m).

O(m). Theorem 0.1 is proved.

Extension

� Theorem 0.1.  All isolated cliques can be 
enumerated in linear time. 

� For general c-isolated cliques?

� Maximal ones are important.

1.1-isolated clique

3.1-isolated clique

Results
� Theorem 1.  All maximal c-isolated cliques of a 

graph with n vertices can be enumerated in 

O(c522cm) time.

� Corollary 1. For any constant c, all maximal c-

isolated cliques can be enumerated in linear time. 

� Corollary 2. For any c=O(logn), all maximal c-

isolated cliques of a graph with n vertices can be 

enumerated in polynomial time. 
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Results (cont.)
� Theorem 2.  Let c, x, and y are functions of n s.t. 

c=xy.  There is a graph with m edges for which the # 

of maxmal c-isolated cliques is ((2xy/c2)m).

� Cor. 3.  If c= (1), there is a graph with n vertices 

consisting of super-linear # of maximal c-isolated 

cliques. 

� Cor. 4.  If c= (logn), there is a graph with n vertices 

consisting of super-polynomial # of maximal c-

isolated cliques. 

Results (cont.)

� Cor. 1. If c=O(1) , all maximal c-isolated cliques can 
be enumerated in linear time. 

� Cor. 3.  If c= (1), there is a graph consisting of 
super-linear # of maximal c-isolated cliques. 

� c= (1) is the tight bound for enumerating all 
maximal c-isolated cliques in linear time.

Results (cont.)

� Cor. 2. If c=O(logn), all maximal c-isolated cliques 

can be enumerated in polynomial time. 

� Cor. 4.  If c= (logn),  there is a graph consisting of 

super-polynomial # of maximal c-isolated cliques. 

� c= (logn) is the tight bound for enumerating all 

maximal c-isolated cliques in polynomial time.

Proof of Theorem 2
� Theorem 2.  Let c, x, and y are functions s.t. c=xy.  

There is a graph with m edges for which the # of 
maxmal c-isolated cliques is ((2xy/c2)m).

completely 

connected

independent 

set
x

y

Block

c-isolated clique

Proof of Corollaries 3 and 4

� If c= (1), then by 

letting x=2, y=c/2 (2xy/c2)m becomes 

super-linear. 

� If c= (logn), then by 

letting x=c/logn, y=logn (2xy/c2)m is 

super-polynomial. 

Other Results: Pseudo-

Clieques

� Let (k) and (k) are functions.  

Pseudo-Clique PC( , ) is a vertex-

proper-subset S V (|S|=k) s.t. 

� avv S dG(S)(v) (k) and 

� minv S dG(S)(v) (k).
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Results for PC

� Theorem 3.  Suppose f(k)= (1) and 0< <1 is a 

constant. 

� There is a graph including super-poly. # of 

maximal isolated PC(k-f(k),k ).

� There is a graph including super-poly. # of 

maximal isolated PC(k-k ,k/f(k)).

� Proposition 1. All maximal isolated PC( ,c1k) and 

PC(k-c2,k ) are enumerated in poly. time for 

constant c1<1 and c2 1. 

Results for PC (Cont.)

� Theorem 4.  There is a graph including 

super-poly. # of maximal isolated PC(k-

(logk)1+ ,k/(logk)1+ ) for any 0< .

� Theorem5. All maximal isolated PC(k-

logk,k/logk) can be enumerated in poly. time. 

Summary
� Introduce f-isolated cliques with parameter 

function c.

� All c-isolated cliques can be enumerated in 

linear time for any constant c.

� c= (1) is the tight bound of linear time 

enumeration.

� All c-isolated cliques can be enumerated in 

poly. time if c=O(logn).

� c= (logn) is the tight bound of poly. time 

enumeration.
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Compact Encoding of Plane Triangulations 

with Efficient Query Support

0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1

m 

2m bit

2005/06/17

2 log n   bit   + (

n2 bit

1

2

3
4

1

2

3
4

1 2 3 4 NIL

2 NIL1 3 4

3 2 4 1 NIL

4 NIL1 3 2

�

(

� ( bit / 

YES!
0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1

log bit 

= log 

1.08 m bit  [Tutte 62]

2m � o(n) bit

k

4m bit          [Turan 84]

3.58m bit     [Keeler 95]

1.53m bit     [ ]

1.33m bit     [He 99]

1.33m bit     [Poulalhon 03]

ICALP 2003

1.08m bit 

2m +o(n)bit      [Jacobson 89]

FOCS 89

2m+8n+o(n)bit  [Munro 97]

FOCS 97

2m+2n+o(n)bit [Chiang 01]

SODA 01

2m+n+o(n)bit    [Chuang ]

2m+5n+o(n)bit ICALP 98

2m+o(n)bit         [ 2005]
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� O( (v)
2m+n+o(n)bit    [Chuan 98]

2m+o(n)bit    [ 05]

�

�

�
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m · N / 2
m

1 ·
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0
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Z
L: Y × Z [0, ] 

t = 1, 2, 3, ...
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2
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x t,1
Z

xt,2

x
t,N

zt Z

yt Y

L(yt, zt)

i L(yt, xt,i)
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Hellinger
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so she was considering in her _____?

mind
thought

own
office

:  

0.232
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0.073

:

i
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i
)

={1, ..., K} 
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x t,1
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x
t,N
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zt(yt) = Pr(yt | y1, ..., yt-1, A)

i
xt,i

(yt) = Pr(yt | y1, ..., yt-1, 
i
)

y1, y2, ..., yt-1 i
x
t i
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i
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x t,1
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P(S | 

i
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x
t i
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t
)
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i
+ = log2 P(S | 

i
)

= log2 P(S | A) 
i

( log2 P(S | 
i
))

S = (y1, ..., yT)

 

(Y, Z, L)

= = LossT
A

� LossT
i* · ln N
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j Mt z (j)
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= e 1 / N

·

(Y, Z, L)

·

= 

L* = 

378



G

s t

1. s-t P zt(P)
2. dt(e) [0,1] 

P s t yt(P) = d (e)

3. P yt(P) zt(P) = yt · zt

t yt · zt - minP t yt(P) 
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s t

P1 P2 P3

P4 P5 P6

P7

i Pi 1

N = s-t

B = maxP |P|
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Z = s-t
L(y, z) = y · z

v

vt,P = e P at(e) v

s t
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1.0

vt,P = 0.9 0.4 1.0 = 0.36

bt(e) = exp(- dt(e))
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( L(yt, xt,P) = e P dt(e) )
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: a = (a(e1), ..., a(em))

: v = (vP1, ..., v ),

v = (a)

: b = (b(e1), ..., b(em))

Path Kernel

normalization factor

usource

sink

source

sink

u

u u�

e Ku�Ku

at(e)bt(e)
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平成17年度 第２回 全体会議

日時 平成 17年 11月 21日 (月), 22日 (火)

会場 名古屋大学 野依記念学術交流館 / IB電子情報館 中棟 IB大講義室

プログラム

11月 21日 (月)
10:30 – 12:00 未解決問題セッション

Domain-Specific Image Segmentation and Shape Matching
浅野哲夫 (北陸先端科学技術大学院大学)

柔体を扱う計算幾何学
浅野哲夫 (北陸先端科学技術大学院大学)

線的施設配置問題
加藤直樹 (京都大学)

外面が四角形 (以上)である格子凸描画を求める線形時間アルゴリズム
の開発
三浦一之 (福島大学)

幾何的巡回セールスマン問題の厳密アルゴリズムについて
岡本吉央 (豊橋技術科学大学)

文字列検索における時間と領域のトレードオフ
定兼邦彦 (九州大学)

12:00 – 13:30 幹事会
13:30 – 15:50 未解決問題に対するグループ討論
16:00 – 17:30 全体会議

11月 22日 (火)
10:15 – 11:00 透過的データ圧縮

定兼邦彦 (九州大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
11:10 – 11:55 確率伝搬法の可能性について

渡辺治 (東京工業大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
13:30 – 14:15 RNA配列の比較アルゴリズム

浅井潔 (東京大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
14:30 – 15:15 3つの資源節点集合を持つ 4点連結グラフを均等分割する問題について

石井利昌 (豊橋技術科学大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
15:30 – 16:15 平面グラフ、曲面上のグラフ、マイナーに関して閉じているグラフに関す

る彩色問題
河原林健一 (東北大学) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

16:30 – 17:30 未解決問題グループ討論の結果報告
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Transparent Data Compression

2005 11 22

K. Sadakane and R. Grossi: Squeezing Succinct Data Structures into

Entropy Bounds, Proc. ACM-SIAM SODA 2006, to appear. 

2

� ( )
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� (CPU > )
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�

�

�
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4

� n S ( )

� LZ78 [Ziv, Lempel 78] 

� S i log n

(log n ) (decode(S,i))

( : word RAM  ( log n ))

�

bits   
log

logloglog
O

n

knn
nH k

(Hk: S k )

5

� Succinct

� bit vector

�

�

�

6

Succinct

� D

� : 

� L = log (D )

�

� ( ) 

� : (o(L) bits)
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7

Succinct

� D {1,2,...,n} 

� ( )

� member(D,i):  D i

� rank(D,i): D i

� select(D,j): D j

� : n + o(n) bits [J89] [M96]

S: 01000110001001000001
1 ni

rank(D,i) = 3
8

Succinct

� n T

� O(n log n) bits

� T (Catalan ) 

� = 2n (log n) bits

� ( )

� preorder

� : 2n o(n) bits [MR01] [GRR04]
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nmB logloglog, bits

nnnnmB log/loglogO,

FID (Fully Indexable Dictionary) 
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FID

n ( ) m

� i S[i] = 1 

� S FID select

� m = O(n/log n) FID
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nn

n

log

loglog
O

log

loglog
O

log/
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O

)log/(O
log

11

: Succinct

?

� FID

� ( ) B(n,2n) = 2n bits 

� 2n + O(n log log n/log n) bits [GRR04]

�

� FID 0 

� k

0

loglog,

nH

mn

n
mn

m

n
mnmB

12

� D {1,2,...,n} member, rank, select

� : nHk+O(n log log n/log n) bits (k=O(log log n))

� Hk D 0,1 S k 

� EID (Entropy-Bound Indexable Dictionary) 

� FID 

nmBnHnHnH kk ,01
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13

EID

�

� D 0,1 S nHk+O(n log log n/log n) bits

( log n )

� FID O(n log log n/log n) bits

�

� FID (S[i,i+log n 1] 

decode(S,i) )

�

14

Succinct

� FID

� 2n + O(n log log n/log n) bits [GRR04]

� EID

� S Hk (k=O(log log n))

� 2nHk + O(n log log n/log n) bits

�

� Hk

( )

15

EID

� S = 010101...010101

� FID: nH0 = n bits  (+ O(n log log n/log n))

� EID: nH1 = O(log n) bits  (+ O(n log log n/log n))

� 2

� rank 

(n log log n/log n) bits [Miltersen 05]

2

16

17

LZ77 [Ziv, Lempel 77]

LZ78 [Ziv, Lempel 78]

LZW[Welch  84]

compress

LZSS [Storer, Szymanski 82]

gzip

PPM[Cleary, Witten 84]

PPMD [Howard 93]

PPM*[Cleary, Teahan, Witten 95]

block sorting

[Burrows, Wheeler 94]

PPM (bzip2)

context tree weighting

[Willems, Shtarkov, Tjalkens 95]

PPM 18

LZ77

�

� = 

....a compressed suffix tree consists of a compressed suffix

array, a Pat tree and edge-length information.

....a compressed suffix tree consists of [l=19, d=36]

array, a Pat [l=4, d=51] and edge-length information.
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O(n)nHkCTW [WST95]

O(1)nHk

nHkBlock Sorting 

[BW94]

O(n)nHkPPM  [CW84]

O(n)nHkLZ78 [ZL78]
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T preorder
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decode

S[i,i+log n 1] 

1. S[i] p
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27

Long phrase

� Long phrase: w = ½ log n

branching node ( )

( )

jump node ( w/2 )

micro tree (jump node )

28

Short phrase

� Short phrase: w = ½ log n

� S ½ log n short phrase O(log n)

� r > 1 short phrase

� R

�

� R : r log c bits

� : ½ log n bits

� ½ log n < r log c ( )cn

29
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( )

( )

( )

Background 

Districting Problem
political constituencies
school board boundaries
sales or delivery regions

Criteria
equity
contiguousness

k-bipartition Problem

Input: 
i) graph G =(V, E )
ii) disjoint subsets T1,T2,T3,T4,..,Tk V 

(Resource sets) 
(|Ti |: even)

Output:
a partition {V1, V2} of V

s.t. 
(1) |Ti V1|= |Ti V2|= |Ti |/2 for each i,
(2) Both of V1 and V2 induce connected graphs.

V1

V2

k-bipartition Problem

k-bipartition

k : # of resource sets, n=|V|, m=|E |

Testing whether a k-bipartition exists or not is NP-hard
even if k=1 [Dyer, Frieze 85][Chleikova 99]

Related Results

k : # of resource sets, n=|V|, m=|E |

Testing whether a k-bipartition exists or not is NP-hard
even if k=1 [Dyer, Frieze 85][Chleikova 99]

Sufficient condition for which a k-bipartition exists:

1-bipartition 2-connectivity suffices. 

O (m) time [Suzuki et al.90][Wada, Kawaguchi94]

2-bipartition 3-connectivity suffices. 
O (n2logn) time [Nagamochi et al. 02]

Related Results

Conjecture
Every (k+1)-connected graph admits a  k-bipartition.
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Our Recent Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition

A 1-vertex-connected graph which has no 1-bipartition of V

k=1

resource vertex

A 1-vertex-connected graph which has no 1-bipartition of V

k=1

resource vertex

k=2

A 2-vertex-connected graph which has no 2-bipartition of V

Our Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition

3-bipartition

3-vertex-connectivity does not suffice.

3-vertex-connected graph
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3-bipartition

3-vertex-connectivity does not suffice.

3-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

4-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

4-vertex-connected graph

3-bipartition

4-vertex-connectivity does not suffice.

4-vertex-connected graph

3-bipartition

5-vertex-connectivity does not suffice.

4-bipartition

5-vertex-connectivity does not suffice.
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Our Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition

If G is a 4-vertex-connected graph and contains K4,

then there exists a 3-bipartition, and moreover,

a 3-bipartiton can be found in O (n3logn) time.

Theorem

Reduction to a geometrical problem [Nagamochi et al. 02]

Phase 1
Find an embedding of G  into 
the 3-dimensional space R 3

called �convex-embedding� .

Phase 2
Bisect V  in R 3 into {V1, V2}
by a plane called 
�ham-sandwich cut�.

Algorithm for finding a 3-bipartition

P1,P2,�,Pk : k subsets of points
Ham-sandwich cut with respect to P1,P2,�,Pk

hyperplane bisecting each Pi

Ham-sandwich cut

P1,P2,P3

P1,P2,�,Pk : k subsets of points
Ham-sandwich cut with respect to P1,P2,�,Pk

hyperplane bisecting each Pi

Ham-sandwich cut

P1,P2,P3

P1,P2,�,Pk : k subsets of points
Ham-sandwich cut with respect to P1,P2,�,Pk

hyperplane bisecting each Pi

Ham-sandwich cut

In Rk, a ham-sandwich cut w.r.t. P1,�,Pk always exists.
Theorem [Edelsbrunner87]

O(n3/2)  if k=3 (n : #points) [Chi-Yuan et al.94]

P1,P2,P3

Reduction to a geometrical problem [Nagamochi et al. 02]

Phase 1
Find an embedding of G  into 
the 3-dimensional space R 3

called �convex-embedding� .

Phase 2
Bisect V  in R 3 into {V1, V2}
by a plane called 
�ham-sandwich cut�.

Algorithm for finding a 3-bipartition

(1) |Ti V1|= |Ti V2|= |Ti |/2
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Convex Embedding

NG(v ) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk, 

if (i) the convex hull of f (V(G� )) is isomorphic to G �.
(ii) For v V � V (G� ),

(iii)          f (v ) is strictly included in the convex hull of f (NG(v.

Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]
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f : V Rk is a convex embedding of G with boundaryG � into Rk, 
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(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]
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f (V )

G

G�
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f : V Rk is a convex embedding of G with boundaryG � into Rk, 
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(ii) For v V � V (G� ),

f (v ) is strictly included in the convex hull of f (NG(v )).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]
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NG(v ) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk, 

if (i) the convex hull of f (V(G� )) is isomorphic to G �,
(ii) For v V � V (G� ),

f (v ) is strictly included in the convex hull of f (NG(v )).
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f (V )
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f (NG(v ))

G

G�

Convex Embedding

NG(v ) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk, 

if (i) the convex hull of f (V(G� )) is isomorphic to G �,
(ii) For v V � V (G� ),

f (v ) is strictly included in the convex hull of f (NG(v )).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V )

v

f (NG(v ))

G

G�
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Convex Embedding

NG(v ) : the set of neighbors of v.

f : V Rk is a convex embedding of G with boundaryG � into Rk, 

if (i) the convex hull of f (V(G� )) is isomorphic to G �.
(ii) For v V � V (G� ),

f (v ) is strictly included in the convex hull of f (NG(v )).

(iii) Points of {f (v) | v V } are in general position.

[Nagamochi et al.02]

f (V )

G

G�

f : V Rk : a convex embedding of G with boundaryG � into Rk.

{V1, V2} : a parition of V obtained by separating f (V ) with an

arbitrary hyperplane.

Both of V1 and V2 induce connected graphs. 

Lemma [Nagamochi et al.02]

f (V )

Convex Embedding

Algorithm for finding a 3-bipartition

Reduction to a geometrical problem [Nagamochi et al. 02]

Phase 1
Find an embedding of G  into 
the 3-dimensional space R 3

called �convex-embedding� .

Phase 2
Bisect V  in R 3 into {V1, V2}
by a plane called 
�ham-sandwich cut�.

(1) |Ti V1|= |Ti V2|= |Ti |/2

(2)V1 andV2 induce connected graphs

3-bipartition

G : a 4-connected graph which includes K4 (denoted 
by G� ).
G has a convex embedding into R 3 with boundary G�

Theorem

G

G�

Lemma Let G be a 4-vertex-connected graph G ( K5), and 

H be a subgraph of G with H=K4.

Then G  has a contractible edge in E(G )-E(H ) in such a sense

that its contraction preserves 4-vertex-connectivity.

K5

Key Lemma
Step 1 (contraction step)  
Contract edges not contained in G� while preserving 4-connectivity

Algorithm for finding a convex embedding into R 3

G

G�

Step 2 (embedding step)
Embed vertices by backtracking the contraction step.
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Embedding Step

Convex embedding f1
u* {u1, u2}

u*

G1

Given:
G

1
: graph obtained from G2 by contracting u1 and u2 into u*
such that (u1,u2) E, |NG(ui )| 4

f1: convex embedding of G1

Convex embedding of G2

u2u1

G2

Embedding Step

Convex embedding f1

u*

u* {u1, u2}
f 2

G1

Embedding Step

u*

u* {u1, u2}

i) f2 (u ) = f1 (u ) for u u1,u2

u2
u1

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

i) f2 (u ) = f1 (u ) for u u1,u2

ii) f2 (u1 ) = f1 (u* )

u2
u1

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

u2
u1

Finding a position for u2

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

u2
u1

Convex embedding f1 f 2

G1 G2

(a) u2 is in the convex hull of NG  (u2)2
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Embedding Step

u*

u* {u1, u2}

u2
u1

Convex embedding f1 f 2

G1 G2

(a) u2 is in the convex hull of NG  (u2)2

|NG  (u2)| 4
2

Embedding Step

u*

u* {u1, u2}

u2
u1

Convex embedding f1 f 2

G1 G2

(b) the convexity of node NG  (u2)2

Embedding Step

u*

u* {u1, u2}

u2
u1

(b�) the convexity of u1

Convex embedding f1 f 2

G1 G2

Embedding Step

u*

u* {u1, u2}

u2
u1

(b�) the convexity of u1

Convex embedding f1 f 2

G1 G2

|NG  (u1)-{u2}| 3
2

Embedding Step

u*

u* {u1, u2}

u2
u1

G1 G2

Convex embedding f1 f 2

Embedding Step

u2

u1

If          and             are disjoint, ..    

In G1, u* cannot be included in the convex hull of NG (u*). 
contradicting that f1 is a convex-embedding.

1

G2
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Our Results

(1) 5-vertex-connectivity does not suffice!

(2) 4-vertex-connectivity suffices if K4 is contained.

(3) For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

3-bipartition
resource edge sets:
disjoint subsets 
T1, T2, T3 of E

G =(V,E )

E2 = E - E1

connected

E1

connected

Edge-Version

Edge-Version

For the edge version of k-bipartition (k=1,2,3),

(k+1)-edge-connectivity suffices.

G -->        Line graph L(G )

(k+1)-edge-connected --> (k+1)-vertex-connected & Kk+1 

Input: a graph and subsets Ti of resource edge sets
Output: a bipartition {E1, E2} of E

s.t. |E1 Ti |=|E2 Ti | 
E1 and E2 induce connected graphs.

A 1-edge-connected graph which has no 1-bipartition of E

k=1, =1

resource edge

k=2, =2

A 2-edge-connected graph which has no 2-bipartition of E A 3-edge-connected graph which has no 3-bipartition of E

24 vertices
deg=5

=5
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What we have done is ...

Every 4-vertex-connected graph G admits 
a 3-bipartition if G has a K4

Every (k+1)-edge-connected graph G admits 
a k-bipartition of E (k=1,2,3).

The vertex version  implies the edge version.

5-vertex-connecitivity does not suffice for 3-bipartition
5-vertex-connecitivity does not suffice for 4-bipartition
5-vertex-connecitivity does not suffice for 5-bipartition

Open Problems

Sufficient condition for which a k-bipartition exists

Conjecture

Every (k+1)-vertex-connected graph with Kk+1 admits a  k-

bipartition.

the edge version

Conjecture
Every (k+1)-edge-connected graph admits a k-bipartition.

Define f (k) be the smallest p such that every        
p-vertex-connected graph admits a k-bipartition.

For k>3, bound f (k) from above by k+constant.

The same questions for the edge version.

For k>5, prove f (k) k+1. 

f (1)=2, f (2)=3   

f (3) 6,   f (4) 6,  f (5) 6

Open Problem

f (k ) = O( |Ti |)
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Approximating graph 

coloring of minor-closed 

graphs

Joint Work with Erik Demaine, Mohammad 

Hajiaghayi, Bojan Mohar, Robin Thomas

Partially joint Work with Neil Robertson    

and Paul Seymour

Ken-ichi Kawarabayashi

Tohoku University

E-mail: k_keniti@dais.is.tohoku.ac.jp

http://www.dais.is.tohoku.ac.jp/~k_keniti

Contents

(Mostly, FOCS paper)

Motivation (FOCS paper)

2-approx. of the chromatic number of minor-

closed graphs (FOCS paper)

Tree-width, Grid-minor, RS-structure.

Overview of Algorithm (Robertson-Seymour)

Approx. the list-chromatic number of minor-

closed graphs.

Toward Structural Theorem

Why is it accepted in FOCS?

It is building on math deep theory. (although NOT 

AT ALL practical.)

Minor-closed graphs are natural. (a generalization 

of planar graphs.)

It tells how to use RS� main structural theorem.

It is a bit easier to access (than RS� papers)

Nice approx. for graph coloring of minor-closed 

graphs.

Lucky.

Motivation
Mathematical Motivation

1. Hadwiger�s Conjecture. (A far generalization of 4CT)

2. Graph Minor Theory (Robertson-Seymour)

Algorithmic Motivation

1. Chromatic number is hard to compute.

NP-complete even for deciding 3-colorability of Planar 
graphs. 

2. Even hard to approx.

NP-hard to approx. within constant factor.

3. NP-complete to decide the chromatic number of 
minor closed graphs. (Even for planar graphs) 

Can you approx. ? 

Algorithmic Results

Theorem (Demaine, Hajiaghayi, KK, FOCS2005) 

There exists a 2-approx. algorithm for the 

chromatic number in minor-closed graphs. (graphs 

with no Kk-minor)

The best known result was O(k logk) approx.

Proof uses the whole graph minor papers�.

Robertson-Seymour theory consists of 23 papers. 

Most of them are published in JCTB.

Why is it 2-approx ?

The main theorem says that if G is Kk-minor-

free graphs, then it can be decomposed into 

two graphs G1,G2 such that both G1 and G2

have tree-width at most f(k).

If tree-width is bounded, one can compute the 

chromatic number in the linear time.

It remains to give an algorithm for the main 

theorem�
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Proof depends on 

Robertson-Seymour theorem.

It gives a structural theorem for minor-closed 

graphs.

Once we have this structure, the rest of proof 

is not so hard (but not trivial.)

The main challenge is how to obtain RS-

structure.

It depends on the whole graph minor papers.

delete

Minors

A graph G has a minor H if
H can be formed by removing and contracting 
edges of G

Otherwise, G is H-minor-free

For example, planar graphs are both
K3,3-minor-free and K5-minor-free

contract

H
minor of G

G

*

Graph Minor Theory
�

Seminal series of 20 papers

Powerful results on excluded minors:
Every minor-closed graph property
(preserved when taking minors)
has a finite set of excluded minors
[Wagner�s Conjecture]

Every minor-closed graph property
can be decided in polynomial time

For fixed graph H, graphs minor-excluding H have 
a special structure: drawings on
bounded-genus surfaces + �extra features�

Highlights of Graph 

Minor Theory

Theorem(The disjoint paths problem) For 

fixed k, there is a polynomial time algorithm 

for deciding the disjoint paths problem.

Minor testing can be done.

Tree-width and grid-minors are discovered.

Many mathematical and algorithmic 

applications.

The disjoint paths 

problems

�
�

�
�

S1

S2

SK-1

SK

T1

TK-1

TK

T2

Treewidth
�

Treewidth of a graph is the smallest 

possible width of a tree decomposition

Tree decomposition spreads

out each vertex as a

connected subtree of a

common tree, such that

adjacent vertices have

overlapping subtrees

Width = maximum overlap 1

Treewidth 1 tree; 2 series-parallel; �

Graph
Tree

decomposition

(width 3)
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Tree-Decomposition
Tree-Decomposition of 

Graph
A tree-decomposition of a graph G is (T,W), 
where T is a tree and W=(Wt : t V(T)) 
satisfies

t V(T) Wt = V(G)

If t� T[t,t�], then Wt Wt� Wt�

uv E(G) for some t V(t)  s.t. u, v Wt.

The width is max(|Wt|-1 : t V(T)).

The tree-width of G is a minimum width.

Tree-width at most 1  < = > G is a forest.

Tree-width at most 2 < = >  G is series 
parallel.

Tree-width at most 3 < = > G has no minor 
isomorphic to K , Octahedron, 5-prism, V .

Tree-width of the complete graph of order n is 
n-1.

Tree-width is minor-monotone.

The (k k)-grid minor has the tree-width k.

Tree-Width

Discovered by Robertson-Seymour.

NP-hard to determine tree-width.

A linear time to decide whether tree-width is k 
or not for fixed k.

Many NP-hard problems can be solved in 
polynomial time if a given graph has small 
tree-width. (even linear)

It is useful for structural results. 

It is a key for the proof of RS. 

It is closely related to grid.

Grid Minors

Why important ?
r r grid:

r2 vertices, 2 r (r 1) edges

Treewidth ~ r

r r grid is the canonical planar graph of 
treewidth (r): every planar graph of 
treewidth w has an (w) (w) grid minor
[Robertson, Seymour, Thomas 1994]

So any planar graph of large treewidth has
an r r grid minor certifying large treewidth

What about nonplanar graphs?

r

r

r

r

Grid Minors

Why important ?
For any fixed graph H, every H-minor-free 

graph of treewidth w(r) has an r r grid 
minor [GM5�Robertson & Seymour 1986]

Re-proved & strengthened [Robertson, Seymour, 

Thomas 1994;  Reed 1997;

Diestel, Jensen, Gorbunov, Thomassen 1999]

Best bound of these: w(r) = 20 5 |V(H)|3 r

[Robertson, Seymour, Thomas 1994]

New optimal bound: w(r) = (r)

[Demaine,Hajiaghayi KK 2005]

Grids certify large treewidth in H-minor-free graph
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Huge Grid is important

Routing problem

The disjoint paths problem and its 

generalization.

Actually, Robertson-Seymour use this 

idea.

Structure of H-minor-free Graphs

�

Every H-minor-free graph can be written 

as O(1)-clique sums of graphs

Each summand is a graph that can be

O(1)-almost-embedded

into a bounded-genus surface

O(1) constants depend only on |V(H)|

Almost-Embeddable 

Graphs

A graph is O(1)-almost-embeddable into a 

bounded-genus surface if it is

A bounded-genus graph

+ a bounded number of vortices:

Vortex = Replace a face in the

bounded-genus graph by

a graph of bounded pathwidth

The interiors of the replaced faces are disjoint

+ a bounded number of apices:

Apex = extra vertex with any incident edges

What do we need ?

Crosscaps

Handles

Genus

Vortex

Apex (easy)

But

There cannot be so many crossings that 

are far apart.

The genus addition process stops quite 

soon. 

Otherwise, we would get a desired 

minor, a contradiction.

We know that 

Any long jump must be contained in the 
handle. This tells how to detect a handle.

Any crossings and crosscaps are contained 
in small area.  This tells how we can find a 
crosscap and a vortex.

If there is no crosscap in the small area, then 
it is either vortex or planar graph. 

There cannot be many non-planar small 
areas that are far apart. This tells us that 
there are bounded number of vortices.  
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In summary

1. Stating with huge grid H. 

2. As long as there is a long jump, we shall 
detect handles.

3. Otherwise the graph is embedded into a 
surface such that all the non-planar graphs
are in small areas.

4. We shall look at each small area, and 
detect either vortex or crosscap. 

5. There are only finitely many vortices and 
crosscaps.  So the process stops.

Almost-Embeddable 

Graphs

A graph is O(1)-almost-embeddable into a 

bounded-genus surface if it is

A bounded-genus graph

+ a bounded number of vortices:

Vortex = Replace a face in the

bounded-genus graph by

a graph of bounded pathwidth

The interiors of the replaced faces are disjoint

+ a bounded number of apices:

Apex = extra vertex with any incident edges

Approx. list coloring

Theorem[Mohar and KK]

There is an O(k)-approx. for graphs without Kk-minor, 
I.e., minor-closed graphs. 

Actually, it is �almost� O( logk)-approx.

It is approximating within O( logk)c + O(k), where c is 
optimal.

The best know appox. was O(k logk) approx.

Open: O(1) ?  (Maybe NP-hard.)

Algorithm for List-coloring

Theorem[KK & BM]

There is an O(   ) algorithm for the following:

Input : A graph G, vertex set Z with |Z| <= 4k, 
precoloring of Z and each vertex in G has 16k-
colors available in each list.

Output : Determine either  

G has a Kk-minor, or  

Precoloring of Z can be extended to  the whole 
graph G, or 

G has a subgraph H such that H has no Kk-minor
and has a vertex set Z� with |Z�| <=4k such that 
some precoloring of Z� cannot be extended to H. 

3
n

Algorithm for List Coloring

Corollary:

There is an O(   ) algorithm for deciding 
the following:

(1) G has a Kk-minor

(2) G has a 16k-list-coloring

(3) G has a subgraph H such that H has 
no Kk-minor and no 12k-list-coloring.

It is easy to list-color by O(k logk) colors

3
n
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NHC Spring School and Workshop

on Discrete Algorithms

Feb. 27th – Mar. 3rd, 2006

University of Electro-Communications / Chofu Creston Hotel

Spring School

Feb. 27th (Mon.)
09:00 – 12:30 Data-Driven Computing

Bernard Chazelle (Princeton University) . . . . . . . . . . . . . . . . . . . . . . . . . . 415
12:30 – 14:00 Lunch
14:00 – 17:30 Sensor Networks: A Digital Bridge to the Physical World

Leonidas J. Guibas (Stanford University) . . . . . . . . . . . . . . . . . . . . . . . . . 423

Feb. 28th (Tue.)
09:00 – 12:30 Games in Networks: Routing, Network Design and Potential Games

Eva Tardos (Cornell University) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12:30 – 14:00 Lunch
14:00 – 17:30 Polynomial Time Algorithms for Market Equilibria

Vijay V. Vazirani (Georgia Institute of Technology) . . . . . . . . . . . . . . . 473
Workshop

Mar. 1st (Wed.)
09:00 – 12:30 Random Sampling Techniques and Approximation of MAX-CSP

Marek Karpinski (University of Bonn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
12:30 – 14:00 Lunch
14:00 – 17:30 Discussion

Mar. 2nd (Thur.)
09:30 – 10:30 Games in Networks, Equilibria, and Inefficiency

Eva Tardos (Cornell University)
10:30 – 11:00 Break
11:00 – 12:00 Approximation Schemes for Metric Clustering and Partitioning

Marek Karpinski (University of Bonn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
12:00 – 13:30 Lunch
13:30 – 14:30 Discrete Optimization and VLSI-Design

Bernhard Korte (University of Bonn)
14:30 – 15:00 Break
15:00 – 16:00 Approximation Algorithms for Facility Location

Jens Vygen (University of Bonn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519
16:00 – 16:30 Break
16:30 – 17:30 Algorithms for a Networked World

Magnus M. Halldorsson (University of Iceland) . . . . . . . . . . . . . . . . . . . .529
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Mar. 3rd (Fri.)
09:30 – 10:30 Algorithms for String Manipulation and Related Problems

D. T. Lee (Academia Sinica) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .530
10:30 – 11:00 Break
11:00 – 12:00 Dynamic Data Structures in Computational Geometry

Timothy M. Chan (University of Waterloo) . . . . . . . . . . . . . . . . . . . . . . . 553
12:00 – 13:30 Lunch
13:30 – 14:30 Geometric Networks: Integer Linear Programming and Combinatorial

Algorithms
Alexander Wolff (University of Karlsruhe) . . . . . . . . . . . . . . . . . . . . . . . . 564

14:30 – 15:00 Break
15:00 – 16:00 Geometric Embeddings and Graph Expansion

James R. Lee (UC Berkeley) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
16:00 – 16:30 Break
16:30 – 17:30 Distance Trisector and Voronoi Diagram with Neurtal Zone

Takeshi Tokuyama (Tohoku University) . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
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Could Your iPod Be Holding the 

Greatest Mystery in Modern 
Science? 

 

 

by Bernard Chazelle  

 

 

Tuturologists are an amiable bunch, so it is a puzzle why the future has 

been so cruel to them. From flying cars and self-cleaning houses to that 

bugaboo of workaholics—the leisure society—the soothsayer's trail is 

littered with the carcasses of pet predictions turned roadkill. 

Gordon Moore need not worry. The co-founder of Intel tried his hand at 

crystal gazing once—and struck gold. His celebrated law makes the 

outlandish prediction that every 18 months, like clockwork, white-clad 

technicians will huddle in a silicon wafer clean room and cram twice as 

many transistors onto a microchip.  

Moore's Law has ruled the roost for the last 40 years. All the oohs and aahs 

you hear about the digital revolution are nothing but the squeals humans 

emit when tickled pink by Moore's Law. From the nice (medical imaging, 

e-commerce, whole-genome sequencing) to the vital (Xbox, IM, iPod), its 

rule has been a veritable ticklefest. Moore's Law has been the sizzling 

cauldron in which savvy cooks have whipped up a dazzling variety of tasty 

dishes. Without it, the Information Superhighway would be a back alley to 

Snoozeville;  the coolest thing about a computer would still be the blinking 

lights.  

Moore's law has had a good run but, alas, its days are numbered. By mid-

415



century, a repeal is all but certain. With the heady days of the Incredible 

Shrinking Chip receding in the past, expect the revolution to grind to a halt; 

expect pioneers to give way to tinkerers. Bye-bye ticklefest, hello slumber 

party.  

No tears please. Perched atop their towering achievements, computer 

scientists (the cooks, remember?) will bask in the soothing certainty that 

their glorious science died at its peak. With a tinge of sadness but not a 

little pride, they'll chime in unison There is nothing new to be discovered 

in computer science now.  

If you think you've seen this movie before, you have. A few short years 

before Einstein turned our world upside down, the great Lord Kelvin 

bloviated this gem for the ages: There is nothing new to be discovered in 

physics now. Not his lordship's finest hour.  

Moore's Law has fueled computer science's sizzle and sparkle, but it may 

have obscured its uncanny resemblance to pre-Einstein physics: healthy 

and plump—and ripe for a revolution. Computing promises to be the most 

disruptive scientific paradigm since quantum mechanics. Unfortunately, it 

is the proverbial riddle wrapped in a mystery inside an enigma. The stakes 

are high, for our inability to get what computing is all about may well 

play iceberg to the Titanic of modern science.  

Brilliant foresight or latest tripe from the Kelvin school of prophecy?  

Computing is the meeting point of three Big Ideas: universality; duality; 

self-reference. To this triad, the modern view adds the concept of 

tractability and the revolutionary algorithmic paradigm. Here's how it 

works:  

Universality  Few would mistake your iPod for an IBM Blue Gene/L—the 

world's fastest computer. Yet, fundamentally, the two are the same. Why is 

that? At the heart of your iPod is a written document made of two parts: 

program, data . The data section stores the songs as long sequences of 0s 

and 1s. The program section explains in words (again, 0s and 1s) how to 

read the data and turn it into sound. Add to this mix a smattering of 

hardware, the control, to read the program and follow its instructions, and 

voilà: you've got yourself an iPod. The beauty of the scheme is that the 

control need not know a thing about music. In fact, simply by downloading 
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the appropriate program/data document, you can turn your iPod into an 

earthquake simulator, a word processor, a web browser, or a paperweight. 

Your dainty little MP3 player is a universal computer.  

Separating control (the hardware) from program (the software) was the 

major insight of Alan Turing—well, besides this little codebreaking thing he 

did in Bletchley Park that helped win World War II. The separation was the 

key to universality. No one had seen anything quite like it before. At least 

not since the Chinese philosopher opined: Give a man a fish and you feed 

him for a day. Teach a man to fish and you feed him for a lifetime. In 

Confucius's hands, the specialized view of fishing = river + fisherman finds 

itself replaced by a universal one: fishing = river + fishing manual + you. 

There you have it, computing = data + program + control. The control part 

of your iPod is a marvel of electronics, but the shocker is that it need not be 

so: universal computers can be built with control boxes vastly simpler than 

a cuckoo clock. For all purposes, computing = data + program.  

Duality   Consider the iPod document Print this, Let 'em eat cake . Push 

the start button and watch the words Let 'em eat cake flash across the 

screen. Note how the program part of the document, Print this, is 

interpreted as a command—printing is what it wants and printing is what it 

gets. Contrast this with the data part, Let 'em eat cake, which is treated as 

plain text: no one's eating anything (to Marie-Antoinette's later chagrin). 

Strings of 0s and 1s are interpreted in one of two ways: as form (data) or as 

content (program). Tapping into the comic, artistic, and academic potential 

of this duality, great minds went to work: Abbott and Costello ( Who's on 

First? ), Magritte ( Ceci n'est pas une pipe ), and Saussure ( signified vs. 

signifier ). Staring at the sublime will, of course, send the deeper thinkers 

among us rushing for the classics—such as Homer Simpson's immortal 

quip: Oh Marge, cartoons don't have any deep meaning; they're just stupid 

drawings that give you a cheap laugh.  

Self-Reference   Write the iPod document Print this twice, Print this 

twice and press the start button. The screen lights up with the words: 

Print this twice, Print this twice . Lo and behold, the thing prints itself! 

Just like a computer virus (remember, I did not teach you this). The magic 

word is twice. For example, the iPod document Print this, Print this

prints this: Print this —more Dr. Seuss than self-replication.  

The Big Ideas were the air that the Gang of Four, Princeton branch, 
417



breathed all day—that would be Alonzo Church, Alan Turing, Kurt Gödel, 

and John von Neumann. Mother Nature, of course, figured it all out a few 

billion years earlier. Reformat your genome by lining up the two strands of 

DNA one after the other, so it looks like a regular program-data iPod 

document (billions of letters long though):  

ACAAGAT...GCCATTG,    TGTTCTA...CGGTAAC .  

The base pairings (A,T) and (C,G) ensure that the two strands spell the 

same word with different letters. So, we lose no genomic information if we 

translate the data part and rewrite the whole document as the duplicated 

text  

ACAAGAT...GCCATTG,    ACAAGAT...GCCATTG .  

This is the biological analog of Print this twice, Print this twice . Life's but 

a walking shadow, Macbeth warned us. Not quite. Life's but a self-printing 

iPod! Offended souls will bang on preachily about there being more to 

human life than the blind pursuit of self-replication—though Hollywood's 

typical fare would seem to refute that. Existential angst aside, duality is the 

option we have to interpret the word ACAAGAT...GCCATTG either as genes 

(the form encoding our genome) or as proteins (the content mediating 

the DNA replication). Self-reference is the duplication embodied in the 

base pairings. Viewed through the computing lens, life = duality + self-

reference.  

In the 1953 Nature article that unveiled to the world the structure of DNA, 

Watson and Crick signed off with this lovely understatement: It has not 

escaped our notice that the specific pairing we have postulated 

immediately suggests a possible copying mechanism for the genetic 

material.  Duality and self-reference embedded in molecules: what sweet 

music to Turing's ears this must have been! Alas, our war hero was a little 

distracted at the time, busy as he was enjoying the rewards that the British 

authorities had lavished upon him for saving millions of lives during World 

War II—generous rewards like a court conviction for homosexuality with a 

sentence of forced estrogen injections. Almost one year to the day of 

Watson and Crick's triumph, Alan Turing went home, injected cyanide into 

an apple, ate it, and died. His mother preferred to believe it was an 

accident.  
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Tractability   The genesis of this fourth Big Idea was the ho-hum 

observation that checking the validity of a math proof tends to be much 

easier than finding the proof in the first place. But is it really? Amazingly, 

no one knows.  

Welcome to the most important open question in all of computer science!  

Ever wondered if your iPod's 5000-tune library is rich enough to let you 

compile a playlist of a thousand songs, no two which have ever been played 

back-to-back on MTV? Let's hope not, because not even an IBM Blue 

Gene/L could do the job in less time than has passed since dinosaurs were 

last seen roaming the earth. To find such a playlist (proof-finding) seems 

hopelessly hard, even on a computer, but to test whether a tentative playlist 

fits the bill (proof-checking) is a cinch: simply match all possible pairs 

against MTV's complete playlist, which is readily accessible on the web.  

The twin reality of hard proof-finding and easy proof-checking is hardly an 

MTV-induced aberration. Computer scientists have catalogued over 1000 

problems just like it. Of course, courtesy of Murphy's Law, these Jurassic-

1K include all of the questions humanity is desperate to answer—in 

artificial intelligence, computational biology, resource allocation, rational 

drug design, etc.  

OK, so life is tough. But since when has that observation qualified as a Big 

Idea?  

Since 1970, roughly. Just as Einstein rebuilt Newtonian mechanics around 

the constancy of the speed of light, Cook, Edmonds, Karp, and Levin set out 

to rebuild computing around the notion of tractability. A problem is 

tractable if it can be solved in time growing polynomially in the input size, 

which is a fancy way of saying 'reasonably fast.' None of the Jurassic-1K 

appear to be tractable. At least those in the know believe they are not—of 

course, not so long ago, those in the know believed the earth was flat. Sadly, 

the great promise of computing seems to lie with problems afflicted with 

exponentialitis: the dreaded ailment that places even small-size problems 

beyond the reach of any computer.  

This much we know: it's genetic. If a single one of the Jurassic-1K is 

tractable then, wonder of wonders, all of them are. These tough puzzles are 

nothing but different translations of the same Shakespeare play. Heady 
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stuff! The day your playlist question can be answered in a few hours will be 

the day public-key cryptography dies, bringing down with it all of e-

commerce. That day will see biology conquer its highest peak, protein 

folding, and mathematicians contemplate early retirement. Indeed, the day 

the Jurassic-1K are shown to be tractable (P=NP in computer parlance), 

proof-finding will be revealed to be no more difficult than proof-checking. 

Andrew Wiles, the conqueror of Fermat's Last Theorem, will be found to 

deserve no more credit than his referees. (Note that this says nothing about 

understanding the proof.) To be P or not to be P, that is NP's question. It is 

likely that P=NP would do for science what the discovery of the wheel did 

for land transportation. Little wonder no one believes it.  

To discover the wheel is always nice, but to roll logs in the mud has its 

charms, too. Likewise, the intractability of proof-finding would have its 

benefits. When you purchase a book from Amazon, the assurance that your 

transaction is secure is predicated on more than your endearing naiveté. 

For one thing, it relies critically on the intractability of factoring a number 

into primes.  

Just as modern physics shattered the platonic view of a reality amenable to 

noninvasive observation, tractability clobbers classical notions of 

knowledge, trust, persuasion, and belief. No less. For a taste of it, consider 

the great zero-knowledge (ZK) paradox: two mutually distrusting parties 

can convince each other that each one holds a particular piece of 

information without revealing a thing about it. Picture two filthy-rich 

businessmen stuck in an elevator. Their immediate goal is (what else?) 

finding out who's the wealthier. ZK dialogues provide them with the means 

to do so while revealing zero information about their own worth (material 

worth, that is—the other kind is already in full view). 

Here is a ZK question for the State Department: can a signatory to the 

Nuclear Non-Proliferation Treaty demonstrate compliance without 

revealing any information whatsoever about its nuclear facilities? Just as 

game theory influenced the thinking of cold war strategists, don't be 

surprised to see ZK theory become the rage in international relations 

circles.  

Tractability reaches far beyond the racetrack where computing competes 

for speed. It literally forces us to think differently. The agent of change is 

the ubiquitous algorithm.  
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The Algorithmic Revolution   An algorithm is an iPod program with a 

human face. If a computer could wash your hair, its program would look 

like 0110001100100110... but the algorithm behind it might read: Rinse, 

lather, repeat. (Don't try this at home if you're a computer scientist.) An 

algorithm is a list of instructions that tells the computer what to do. It may 

loop around and entertain alternatives, as in Rinse, lather, repeat if 

unhappy, dry, go to office, answer question: why didn't you rinse the 

shampoo off your hair? An algorithm is, in essence, a work of literature.  

The library's bottom shelves might stack the one-line zingers—algorithmic 

miniatures that loop through a trivial algebraic calculation to produce 

fractals (pictures of dazzling beauty and infinite intricacy) or print the 

transcendentally mysterious digits of . Algorithmic zingers can do 

everything. For the rest, we have the sonnets on the middle shelves. With 

names like FFT, RSA, LLL, AKS, they are short and crisp, and tend to pack 

more ingenuity per square inch than anything else in the computing world. 

The top shelves hold the lush, richly textured, multilayered novels.  

Give it to them, algorithmic zingers know how to make a scientist swoon. 

No one who's ever tried to compute the digits of  by hand can remain 

unmoved by the sight of its decimal expansion flooding a computer screen 

like lava flowing down a volcano. And that's not even the awesome part. For 

that, one must turn to the infamous Brazilian butterfly whose evil wing 

flaps cause typhoons in China. Zingers embody the potential of a local 

action to unleash colossal forces on a global scale: complexity emerging out 

of triviality. Cellular automata, chaos theory, dynamical systems, and all 

that.  

For a glimpse of the fiction genre on the top shelves, check out PCP. 

Suppose that, after popping the genius pill, you wake up one bright 

morning with a complete proof of the Riemann hypothesis in your head 

(that's the Notorious B.I.G. of math rap: the biggest open problem in the 

field). Few number theorists are likely to listen to your story. That is, until 

you offer them the PCP deal. You'll write down your proof in an agreed-

upon format, and then let a verifier pick 10 lines at random. On the basis 

of these 10 lines alone, the verifier will decide whether your proof is correct. 

The shocker: beyond any reasonable doubt, she will be right! (Randomness 

plays a key role, but the chance of erring is less than that of the proverbial 

monkey typing all of Hamlet flawlessly.)  
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The mind reels. If your proof is fine, then it will pass any test the verifier 

can throw at it. But, based on only 10 lines, how can she know that you've 

proven the Riemann hypothesis and not a baby cousin like 2+2=4? If your 

proof is bogus, the intuition does not help much either. Presumably, the 

agreed-upon format is designed to smear any bug all across the proof. But 

how will the verifier be sure that you didn't play fast and loose with the 

formatting rules? So many ways to cheat; so little evidence to check. The 

PCP algorithm upends basic notions of evidence and persuasion, and 

accomplishes what is usually philosophy's prerogative: to turn the 

comprehended into the incomprehensible. Somewhere, Wittgenstein must 

be smiling.  

Moore's Law has put computing on the map. Algorithms will now unleash 

its true potential. Physics, astronomy, and chemistry are all sciences of 

formulae. Chaos theory moved the algorithmic zinger to centerstage. The 

quantitative sciences of the 21st century (eg, genomics, neurobiology) will 

complete the dethronement of the formula by placing the algorithm at the 

core of their modus operandi. Algorithmic thinking is likely to cause the 

most disruptive paradigm shift in the sciences since quantum mechanics. 

And yes, you may trust the future to be kind to this prediction.  
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Sensor Networks: A Digital Sensor Networks: A Digital 
Bridge to the Physical WorldBridge to the Physical World

Leonidas Guibas
Computer Science Dept.
Stanford University

Sensing Networking

Computation

NHC Spring School and
Workshop on Discrete Algorithms

2

Introduction

Distributed algorithms
Networking
Databases
Software radios
Software design

Low-power processors
Signal processing
Wireless communication
Information theory
Estimation theory

CS EE

Many good algorithmic and theoretical questions!
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Lecture Outline

Part 1: Introduction to Wireless Sensor 
Networks

Distributed monitoring applications; Sensor network 
hardware; Research issues in sensor networks; 
Naming and routing; Sensor tasking and control.

Part 2: Structure Discovery and Information 
Brokerage 

Morphological analysis (boundaries, holes, bridges); 
Landmarks and local coordinates; Information 
diffusion; Hierarchical hashing.

Part 3: Lightweight Spatio-Temporal Reasoning
Configuration spaces; Collaboration groups; Identity 
management; Occupancy tracking; Conclusion

4

Rockwell HiDRA

Environmental sensing

Traffic, habitats, pollution, 
hazards, security

Industrial sensing

Machine monitoring and 
diagnostics (IC fab)
Power/telecom grid 
monitoring

Human-centered 
computing

Smart, human-aware spaces 
and environments

Berkeley/Crossbow Motes

Untethered micro sensors will go anywhere and measure 
anything -- traffic flow, water level, number of people 
walking by, temperature.  This is developing into 
something like a nervous system for the earth. -- Horst 

Stormer in Business Week, 8/23-30, 1999.

Smart Sensors and 
Sensor Networks

UCLA WINS

Sensing Networking

Computation

TelosB Crossbow Mote

5

Wireless Sensor Networks

Distributed systems 
consisting of small, 
untethered, low-power 
nodes capable of 
sensing, processing, and 
wireless communication

small

large

RFID

PDA

Sensoria Node

MS Spot Watch

Ember
transceiver

6

Monitoring the World

Monitoring the 
environment and 
other spaces
Monitoring objects
Monitoring 
interactions between 
objects, or between 
objects and their 
environment
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Petrel Nesting Behavior at Great 
Duck Island

8

Wireless Sensor Network 
Deployment

Advantages:
sensors can be close to signal 
sources, yielding high SNR
phenomena can be monitored 
that are widely distributed 
across space and time

a `macroscope’ [Culler]

a distributed architecture 
provides for scalable, robust 
and self-repairing systems
significant installation savings 
on cabling, etc. are possible

British Columbia winery
with networked temperature
sensors

Other data collection and monitoring: temperature
in data centers (HP), oil tanker vibrations (BP/Intel),
soil contaminants, etc.

9

Integration with Current Networks

Access to unfiltered information, highly localized in time and space.
Plans for next generation Internet all include edge sensor networks.

10

More Demanding Sensor 
Network Applications

Beyond simple data collection 
and aggregation

dynamic, mobile foci of activity 
(tracking mobile objects)
Amidst clutter of irrelevant 
data
distributed attention: focus and 
context 
acting on the world (closing 
the loop)

Network must adapt to highly 
dynamic foci of activity
Sensing is driven by user 
queries
Sensing and communication 
tasks must be planned and 
allocated
Resources must be 
apportioned between 
detection, tracking, etc.

11

Sensor Network 
Hardware

12

Wireless Sensor Trends

Riding on Moore’s law, smart sensors get:

Of 9.6 billion µP’s shipped in 
2005, 98% were embedded 
processors!

Sensoria WINSNG 2.0
CPU: 300 MIPS 
1.1 GFLOP FPU
32MB Flash
32MB RAM
Sensors: external

More powerful

Crossbow Mica2dot 
mote
4 MIPS CPU (integer only)
8KB Flash
512B RAM
Sensors: on board stack
(accel, light , microphone)

Inexpensive & simple

Smart dust (in 
progress)
CPU, Memory: TBD 
(LESS!)
Sensors: integrated

Supercheap & tinyEasy to use

HP iPAQ w/802.11
CPU: 240 MIPS
32MB Flash
64MB RAM
Both integrated and off-
board sensors
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Currently Popular: Crossbow Motes

51-pin MICA2 / GPIO 
Connector

Buzzer

Light & Temperature 
Sensor

Microphone

Chipcon CC2420 
802.15.4 Radio

Atmel ATMega128L

(under)

14

Crossbow Stargate - Top View

Ethernet 
RJ-45 USB

Serial Port RS-232

PCMCIA 
SLOT

15

Crossbow Stargate - Bottom View

Compact 
Flash Slot

SA 1111 StrongArm I/O 
Chip

Intel PXA255 Xscale
Processor

51-pin MICA2 / GPIO 
Connector

16

Specifications
Stargate

Embedded Linux OS
400 Mhz Intel Xscale
64 MB SDRAM
32 MB FLASH
Many different 
interfaces

RS-232, Ethernet, 
USB,…

MicaZ Mote
• TinyOS
• 16 Mhz Atmel ATMega128L
• 128 kB Program FLASH
• 512 kB Serial FLASH
• Current Draw

• 8 mA – Active Mode
• <15 uA – Sleep Mode

• Chipcon CC2420 802.15.4 Radio
• 250 kbps
• 26 Channels – 2.4 Ghz
• Current Draw – 15 mA

www.xbow.com
http://computer.howstuffworks.com/mote4.htm
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Power Breakdown …

Panasonic CR2354
560 mAh

This means
– Lithium Battery runs for 35 

hours at peak load and years at 
minimum load, a three orders of 
magnitude difference!

003 mAEE-Prom

0
0
0

4.5 mA (RX)
2 mA

Idle

0200 �ATemperature
0200 �APhoto Diode
04 mALED’s

5 �A7 mA (TX)Radio
5 �A5 mACPU

SleepActive

Rene motes data, Jason Hill

Computation/communication ratio per byte:

• Rene motes:

• Comm: (7mA*3V/10e3)*8=16.8�J per 8 bit

• Comp: 5mA*3V/4e6=3.8 nJ per instruction

• Ratio: 4,400 instructions/hop

• Sensoria nodes:

• Comm: (100mW/56e3)*32=58�J per 32 bit

• Comp: 750mW/1.1e9=0.7nJ per instruction

• Ratio: 82,000 instructions/hop 18

Architectural
Challenges
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Sensor Network Challenges
Power management

communication 1000s of times 
more expensive than 
computation
load balancing across nodes
coordinated sleeping/awake 
schedules
correlated sensor data

In-network processing
data aggregation
overcounting of evidence

Difficult calibration
localization
time-synchronization

Constant variability
networking
sensing

[Picture from CACM June 2004]
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Dense Sampling: Multi-Hop RF 
Advantage

( ) 1

( )

( )send Nr receive

send r receive

P Nr P
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Oversimplified: fixed overheads, delay, etc.
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Dense Sampling: Detection and SNR 
Advantage

2

source

receive

P
P

r
∝Acoustic power received at distance r:

10log 10log 10log 10log 20log
r receive noise source noise

SNR P P P P r= − = − −

Signal-noise ratio (SNR):

20log 10log
r r

N

r
SNR SNR N

r

N

− = =

Increasing the sensor density by a factor of N gives a SNR 
advantage of:

Sensors have a finite sensing range. A denser sensor field 
improves the odds of detecting a target within the range. Once 
inside the range, further increasing sensor density by N improves 
the SNR by 10logN db (in 2D). Consider the acoustic sensing 
case:
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Collaborative Estimation
Structuring communication is very important:

In a setting where each node wishes to communicate 
some data to another node at random, interference 
hinders scaling:

the per node throughput scales as        (Gupta & Kumar ‘99)

Effectively each node is using all of its energy to route
messages for other nodes.

In a sensor network, however, because data from
nearby sensors are highly correlated, more
intelligent information dissemination strategies are
possible.

1

N

23

Networking Sensor Networks

Network support for a small number 
of collaborative tasks.
Data-centric, (as opposed to a 
node-centric) view of the world.
Monitoring processes may migrate 
from node to node, as the 
phenomena of interest move or 
evolve.
Communication flow and structure 
is dictated by the geography of 
signal landscapes and the overall 
network task.

24

`Semantic’ Routing and 
Networking

We want to address 
spatial locations or 
information, not individual 
nodes
Content and address in a 
message get intermixed –
unlike classical networks
In a distributed setting, 
how do we help 
information providers and 
information consumers 
find each other?

Directed diffusion
Geo-routing

426



25

In-Network Processing

Information aggregation can 
happen on the way to a 
destination and provide 
substantial energy savings
Need to balance quality of 
paths with quality of 
information collected
But aggregation makes data 
lineage harder to ascertain
Can we have “application-
independent” paradigms of 
information aggregation? Temperature aggregation

26

Power-Aware Sensing, 
Computing, and Communication

Variable power systems
Let most sensors sleep 
most of the time; use 
paging channels
Exploit correlation in 
readings between nearby 
sensors
Load-balance, to avoid 
depleting critical nodes

Wireless 
communication with 
neighboring nodes

In-node 
processing

27

Sensor Tasking and Control

Decide which sensors 
should sense and 
communicate, according 
to the high-level task – a 
non-trivial algorithmic 
problem
Direct sensing of 
relations relevant to the 
task – do not estimate full 
world state d ahead-of 

e

c ahead-of 
d

b ahead-of 
c

a ahead-of 
b

28

Enable Data-Base Like 
Operations

Data only available right 
after sensing operation
Dense data streams must 
be sampled, or otherwise 
summarized
Must deal with distributed 
information storage –
“where is the data?”
Large flash memory 
availability can make in-
network storage possible

Field isolines

29

Self-Configuration for Ad-Hoc 
Deployment

Network size makes it 
impossible to 
configure each node 
individually
Environmental 
changes may require 
frequent re-calibration
Network must recover 
after node failures

Iterative localization

30

Structure Discovery

A sensor network is a 
novel type of computing 
device  -- a sensor 
computer
One of its first tasks is to 
discover its own structure 
and establish

information highways
sensor collaboration groups

as well as adapt to its 
signal landscape
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New System Architectures

Resource constraints 
require close coupling 
between the 
networking 
application layers
Can we define 
application-
independent 
programming 
abstractions for 
sensor networks?

In-network: application processing, 
data aggregation, query processing

Adaptive topology, geo-routing

MAC, time and location services

Phy: comm, sensing, actuation, SP

User queries, external 
databases

Data dissemination, storage, caching

A sensor net stack?
32

Various Issues

Integration of sensors 
with widely different 
modalities

High data-rate sensors 
(cameras, laser 
scanners)

Sensor mobility
Actuation

Distributed robotics
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What Defines Sensor Networks?

Multi-hop communication
Many nodes act as routers
Multiple paths exist and must be considered

Bandwidth limitations
Volume of data sensed exceeds to capacity of the 
network to transport

Power limitations
(At least some) nodes operate untethered and energy 
conservation must be considered in all of sensing, 
processing, and communication

A cooperative system
All nodes serve one, or a small number of tasks

34

Sensor Network Research
power awareness
sensor tasking and control
formation of sensor 
collaboration groups
in-network, distributed 
processing
node management, 
service establishment, 
software layers
coping with noise and 
uncertainty in the 
environment

Estimate full
world-state

Sense Answer query,
make decision

A key algorithmic problem is how to sense and aggregate 
only the portions of the world-state relevant to the task at 
hand, in a lightweight, energy-efficient manner.

35

Naming and Routing
in

Sensor Networks

36

Routing in Sensor Networks
Point-to-point routing protocols in communication 
networks obtain route information between pairs of 
nodes wishing to communicate. Such protocols can be

proactive: the protocol maintains routing tables at each node that 
are updated as changes in the network topology are detected 
reactive: the protocol constructs paths on demand only

Because of the high rate of topology changes, reactive 
protocols are much more appropriate for sensor 
networks
Several such protocols have already been developed for 
ad hoc mobile communication networks. Examples are:

Ad hoc on demand distance vector routing (AODV)
Dynamic source routing (DSR)

both, however, may flood the network to discover paths
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Geographic Routing
In sensor networks, naming and routing is frequently 
based on a node’s attributes and sensed data, rather 
that on some pre-assigned network address. 
Geographic routing uses a node’s location to name the 
node and discover paths to that node
We assume that

nodes know their geographic location
nodes know their 1-hop neighbors
routing destinations are specified geographically (a point, a 
region)
each packet can hold a small amount (O(1)) of additional routing 
info to record where it has been on the network
most of the time we will model the connectivity graph of the 
nodes as a unit distance graph
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Routing Desiderata

Guaranteed delivery
Path quality
Energy awareness
Robustness to low-level link volatility
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Greedy Methods

t

s

t

?
s

In a greedy method, each node
forwards a packet to its best 
neighbor

Greedy methods can get stuck
at “dead-ends”

Note that no flooding is involved
for route discovery

40

Greedy Unicast Geographic 
Routing

To go from source s to 
destination t, at each 
intermediate node x 

advance to the 
neighbor y that 
makes most progress 
towards t.

greedy distance 
routing (GPSR)
compass routing

s

t

x

y
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Neighbor Choice

y

y’

x

d

greedy distance routing
compass routing
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Greedy Protocols Can Get 
Stuck

The intermediate node x 
can be a local optimum
towards the destination
In general, local optima 
will arise if the node 
graph contains “holes” –
areas with no sensor 
nodes
To prove that such 
situations cannot happen 
we need to assume 
special properties about 
the connectivity graph G
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Delaunay Triangulations (DT)

In a Delaunay triangulation (dual to the Voronoi diagram 
of the nodes), packets cannot get stuck
However, unless the nodes are spaced very closely, it is 
unlikely that the UDG will contain all DT edges

44

Measures of Path Quality
First and foremost, a protocol should guarantee packed 
delivery, whenever such delivery is possible
Second, the quality of the path produced should be good
when compared to the optimal path available. Different 
path costs can be used:

These can be made roughly equivalent by assuming a 
constant node density or a minimum node spacing

This can be attained by a node clustering process

0,1,2,3,4,...

( ) ( ),d

e

d

c l e

�

�

�

�

�� d = 0, hop length
d = 1, normal path length
d = 2, 3, 4 ..., energy costs
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Planarizations

A planar straight-line graph has no crossing edges. It subdivides the 
plane into regions called faces.

46

Traversing Planar Graphs:
Perimeter Routing

D

Right hand rule: if we walk 
inside a face with right hand on 
the wall, we will visit every wall 
of the face

G

F

E
C

BA

Right 

hand 
ruleR

L

L

R
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Routing in Planar Graphs
To guarantee packet 
delivery, it may be 
advantageous to disable 
some connections, so as 
to make the routing graph 
planar
On a planar graph, 
perimeter routing
guarantees delivery
Another variant is other 
face routing
The quality of paths can 
be bad, however

48

All necessary information is stored in the 
message

Source and destination positions are given
Point of transition to next face needs to be chosen

Completely local:
Knowledge about direct neighbors‘ positions sufficient
Faces are implicit, only local neighbor ordering 
around each node is needed

Perimeter/Face Routing Properties

“Right Hand Rule”
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Planarizing the Communication 
Graph

We must delete just enough edges to make the graph
planar

We must do so in as local a manner as possible 50

Planarization via Geometric Graphs

Gabriel Graph

Relative Neighborhood Graph
(RNG)

Restricted Delaunay Graph
(RDG)

• defined by local rules?

• distributed construction? 

• path quality (spanning property)? 

51

Larger RNG and GB Examples

Relative Neighborhood
Graph

Gabriel Graph

52

Adaptive Algorithms
We want the quality of paths 
we discover to be nearly 
optimal
Alternatively, we want to 
discover optimal paths without 
searching the whole 
connectivity graph G
If the optimal path between s
and t has length L, then every 
node in that path is within an 
ellipse with foci s and t defined 
by L. This ellipse limits the part 
of G to be searched.
If L is not known, it can be 
guessed, approximately 

tss

In general, finding a path of length
L requires O(L2) work.

53

Average Path Quality
Not interesting when graph not dense enough
Not interesting when graph is too dense
Critical density range (“percolation theory”)

Shortest path is significantly longer than Euclidean distance

too sparse too densecritical density
54

Shortest path is significantly longer than 
Euclidean distance

Critical Density: Shortest Path 
vs. Euclidean Distance
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Randomly Generated Graphs: 
Critical Density Range
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Combining Greedy and Planarization Strategies: 

Greedy Perimeter Stateless Routing (GPSR) 

Use greedy distance protocol on the full graph 
G

If stuck, switch to perimeter protocol on a 
planarization of G, until a node closer to the 
destination than the stuck node is encountered

[Bose and Morin 1999,
Karp and Kung, Mobicom 2000]: 
Planarize the connectivity graph G

57

Planarization Process Is Not 
Robust

Gabriel and RNG 
depend on the unit 
disk communication 
graph assumption
Localization errors 
also cause serious 
problems

58

Greedy Protocols May Overload 
Critical Nodes

GPSR [Karp, Kung,  ’00]
GOAFR+ [Kuhn, Wattenhofer, Zhang, and Zollinger, ’03]

59

Main Point

Knowledge of the nodes’ locations enables 
many powerful mechanisms for message 
transport and route discovery that avoid 
expensive flooding operations yet require 
no routing tables or other high-
maintenance data structures.
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Sensor Tasking and Control
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Programming Sensornets: 
Where the Two Sides Meet

Platform View
Spend more time designing 

system/component-level abstractions
Spend more time designing 

application-level abstractions

Information Processing View

hardware

layers of

abstraction

application

algorithms

levels of

refinement

common substrates

software

synthesis

compilation
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Collaborative Processing in Sensor Networks

What information is critical for 
the high-level tasks?
What is the cost of accessing 
the information?
Which nodes should participate 
in sensing, processing, or 
communication?
How should the information be 
migrated?
What is routing or querying in 
this context?

The information processing needs largely 
determine the roles of nodes, as well as the 
required support by other layers of a sensor 
network

63

• Information needs and resource 
constraints define who should 
participate in the processing groups

• Group membership (e.g. location)
defines the behavior of a node

• Challenges
• Dynamic collaboration among nodes
• Global property from local execution
• Competing events/tasks
• Real-time constraints/adaptation

Collaborative Processing
Group Formation in Sensor Networks

64

Summary

Ubiquitous networked sensors provide a dense spatial 
and temporal sensing of the physical world

They potentially provide low-latency access to 
information that is highly localized in time and space, 

and thus provide a way to sense and act on the physical 

world beyond what has been possible up to now

Sensor networks raise many research issues at the 

physical node level, the system architecture level, and 
the algorithm deployment level

65

A Relevant Text

Wireless Sensor 
Networks: An 
Information 
Processing Approach

Feng Zhao and 
Leonidas Guibas

Morgan-Kaufmann 2004

66

The End
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Structure Discovery and Information Structure Discovery and Information 
Brokerage in Sensor NetworksBrokerage in Sensor Networks

Leonidas Guibas
Computer Science Dept.
Stanford University

Sensing Networking

Computation

Structure DiscoveryStructure Discovery

A sensor network is a 
novel type of computing 
device  -- a sensor 
computer
One of its first tasks is to 
discover its own structure 
and establish

information highways
sensor collaboration groups

as well as adapt to its 
signal landscape

[From D. Estrin]

Information BrokerageInformation Brokerage
Information providers 
(sources, producers) and 
information seekers 
(sinks, consumers) need 
ways to find out about 
and rendez-vous with 
each other
Challenges:

Neither knows where the 
other is
Highly dynamic 
environment
Limited computation and 
communication resources

Talk OutlineTalk Outline

Naming and Routing 
Landmarks and local coordinates 
Hierarchical landmarks 

Sensor Layout Analysis
Boundary/hole detection 

Information Dissemination and Aggregation
Sweep 

Information Brokerage
Hierarchical geographic hashing 
Double rulings 
Information gradients 

What if our sampling is 
bad?

What if the network is 
volatile?

A Dilemma: Which Structure?A Dilemma: Which Structure?

Nodes are embedded in 
a physical space. Should 
we adopt the naming and 
routing structures 
already available in the 
host space?
Or should we invent a 
space that better reflects 
the true network 
topology, and use that 
instead?

Ordinary
communication
networks

Sensor
networks

Geometric
structures

Greedy Geographic RoutingGreedy Geographic Routing

t

s

In a greedy manner, each node
forwards a packet to its best 
neighbor

Note that there is little global
state, yet no flooding is involved
for route discovery

Assume known node positions

s

t
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Such Greedy Protocols Get Stuck, Such Greedy Protocols Get Stuck, 
May Overload Critical NodesMay Overload Critical Nodes

GPSR [Karp, Kung,  ’00]
GOAFR+ [Kuhn, Wattenhofer, Zhang, and Zollinger, ’03]

These require building a planar
subgraph of the connectivity
graph – not a robust process

Global Embedding ChallengesGlobal Embedding Challenges

• Routing on virtual coordinates

– Only works in 2-D space

– Planarization is tricky (CLDP, etc.)

– Sensitive to location inaccuracy

– Requires a global embedding of the 
link connectivity graph in the plane 

– Forcing a 2-D layout on a 3-D 
deployment may ignore much of the
actual connectivity

• Routing on geographic coordinates

Naming an Routing Based on Naming an Routing Based on 
Connectivity Information OnlyConnectivity Information Only

A two-tier approach utilizing combinatorial 
Delaunay complexes and local 
coordinates (GLIDER)
A hierarchical approach using the 
Discrete Center Hierarchy (DCH)

I. Using Landmarks and Local I. Using Landmarks and Local 
Coordinates: GLIDERCoordinates: GLIDER

Given a communication 
graph on sensor nodes 
with distances defined by 
hop counts
Perform structure 
discovery:

Select a set of landmarks
Construct the Landmark 
Voronoi Complex (LVC)
Extract the Combinatorial 
Delaunay Triangulation 
(CDT) graph on 
landmarks

G is connected G is connected ⇔⇔ CDT D(L) connectedCDT D(L) connected

D(L) is compact –
topology capture has 
complexity dependent on 
the number of large-
scale features in the 
environment
D(L) is stable – low- level 
link volatility unlikely to 
affect the combinatorial 
complex

D(L) is a global network atlas that can
be known to all landmarks, or even
all nodes

Local Routing with Global Local Routing with Global 
GuidanceGuidance

Global Guidance
the D(L) encodes global connectivity 
information that is accessible to every node 
for proactive route planning on tiles.
Local Routing
high-level routes on tiles are realized as 
actual paths in the network by using local 
reactive protocols.
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Information Stored at Each Information Stored at Each 
NodeNode

The parents on the shortest 
paths to its home landmark, 
and its neighbor landmarks
A bit to record if the node is 
on the boundary of a tile
Its coordinates and those of 
its neighbors for intra-tile 
greedy routing
Landmark nodes store the 
atlas D(L)

GLIDER GLIDER ---- RoutingRouting

Routing
Global route plan
Local route

inter-tile
intra-tile

p

q
u1

u2

u3

Local virtual coordinates:

c(p)= (pL0
2– s,…, pLk

2– s)

(centered metric)

Distance function:

d(p, q) = |c(p) – c(q)|2

The Last Mile: Local The Last Mile: Local 
Coordinates and Greedy Coordinates and Greedy 
RoutingRouting

Greedy strategy: to reach q, do gradient descent on the function d(p, q)

L2

L1

p

L5

L4

L3

L0

q

Reference landmarks: L0,…Lk

T(p) = L0

Let s = mean(pL0
2,…, pLk

2)

Local Landmark Coordinates Local Landmark Coordinates ––
No Local MinimaNo Local Minima

Theorem: In the continuous 
Euclidean plane, gradient descent 
on the function d(p, q) always 
converges to the destination q, 
provided that there are at least three 
non-collinear landmarks.

In the discrete case, we empirically 
observe that landmark gradient 
descending does not get stuck on 
networks with reasonable density 
(each node has on average six 
neighbors or more). 

Centered vs. Centered vs. UncenteredUncentered MetricsMetrics

����������	 �����
����	
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Simulations Simulations –– Path Length Path Length 
and Load Balancingand Load Balancing

GPSRGLIDER

Each node on average has six one-hop neighbors

Simulations Simulations –– Hot Spot Hot Spot 
ComparisonComparison

Randomly pick 45 source and destination pairs, each separated by more 
than 30 hops.

Blue (6-8 transit paths), orange (9-11 transit paths), black (>11 transit paths)

GPSRGLIDER

II. Naming and Routing via II. Naming and Routing via 
Hierarchical DecompositionsHierarchical Decompositions
of Graphsof Graphs

Generalize quadtrees
No node geographic 
coordinates assumed
Required properties:

Clusters in level i of the 
decomposition have 
diameter at most α � 2i, 
where α is a constant
Each cluster in level i+1 
contains a small (constant) 
number of clusters in level i

Examples of Examples of HDsHDs

A quad-tree induces a HD 
when the sensor field is 
dense and node coordinates 
are available.
Discrete Center Hierarchy:

A hierarchical sampling of the 
nodes so that:

Nodes in level i are at least 2i

hops apart
Each node in level i is within 
2i+1 hops from some node in 
level i+1

Addressing SchemeAddressing Scheme
A HD yields an IP-type addressing scheme for nodes
Clusters are also assigned addresses

Neighboring Clusters andNeighboring Clusters and
Local Routing TablesLocal Routing Tables

Def: A cluster L at level k is a 
neighboring cluster of a

node v if dist(v, L) � α �2k+1

A routing table is stored at each 
node, providing hop distances 
to all its neighboring clusters

Under mild assumptions, each 
node has O(log n) neighboring 
clusters

v

L

� α � 2k+1

diam(L) � α � 2k
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Getting to Your DestinationGetting to Your Destination

Head in the 
direction of the 
cluster with the 
longest prefix that 
agrees with your 
destination 
address
Use local routing 
tables to make 
the best local 
decision

1

1.4
1.4.2

going to 1.4.2

Routing SchemeRouting Scheme

Routing quality:
By proof:

Efficient: |path(u,v)| � 4 � |duv|

By simulation:
Balanced: Nodes high up in 
the hierarchy do not get 
overloaded
Robust: the failure of any 
given link does not affect 
many paths

HD path – Shortest path

Experimental ResultsExperimental Results

Paths generated are near optimal

Routing quality (2000 nodes)

degree 6.21

GPSR path

Quality = HD path length
Shortest path length

Hot SpotsHot Spots

GPSR HD

HD does not hug holes as much as GPSR

2000 nodes, perturbed grid
100 random paths
max load = 32

Routing ScalabilityRouting Scalability

Storage used grows slowly
Network initialization cost ~ storage used

0

10

20

30

40

50

60

70

80

100 1000 10000 100000

Number of nodes in network

S
to

ra
g

e
 p

e
r 

n
o

d
e

 r
e

q
u

ir
e

d

Avg

Min

Max

Routing RobustnessRouting Robustness

Routing performance degrades gracefully
as node failure rate increases

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 0.05 0.1 0.15 0.2

Node failure rate

R
o

u
ti

n
g

 s
u

c
c

e
s

s
 r

a
te

deg-7

deg-8

deg-9

deg-12

438



HD Names and Routes SummaryHD Names and Routes Summary

HD effectively discovers the intrinsic 
geometry of the network
Provides a hierarchy-based scheme with 
provable approximation quality on the 
routing paths
Node/link failures affect mostly the low 
levels of the hierarchy

Sensor Layout AnalysisSensor Layout Analysis

Boundary/hole detection 
Robust planarization of the 
communication graph 

Boundary DetectionBoundary Detection Information Dissemination and Information Dissemination and 
AggregationAggregation

Most sensor network applications need a 
robust and efficient implementation of 
certain basic data operations
In such a data operations library one 
needs to include:

data dissemination (code images, parameter 
settings, etc.)
in-network data aggregation

Related WorkRelated Work

Tree-based approaches
TAG/DAG

Synopsis diffusion

• Epidemic approaches
– Trickle/Deluge

• Independent dominating sets

Data AggregationData Dissemination
TreeTree--Based Approaches Are Based Approaches Are 

FragileFragile

Single links are 
relied upon
Long interval 
between 
establishment and 
use
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Sweeps over a Sensor NetworkSweeps over a Sensor Network

Unswept nodes
Nodes in sweep
Swept nodes

Swept

Sweep front Unswept

Direction of sweep propagation[Skraba, Fang, Nguyen, G. 2006]

Global PictureGlobal Picture

Nodes are invited to join in the 
sweep by already active 
neighbors
Nodes remove themselves 
from the sweep after they and 
all their neighbors have been 
processed
A select subset of the nodes 
always holds the state of the 
sweep
Active band moves across the 
network as nodes join and 
remove themselves
Locality of advancing tests 
allows for parallelism

Sweep Requirements Sweep Requirements 

Cover all nodes in a network, each 
exactly once
Use a small active band
Robust to link volatility
Local, asynchronous control

PreprocessingPreprocessing

Structure discovery
Some global information 
needs to be extracted from 
the network

Boundary detection
source and sink for the 
sweep

Auxiliary info for sweep 
control

Potential Field for Potential Field for WavefrontWavefront
DiffusionDiffusion

Part of preprocessing 
Potential field

Sense of direction
Ordering

Stable
Used for many sweeps

Potential Field ConstructionPotential Field Construction

Fix potential values at certain 
boundary nodes 
Regular nodes iteratively 
average over neighbors’ values

Jacobi iteration
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Intuition (Cont. Domain)Intuition (Cont. Domain)
Laplace’s equation with Dirichlet boundary conditions

Solving discretized version on communication graph
Smoothing

PropertiesProperties

Linear system
Static case: Convergence guaranteed

Convergence can be slow (but done only once)

Direct solution
No strict maxima or minima at regular nodes

Harmonic functions

Any non-plateau regular node has a strictly 
monotone path to a maximum or minimum

PlateausPlateaus
All neighbors have same value
Do not occur in continuous case
Not strict extrema
Cons: 

Potential field provides no 
information

Pros:
Easy to detect
Can also be addressed by building 
another potential within the 
pleateau
Boundary nodes can also be 
detected

Sweep AlgorithmSweep Algorithm

Begin Unswept
Receive invitation

Enter Sweep and send 
data to inviter (aggregator)

Possibly issue new 
invitations
If all upstream neighbors 
have left the sweep 

Forward data to 
downstream neighbor

Leave Sweep

SimulationsSimulations

Stability of the potential 
field
Robustness of the sweep
500 nodes
Varying degrees of 
connectivity

TOSSIM implementation
20x20 grid
Different radio models
Robust to link 
failures/collisions

ConclusionsConclusions

Class of global 
operations on a WSN
Still uses a transient 
local tree

But the tree is local 
and is used soon after 
it is built

Two-part solution
Potential field

Captures link connectivity 
and global structure
Relatively stable

Sweep
Uses the potential field 
for local control
Robust
Easily extendible
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Information BrokerageInformation Brokerage
Information providers 
(sources, producers) and 
information seekers 
(sinks, consumers) need 
ways to find out about 
and rendez-vous with 
each other
Challenges:

Neither knows where the 
other is
Highly dynamic 
environment
Limited computation and 
communication resources

Current Approaches:Current Approaches:
Directed DiffusionDirected Diffusion
[[IntanagonwiwatIntanagonwiwat, , GovindanGovindan, , EstrinEstrin ‘‘00]00]

Data-centric storage: data is named by 
attributes

Current Approaches:Current Approaches:
Geographic Hash Tables (GHT)Geographic Hash Tables (GHT)
[[RatnasamyRatnasamy, Karp, , Karp, ShenkerShenker, , EstrinEstrin, , GovindanGovindan, Yin, Yu , Yin, Yu ‘‘03]03]

Event data is stored, by 
name, at home nodes; 
home nodes are selected 
by the named attributes, 
via a hash function
Queries also go to the 
home nodes to retrieve 
the data (instead of to 
the nodes that detected 
the events)
Routing usually done 
using a geographic 
routing protocol (GPSR)

Information Brokerage IssuesInformation Brokerage Issues

Find a good balance between 
cost of information replication 
(storage size) and cost of 
information discovery (query 
time)
Load balance
Robustness

Distance-Sensitive Information Brokerage:
if producer and consumer are at a distance d,

the query cost should be O(d)

Information brokerage is 
intimately coupled with

how network nodes are 
named

do we have coordinates?

how routing is done in the 
network

Approaches to EfficientApproaches to Efficient
Information BrokerageInformation Brokerage

GLIDER-based
[Infocom 06]

Hierarchical Decompositions
of Graphs

Information Gradients

u
v

x

y

producer
consumer

Information DiffusionInformation Diffusion

Hash function: 
Generates a random 
valid address in a given 
cluster for any 
information type
µ: Σ x HD S

A producer hashes its 
information to all of its 
neighboring clusters

O(log n) hashes
Total path length to all 
hashes is O(D), where D is 
the diameter of the sensor 
field

A producer hashes its information
to many nearby nodes and to 
few far away nodes.
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Information RetrievalInformation Retrieval

Consumer v looking for a 
particular information 
examines hash locations
of that information in 
larger and larger clusters 
containing v

Thm: The length of 
retrieval path from v is at 
most 4 � duv where u is 
the producer (unknown 
to v)

u

v

Brokerage CostsBrokerage Costs

Storage cost grows slowly
Cost of query is distance sensitive

Query time =
Path length from consumer to hash location

Shortest path length to producer

HD Brokerage SummaryHD Brokerage Summary

HD effectively discovers the intrinsic 
geometry of the network
Provides a hierarchy-based scheme with 
provable approximation quality on the 
routing paths
Node/link failures affect mostly the low 
levels of the hierarchy
Enables distance sensitive information 
brokerage

Resource Discovery Using LocalResource Discovery Using Local
Double RulingsDouble Rulings

All red roads together cover 
the network in a load-balanced 
fashion 
All blue roads together cover 
the network in a load-balanced 
fashion 
For any pair of nodes A and B, 
the red road from A has to 
intersect the blue road from B 

Associate with each node two
connected 1̀-d’ structures, call
them roads – the red and blue

A double ruling derived via a Morse
function � distance to boundary

Information providers and seekers
can meet by following blue and red
roads respectively

GLIDEGLIDE--based Brokerage: based Brokerage: At the CDT At the CDT 
Level Level –– Do ContentDo Content--Based GHTBased GHT

Hashing on coarse data 
types for structured data 
storage

Both producers and consumers 
of the same content type follow 
the shortest path tree to the
hashed tile (the root of the tree).
Consumers return once the data 
are retrieved, otherwise move on 
towards the hashed tile.

Large-sized Animals

giraffes elephants ……

GHT at a coarse 
data type level

Stored in the same tile
hash to

Within Each Tile Within Each Tile –– DoubleDouble--Ruling Scheme for Ruling Scheme for 
Transit TilesTransit Tiles

Routes formed by following shortest paths to guides
The two sets of curves always meet

An example by simulation

u

consumer
producer

v

x

y

Guides v, x, y are landmarks selected 
according to a set of rules based on hashing 
and the CDT
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DoubleDouble--Ruling Scheme in Hashed TileRuling Scheme in Hashed Tile

Producers and consumers 
are guaranteed to meet by 
following the two sets of 
curves.

The consumers may not 
need to reach the hashed 
tile to fetch the data as the 
data are available at some 
transit tiles.

u
v

x

y

producer
consumer

Reducing Producer Cost Reducing Producer Cost –– En RouteEn Route Data Data 
AggregationAggregation

Producers of the same 
content type share the 
shortest path tree (on 
CDT) rooted at the 
hashed tile.

Data of the same type 
can be aggregated

Inside the tile if two 
producers share one
Inside the tile of their 
common ancestors

Locality Awareness Comparison with GHT byLocality Awareness Comparison with GHT by
SimulationsSimulations –– Transmission Cost by Individual NodeTransmission Cost by Individual Node

Scenario: one producer; all 
nodes query for the producer 
data; one big hole in the 
network connectivity graph.

Note the y-scale in figure 1 is 
twice of that in figure 2.

The total load is much lower 
than using GHT.

The load is also more 
balanced than using GHT.

1. GHT

2. Landmark-based

GLIDER Brokerage SummaryGLIDER Brokerage Summary

Distance-sensitive information brokerage is possible with 
very modest data replication

Information discovery is closely coupled with the network 
node naming and routing

In some ways, geometric methods and tools can be 
effectively used even when the connectivity graph is all 
we got 

Information PotentialsInformation Potentials

Natural phenomena typically generate 
continuous fields (temperature, pressure ...)
But it can be advantageous to also invent 
artificial potentials that diffuse information about 
event detections

Information DiffusionInformation Diffusion
Information sources can diffuse a 
quantity that we can think of as 
information strength via Laplace’s 
equation (Dirichlet boundary c.)

Information seekers can ascend 
the gradient of this potential to 
find a source 
A harmonic function � has no 
local maxima or minima – its 
gradient can guide a packet, or a 
vehicle, to its maximum
Usually smooth � by computing a 
square root, or logarithm
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Diffusion ChallengesDiffusion Challenges

Diffusion can be slow to 
converge
What if there are multiple 
sources with the same 
type of information?
What if there are many 
different types of 
sources?
What about discretization
effects?
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Dealing with Many Potential Sources:Dealing with Many Potential Sources:
Bloom Filters for Membership TestingBloom Filters for Membership Testing

Given a set S = {x1,x2,x3,…xn}
on a universe U, want to 
answer queries of the form:

Is y � S?

Example:  a set of detection 
attributes
Bloom filter provides an 
answer in

“Constant” time (time to 
hash).
Small amount of space.
But with some probability of 
being wrong.

Dealing with Many Potential Sources:Dealing with Many Potential Sources:
Network Coding to Save StorageNetwork Coding to Save Storage

Each node can compute a 
random linear combination of 
all the potentials it hears

If there are L active potential 
sources, then a neighborhood 
of size k around a node 
provides �(k2) equations 
relating the local potential 
values
But in a neighborhood of size 
k, the O(k) boundary values 
determine all the interior 
values for each potential 
(harmonic function property)
So we have enough equations 
to recover the unknown 
potentials if k > L (k2

constraints vs. kL unknowns)

Diffusion Brokerage PerformanceDiffusion Brokerage Performance
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Information Diffusion SummaryInformation Diffusion Summary

Diffused information potentials can guide 
both virtual and physical information 
seekers to the appropriate sources
Multiple sources can be handled by 
having their potentials co-mingled and 
then decoded as necessary
Sources may move and the potentials 
adapt in a smooth manner

ConclusionsConclusions

Structure discovery and information brokerage are 
fundamental problems for WSNs
With light preprocessing we can extract certain global 
quantities that can significantly help with local decisions
These quantities reflect an understanding of the 
geometry or topology of the sensor filed and do not 
require localization
The same quantities are also robust to local volatility in 
the network connectivity
Such approaches integrate very well with current 
ǹarrow waist’ sensor net protocols, such as SP 

(Berkeley)
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Lightweight Lightweight SpatioSpatio--Temporal Temporal 

Reasoning in Sensor NetworksReasoning in Sensor Networks

Leonidas Guibas
Computer Science Dept.

Stanford University

Sensing Networking

Computation

More Demanding Sensor 

Network Applications
Beyond simple data collection 
and aggregation

dynamic, mobile foci of activity 
(tracking mobile objects)

Amidst clutter of irrelevant 
data

distributed attention: focus and 
context 

acting on the world (closing 
the loop)

Network must adapt to highly 
dynamic foci of activity
Sensing is driven by user 
queries
Sensing and communication 
tasks must be planned and 
allocated
Resources must be 
apportioned between 
detection, tracking, etc.

Five Quick Vignettes on

Lightweight Spatiotemporal Reasoning

1. Tracking Wide-Area 
Phenomena

2. Counting Moving Objects

3. Distributed Identity 
Management

4. Tracking Spatial Occupancy

Network structure
discovery

Uncertainty and multiple
hypotheses

Sensor selection

Sensor collaboration groups

Lightweight information
integration

V1. Large-Area Phenomena

A chemical plume blows 
over a city after a factory 

leak.

Networked sensors are 

air-dropped to track its 

extent and motion.

The sensors organize 

themselves as 
appropriate, in order to 

perform this task. 

Sensor dustSensor dust

Tracking a Large Shadow

We track a half-plane shadow across a field with light

sensors.

A projector is used to throw a 

moving shadow onto a wall.

Sensor nodes are 

Berkeley/Cossbow motes with a 

radio and a light detector

[Liu, Cheung, G., Zhao, WSNA ’02]

shadow

Using Geometric Duality

Points � Lines
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In a dual configuration space, the 

sensors become lines and the 

edge of the shadow a moving 

point, crossing cells in the

arrangement of the lines.

Shaded cells indicate the trajectory

of the shadow edge.
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Selective Sensor Activation

Only sensors dual to the lines bounding

the current cell can be crossed next.

Thus, of all the sensors in the field, only

four on the average need be active at

once.

Dual view Primal view

dualspace

primalspace

Some Lessons and Issues

An appropriately chosen configuration space can 
transform a wide-area phenomenon into a localized 

one. 

Only a small fraction of the nodes in the field need 

be active at any one time.

Most message traffic is along the shadow 
boundary: the physical phenomenon dictates the 

communication paths.

V2. Target Counting

� A sensor network with 

multiple targets present. 

Targets can be stationary or 

moving;

� Each sensor can detect the 

local superimposed 

amplitude of target signals 

(e.g., acoustic) at any 

instant of time;

Problem Spec:

Objective:

To determine the number of targets 

and their approximate locations in the 

field, forming an initial count and re-

computing the count when targets 

move, enter, or leave the field.[Fang, Zhao, G., MobiHoc’03]
 

  

1. Signal attenuation rate, and the spacing and communication range of 

sensors have big impact on “signal resolution”

2. Number of detected peaks may not equal number of targets due to 

sampling artifacts and/or noise.

Acoustic Signal Field Landscape

Goal: count and track the significant signal peaks in the field

Combinatorial Signal Processing and Computational Topology

Scattered Amplitude Sampling

�

Under-sampling

Over-sampling

In 1-D, the number of peaks in sampled landscape cannot exceed the number of peaks

in the true landscape. However, this is possible in 2-D.

Peak Landscape Simplification

Some signal peaks may 
be noise

Usually such peaks are 
near other critical points 
of the landscape

Topological ideas, such 
as persistent homology
can be used to simplify 
the landscape by 
canceling saddles with 
maxima, etc., removing 
noise

h− −+ + ++
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A sensor node is qualified as a leader, if its reading is higher than that of all its 
one hop neighbors.

Local leader election is conducted by sensors exchanging information with their 

neighbors via one hop broadcast. 

1. Only sensors with myPr > threshhold will 
participate

2. Each sensor emits a packet in each 
protocol period, broadcasting its reading 
Pr and its ID 

3. Sensors pass on or drop a packet P from 

their neighbors, according to the 

following rule:

If (Pr recorded in the packet > myPr &     
Pr of the sensor relaying this 

packet > myPr)
broadcast(P);

else

drop(P);  

Downhill Flooding Protocol (DFP)

pr = received signal power at 

each node

1 1111 1 2 2 2 2 2 2

x1

x2
pr

x1 and x2 are elected leaders,

other nodes join one of the 
groups formed by the leaders: 
each node joins the highest 
leader it can reach by a 
monotone ascending path

Sensor Cluster Trees

For each node,

parent = the neighboring node with 

maximum Pr (received signal power)

Bird’s eye view of the cluster tree 
structure. Each node follows a strictly 
upwards path to the highest peak it 
can reach.

Leader

We call such groups of sensors aggregates, as they collaboratively perform a task.

2-D View of a Sensor Field with 

Cluster Trees Formed Using DFP

Different colors mark different 
sensor clusters formed

Each cluster has one leader

Target Counting Demo

Simulation with 9 moving targets (above); 

Implementation on motes sensors (right)
jliebman

Some Lessons and Issues

Sensors naturally form collaboration groups. 
Target localization and counting can be 
performed in-network.

These sensor collaboration groups must be 
maintained as the physical phenomena of 
interest change over time. 

Aggregates may be easier to sense than 
individual objects

Equivalently, physical phenomena are 
translated into networking behaviors.

Can such behaviors be programmed without 
naming the nodes individually?

V3. Distributed Identity 

Management
� Multi-target Tracking (MTT) 

� Basic application of sensor 

networks 

� Data association problem � Target 

mixing

� Multi-target Identity Management

� Represent and manage additional 

quantity called target identity

� Simplified version

� Position estimates are given

� Fixed number of targets assumed

Mixing

?

?

Action at a distance?

Sensor confirms
tank

[Shin, Zhao, G., IPSN’03]
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Approach A: Belief Matrix

�

� �
� �
� �
� �
��
�
�
�
�
�� �

Which ID goes with which track,

The belief matrix ( ) is the main quantity that the algorithm maintains 

                     with what probability?

                         ( ) ( )ij

B k

B k b k �
�
�
�
�
�

� �where ( ) (ID( (k)) ) and ( ) is ID belief vector on  track.ij j i thb k p x i b k i
��

Q: How to update ( ),  given ( 1)?B k X k 	

1st Track    …… Nth Track

Identity 1

……

Identity N

doubly stochastic

Distributed Management of B(k), I

1

1

(0) 0

0

b

 
 =
 
  

2

0

(0) 1

0

b

 
 =
 
  

3

0

(0) 0

1

b

 
 =
 
  

1 0 0

(0) 0 1 0

0 0 1

B

 
 =
 
  

time
0 1 2 3

= Leader nodes for vehicle tracking

Distributed Management of B(k), II

Local 
Mixing !

time
0 1 2 3

1

1

(1) 0

0

b

 
 =
 
  

2

0

(1) 1

0

b

 
 =
 
  

3

0

(1) 0

1

b

 
 =
 
  

Distributed Management of B(k), III

time
0 1 2 3

1 1 2(2) (1) (1 ) (1) 1

0

b b b

α

α α α

 
 = + − = −
 
  

3 3

0

(2) (1) 0

1

b b

 
 = =
 
  

2 1 2

1

(2) (1 ) (1) (1)

0

b b b

α

α α α

− 
 = − + =
 
  

Incorporating Local Evidence

0.1737 0.0947 0.3447 0.3869

0.3527 0.6473 0 0

0.3201 0.1744 0.3043 0.2011

0.1535 0.0836 0.3509 0.4120

                   

     

 
 
 =
 
 
 

B4

1

3

2

1 42 3This is an elephant

Not doubly-stochastic � inconsistent!

0.1737 0.0947 0.3447 0

0.3527 0.6473 0 0

0.3201 0.1744 0.3043 0

0.1535 0.0836 0.3509 1

                   

     

 
 
 =
 
 
 

B

Renormalization, Given Local 

Evidence

1. Ideal solution: ,

      given the priors, all the mixing events in history

      and all the sensor evidence.

   Exact solution in this framework. (Bayesian 

Baye

post

sian normaliz

erior)

   Used

ation

 as a reference - Desirable properties of the solution.

2. Realistic solution: (repeatedly normalize

                                 rows and columns)

[Sinkhorn  1964,19

Sinkhorn Iteration

67;  Sinkhorn 

 

and Knopp 1967]
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The belief matrix represents a probability 
distribution. The matrix A represents our a priori
belief, but violates sum constraints.

We would like to find the sum-constrained 
(feasible) matrix B that is the closest distribution to 
A (which is infeasible).

Use Kullback-Leibler distance (measure of 
distance between distributions):

What Do We Want? Sinkhorn Scaling and the  

Kullback-Leibler Distance

Theorem: Given a prior matrix , the matrix B

that satisfies the row and column sum constraints, and 

minimizes the KL-distance from the prior matrix A is 
always the solution of the Sinkhorn scaling process.

[Balakrishnan, Hwang,Tomlin ’04]

Solve by interior point methods:

Distributed Management of B(k), IV

time
0 1 2 3

1(3) 1

0

b

α

α

 
 = −
 
  

2

1

(3)

0

b

α

α

− 
 =
 
  

3

0

(3) 0

1

b

 
 =
 
  

This is a 
tank !

Distributed Management of B(k), V

time
0 1 2 3

Normalization message

(Group Management 

Protocol)

1(3) 1

0

b

α

α

 
 = −
 
  

2

0

(3) 1

0

b

 
 =
 
  

3

0

(3) 0

1

b

 
 =
 
  

Distributed Management of B(k), VI

time
0 1 2 3

1

1

(3) 0

0

b

 
 =
 
  

2

0

(3) 1

0

b

 
 =
 
  

3

0

(3) 0

1

b

 
 =
 
  

Target Mixing Video

Particles filters
are used to keep
track about multiple 
hypotheses about
the location of each
vehicle
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Distributed Implementation of 

Tracking and Normalization

Q: Which nodes store and/or   

compute what information?

-- When do we track in joint 

space? 

-- How to distribute B(k)? 

-- How to implement the 

probabilistic normalization?

-- What is required at the 

communication/network 

layer to make the above 

happen?
��������	�
 ��������	�
�����	�

Managing Sensor Groups

� We have distributed columns of 

B(k) to leader nodes tracking targets.

� When a leader initiates a 

normalization based on local 

evidence, it has to know where are 

the other leaders that have non-zero 

mass on the evidence ID.

� Group Management Protocol:

Maintains the group membership 

based on the ID probability mass.

� Communication needs to be 

minimized.

RoamHBA protocol
[Fang, Liu, G., Zhao, IPSN’04]

Approach B: Information Matrix

Keep unnormalized

beliefs by simply 

adding log-likelihoods 

after each local 

evidence event

No communication 

necessary, except 

when mixing events 

occur or queries are 

made

[Shin, Lee, Thrun, G. ’05 and Schumitch, Thrun, Bradski, Olukotun ’05]

Some Lessons and Issues

Collaboration groups need not always be physically 
clustered.

Different attributes of a phenomenon can be tracked at 
different rates (target location, identity).

A change of information representation can have a deep 
impact on cost trade-offs.

How do information providers and information seekers 
locate each other?

V4. Image Sensor Networks

CMOS technology enables 
the production of small, low-

cost and low-power 

integrated image sensors

Cameras (still or video) and 

other image sensors are 
becoming cheaper, smaller, 

and nearly ubiquitous

However, truly distributed 

networked systems of image 
sensors are still not here

Wireless Camera Node

8 mm

Video Sensing
OV6650 CMOS

352 x 288

30 fps
20 mW

Computation
TI MSP430

10 KB

8 MHz
3 mW

Communication
RFM TR1001

300 m

20 Kbps
20 mW

Agilent ADCM 1650

CMOS image sensor
Small, cheap, battery-
powered

Integrated CPU and 
radio
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Current Multi-Imager Networks

Data is transported over a 
wired network to a central 

location

Human operators look at 

the data

This approach 
cannot scale:

vast amounts of 
data to move

wiring is 
expensive

automatic ways 
to filter the data 
are needed

Distributed Imager Challenges

Imagers are high data rate
sensors; therefore data must be 
compressed and summarized

compression must take into 
account shared data

goal of compression need not be 
reconstruction

Vision algorithms can be 
expensive to run on weak 
capability, low power devices

Visibility is non-local and 
discontinuous (occlusions, etc)

Issues of privacy, etc.

Collaborative, Task-Driven Image 

Sensing
Large numbers of simple, 
inexpensive cameras 
collaborate over a wireless 
network to accomplish a task

Data is compressed locally 
and aggregated within the 
network 

Cameras are only tasked as 
the situation demands

The system can be 
expanded incrementally to 
large numbers of nodes

The goal is to estimate certain

high-level, global attributes of

the environment.

The Initial Effort

Use a camera network to 
obtain information about space 

occupancy by people.

Useful for aggregate tracking, 

counting, etc.

Crowd density implies multiple 
occlusions – no one camera 

by itself can do this.

No image reconstruction --just 

high-level distributed spatial 
reasoning.

Packard 013

The Experimental Setup

Web cameras:

16 firewire webcams with 49 degree FOV

Placed around a 22 x 19 foot room

Linux computers

A PC is connected to 2 webcams

A separate process is running for each webcam to 
simulate an individual camera node

All processes can communicate with each other over 

the network

System Architecture

Autonomous

Background

Subtraction,

Data Compression

Collaborative

Visual Hull

Estimation,

Camera Tasking

Problem

Solution
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Local Processing

Perform background 
subtraction

Collapse to a single scan-
line

640x480 RGB image �
640 bit scan-line (which 

can be further 

compressed)

Occupancy Representation:

The 2-D Visual Hull

A Visual Hull Example

Top view of room 
with 5 people

Scanlines from 
16 cameras

The Visual Hull Overestimates

Occupancy

Visual hull regions surround each object.

Visual hull regions may also be empty;

we call these the phantom regions

Pruning the Visual Hull

Using more cameras 
reduces the 

overestimation – but it 

can never be fully 
eliminated

Motion can allow the 
pruning of phantom 

regions

An Application: Counting People

Given occupancy, bound 
the number of objects in 

each polygon of the 

visual hull

The bounds over time 

can be used to constrain 
the count, using a tree 

data structure.

t

t+1

phantom
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A Counting Example Localization – Where?

target

Noise in location

Noise in local data

Global: Target 
localization

Best camera placement
Best camera tasking

Contributions
Analysis of target 
localization error

Solutions for camera 
placement and tasking

Localization w. Occlusions
Suppose M moving 

objects in a room

Given priors on these 

objects

And camera positions

We are interested in 

localizing one of them 

(blue prior)

Which k cameras are 

best for localization?

Algorithm Animation

circular

Scaling to Large Camera Networks

Few foci of activity

Episodic events of interest

Camera control (aiming, 
panning, zooming)

Camera selection (how 
many, which ones)

•Analysis
•Simulation

•Real Experiments

Some Lessons and Issues

A surprising amount of spatial information can 
be captured by cameras sharing very few bits.

Small subsets of cameras, when appropriately 
tasked, can provide accurate estimates.

The system can perform counting without 
tracking, thus raising no privacy issues.

Alternatively, low-res video cameras for 
occupancy can be combined with a few high-res 
still cameras that can be commanded to snap a 
few high-detail photos, capturing the essentials 
of a scene.
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Five Quick Vignettes on

Lightweight Spatiotemporal Reasoning

1. Tracking Wide-Area 
Phenomena

2. Counting Moving Objects

3. Distributed Identity 
Management

4. Tracking Spatial Occupancy

Network structure
discovery

Uncertainty and multiple
hypotheses

Sensor selection

Sensor collaboration groups

Lightweight information
integration

Conclusions

Ubiquitous networked 
sensors provide a dense 
spatial and temporal 
sampling of the physical 
world

They allow low-latency 
access to information that 
is highly localized in time 
and space, and thus 
provide a way to sense 
and act on the physical 
world beyond what has 
been possible up to now

Sensor networks raise many 
research issues at the 
physical node level, the 
system architecture level, 
and the algorithm 
deployment level

A combination of global and 
local methods promise to 
provide robust tools for 
network structure discovery, 
understanding the global 
aspects of sensor layouts 
and signal landscapes
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1

Games in Networks:  
Routing, Network Design, Potential Games, 

and Equilibria and Inefficiency

Éva Tardos
Cornell University

2

Part I

� what is a game?

� Pure and randomized equilibria

� Load balancing and routing as games

3

Why care about Games?
Users with a multitude 

of diverse economic 
interests sharing a 
Network (Internet)

� browsers
� routers
� servers

Selfishness:
Parties deviate from 

their protocol if it is 
in their interest

Model Resulting Issues as 

Games on Networks

4

A simple game: load balancing

Each job wants to be on a lightly loaded machine.

2

2

1

3

machine 1     machine 2

With coordination we 
can arrange them to 
minimize load 

Example: load of 4

5

A simple game: load balancing
Each job wants to be on a lightly loaded machine.

2

2

1

3

� Without coordination?

� Stable arrangement:               
No job has incentive to switch

� Example: some have load of 5

6

Games: setup
� A set of players (in example: jobs)
� for each player, a set of strategies    

(which machine to choose)
Game:  each player picks a strategy
For each strategy profile (a strategy for each 

player) a payoff to each player
(load on selected machine)

Nash Equilibrium: stable strategy profile:
where no player can improve payoff by 
changing strategy
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7

Games: setup
Deterministic (pure) or randomized (mixed) 

strategies?

Pure: each player selects a strategy. 
simple, natural, but stable solution may not exists

Mixed: each player chooses a probability distribution of 
strategies.

� equilibrium exists (Nash), 
� but pure strategies often make more sense

8

Pure versus Mixed strategies in 
load balancing

� Pure strategy: load of 1

� A mixed equilibrium
Expected load of 3/2 
for both jobs

1 1

1 1

50%

50% 50%
50%

Machine 1     Machine 2

9

Quality of Outcome:
Goal�s of the Game

Personal objective for player i:
min load Li or expected load E(Li)

Overall objective?

� Social Welfare: i Li or 
expected value E( i Li )

� Makespan: maxi Li  or 
max expected value maxi E(Li) or
expected makespan E(maxi Li )

10

Example: simple load balancing
n identical jobs and n machines

1 11 1 1

All pure equilibria: load of 1 (also optimum)

A mixed equilibrium: prob 1/n each machine

expected load: E(Li)= 1+(n-1) <2   for each i

E(maxi Li ): balls and bins: log n/log log n

1

1
n

11

Results on load balancing:
Theorem for E(maxi Li ):
� w/uniform speeds, p.o.a log m/log log m

� w/general speeds, worst-case p.o.a. is 

(log m/log log log m)

12

Results on load balancing:
Theorem for E(maxi Li ):
� w/uniform speeds, p.o.a log m/log log m

� w/general speeds, worst-case p.o.a. is 

(log m/log log log m)

Proof idea: balls and bins is worst case??

Requence of results by
[Koutsoupias/Papadimitriou 99],    

[Mavronicolas/Spirakis 01], 

[Koutsoupias/Mavronicolas/Spirakis 02], 

[Czumaj/Vöcking 02]
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13

Today:

focus on pure equilibria

Does a pure equilibria exists?
Does a high quality equilibria exists?
Are all equilibria high quality?

some of the results extend to
sum/max of E(Li)

14

Routing network:

e(x) = x
s t

1

Delay as a function 
of load:

x unit of load 
causes delay e(x) 

load balancing and routing

Load balancing:

jobs

machines

e(x) = x

Allow more complex 
networks

s t
x 1

x1
0

15

Atomic vs. Non-atomic Game

Atomic Game:
� Each user controls a unit of flow, and 
� selects a single path or machine

Non-atomic game:
� Users control an infinitesimally 

small amount of flow
� equilibrium: all flow path 

carrying flow are minimum 
total delay

s t
x 1

r=1

x1
0

s t
x 1

r=1

x1
0

80%

20%

Both congestion games: cost on edge e depends on the 
congestion (number of users)

16

� One unit of flow sent from s to t

An envy free solution:

Infinite number of players
� will make analysis cleaner by continuous math

x

s t1
Flow = .5

Flow = .5

x

s t
1

Flow = 1

Traffic on lower 
edge is envious. 

Example of nonatomic flow on two 

links

No-one is 
better off 

Flow = 0

17

s t
x 1

x1

Braess�s Paradox

Original Network

Cost of Nash flow

= 1.5

s t
x 1.5

x1
.5

.5
.5

Added edge:
.5 .5

.5 .5

Effect?

0

18

Braess�s Paradox

Original Network

Added edge:

Cost of Nash flow = 2

All the flow has increased delay!

s t
x 1

x1

1
1 10

Cost of Nash flow

= 1.5

s t
x 1.5

x1
.5

.5
.5
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19

Model of Routing Game
� A directed graph G = (V,E)
� source�sink pairs si,ti for 

i=1,..,k
� rate ri 0 of traffic 

between si and ti for each 
i=1,..,k

r1 =1s t
x 1

.5

x1 .5

.5

.5

� Load-balancing jobs wanted min load
� Here want minimum delay: 

delay adds along path
edge-delay is a function e(�) of the load on 
the edge e

20

Delay Functions
Assume e(x) continuous and 

monotone increasing in load 
x on edge

No capacity of edges for now

r1 =1

s t
x 1

.5

x1 .5

.5

.5

Example to model capacity u:

x

e(x)e(x)= a/(u-x)

u

21

Goal�s of the Game

Personal objective: minimize

P(f) = sum of latencies of edges along P
(wrt. flow f)

No need for mixed strategies

Overall objective:
C(f) = total latency of a flow f:  = P fP� P(f)

=social welfare

22

Routing Game??
Flow represents
� cars on highways 
� packets on the Internet

s t
x 1

x1
individual packets or small continuous model

User goal: Find a path selfishly minimizing user delay

true for cars,
packets?: users do not choose paths on the Internet: 
routers do!

With delay as primary metric router protocols choose 
shortest path!

23

Connecting Nash and Opt

� Min-latency flow 
� for one s-t pair for simplicity

� minimize C(f) = e fe� e(fe)

� subject to: f is an s-t flow

� carrying r units

� By summing over edges rather than paths

where fe = amount of flow on edge e
24

Characterizing the Optimal Flow

� Optimality condition: all flow travels along 

minimum-gradient paths

.5

s t
x 1.5

x1
0gradient is:

(x (x))�
= (x)+x �(x)
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25

Characterizing the Optimal Flow

� Optimality condition: all flow travels along 

minimum-gradient paths

.5

s t
x 1.5

x1
0

Recall: flow f is at Nash equilibrium iff all flow 
travels along minimum-latency paths

gradient is:
(x (x))�

= (x)+x �(x)

26

Nash Min-Cost

Corolary 1: min cost is �Nash� with delay 
(x)+x �(x)

Corollary 2: Nash is ��min cost�� with cost
(f) = e 0

fe
e(x) dx

Why?
gradient of:         

(
0

fe
e(x) dx )� = (x)

27

Using function 
� Nash is the solution minimizing   

Theorem (Beckmann�56)
� In a network latency functions e(x) that 

are monotone increasing and continuous, 

� a deterministic Nash equilibrium exists, 
and is essentially unique

28

Using function (con�t)
� Nash is the solution minimizing value of  
� Hence,

(Nash) < (OPT).

Suppose that we also know for any solution
cost A

cost(Nash) A (Nash) A (OPT) A
cost(OPT).
There exists a good Nash! 

29

Example: cost A

Example: e(x) =x then
� total delay is x· e(x)=x2

� potential is e( ) d = x2/2

More generally: linear delay e(x) =aex+be
� delay on edge x· e(x) = aex2+be x
� potential on edge: e( ) d = aex2/2+be x
� ratio at most 2

Degree d polynomials: 
� ratio at most d+1

30

Sharper results for non-atomic 

games
Theorem 1 (Roughgarden-Tardos�00)
� In a network with linear latency functions

� i.e., of the form e(x)=aex+be

� the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

460



31

Sharper results for non-atomic 

games
Theorem 1 (Roughgarden-Tardos�00)
� In a network with linear latency functions

� i.e., of the form e(x)=aex+be

� the cost of a Nash flow is at most 4/3
times that of the minimum-latency flow

s t
x 1

r=1

x1
0

x
s t1

Flow = .5

Flow = .5

Nash cost 1 optimum 3/4 Nash cost 2 optimum 1.5
32

Braess paradox in springs (aside)

Cutting 
middle 
string

makes the weight rise

and decreases power flow 
along springs

Flow=power; delay=distance

33

Bounds for spring paradox

Theorem 1� (Roughgarden-Tardos�00)
In a network with springs and strings cutting 

some strings can increase the height by at 
most a factor of 4/3.

Cutting 
middle 
string

34

General Latency Functions

� Question: what about more general 

edge latency functions?

� Bad Example: (r = 1, d large)

xd

s t
10

1 1-
A Nash flow can 
cost arbitrarily 
more than the 
optimal (min-cost) 
flow

35

Sharper results for non-atomic 

games

Theorem 2  (Roughgarden�02):
� In any network with any class of convex continuous 

latency functions
� the worst price of anarchy is always on two edge 

network

s t

x

1 s t

x

1
1

0

1-
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Sharper results for non-atomic 

games

Theorem 2  (Roughgarden�02):
� In any network with any class of convex continuous 

latency functions
� the worst price of anarchy is always on two edge 

network

s t

x

1 s t

x

1
1

0

1- Corollary:
price of anarchy for 
degree d polynomials is 
O(d/log d).
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� Add a new fixed delay parallel edge

� fixed cost set = 
e
(f
e
)

� Nash not effected

� Optimum can only improve

Another Proof idea

(x)=

Nash:
e
(x)f

e

e
(x)

f
e

Modify the network

38

� fixed cost set = 
e
(f
e
)

� Optimum on modified network

splits flow so that marginal costs are 
equalized 

� and common marginal cost is = 
e
(f
e
)

Modified Network

(x)=

Nash:
e
(x)f

e

e
(x)

e

f
e
-
e

39

Proof of better bound

� Theorem 2: the worst price of anarchy is 

always two edge network

� Proof: Prize of anarchy on G is median of 

ratios for the edges

(x)=

Nash:
e
(x)f

e

e
(x)

e

f
e
-
e

40

More results for non-atomic games

Theorem 3 (Roughgarden-Tardos�00):
� In any network with continuous, 

nondecreasing latency functions

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i

Proof �

41

Proof of bicriteria bound

common marginal cost on two edges in opt is = 
e
(f
e
)

� Proof: Opt may cost very little, but marginal 
cost is as high as latency in Nash  

� Augmenting to double rate costs at least as 
much as Nash

(x)=

Nash:
e
(x)f

e

e
(x)

e

f
e
-
e

42

More results for non-atomic games

Theorem 3 (Roughgarden-Tardos�00):
� In any network with continuous, 

nondecreasing latency functions

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i

Morale for the Internet: 
build for double flow rate
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Morale for IP versus ATM?

Corollary: with M/M/1 delay fns:  (x)=1/(u-x), 
where u=capacity

Nash w/cap. 2u opt w/cap. u

Doubling capacity is more effective than 
optimized routing (IP versus ATM)

44

Part II

� Discrete potential games: 

� network design

� price of anarchy stability

45

Continuous Potential Games

Continuous potential game: there is a function
(f) so that Nash equilibria are exactly the local 

minima of 

also known as Walrasian equilibrium convex then 
Nash equilibrium are the minima. For example 

(f) = e 0
fe

e(x) dx

46

Discrete Analog 
Atomic Game

� Each user controls 
one unit of flow, and 

� selects a single path

Theorem Change in potential is same as function 
change perceived by one user 

[Rosenthal�73, Monderer Shapley�96,]
(f) = e ( e(1)+�+ e(fe)) = e e

Even though moving player ignores all 
other users

s
t

s

t

47

Potential: Tracking Happiness
Theorem Change in potential is same as function 

change perceived by one user 
[Rosenthal�73, Monderer Shapley�96,]

(f) = e ( e(1)+�+ e(fe)) = e e

e

e�

Reason? Potential before  move:

e(1)+� e(fe -1) + e(fe)   

+     e�(1)+�+ e�(fe�)

48

Potential: Tracking Happiness
Theorem Change in potential is same as function 

change perceived by one user 
[Rosenthal�73, Monderer Shapley�96,]

(f) = e ( e(1)+�+ e(fe)) = e e

Potential after   move:

e(1)+� e(fe -1) + e(fe)   

+     e�(1)+�+ e�(fe�) + e�(fe�+1) 

Change in is - e(fe) + e�(fe�+1)

same as change for player

e

e�

Reason?
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Network Design as Potential Game

Given: G = (V,E),  
costs ce (x) for all e E,
k terminal sets (colors)

Have a player for each color.

Each player wants to build a 
network in which his nodes 
are connected.

Player strategy: select a 
tree connecting his set.

56

Costs in Connection Game

Players pay for their trees,
want to minimize payments.

What is the cost of the edges?
ce (x) is cost of edge e for x users.

Assume economy of scale for costs:

ce (x)

x

57

Costs in Connection Game

Players pay for their trees,
want to minimize payments.

What is the cost of the edges?
ce (x) is cost of edge e for x users.

Assume economy of scale for costs:

ce (x)

x

How do players share 
the cost of an edge?

58

A Connection Game

How do players share the cost 
of an edge?

Natural choice is fair sharing, 
or Shapley cost sharing:

59

A Connection Game

How do players share the cost 
of an edge?

Natural choice is fair sharing, 
or Shapley cost sharing:

Players using e pay for it evenly:  

ci(P) = ce (ke ) /ke

where ke number of users on edge e
[Herzog, Shenker, Estrin�97]

60

A Connection Game

How do players share the cost 
of an edge?

Natural choice is fair sharing, 
or Shapley cost sharing:

Players using e pay for it evenly:  

ci(P) = ce (ke ) /ke

where ke number of users on edge e
[Herzog, Shenker, Estrin�97]

This is congestion game: e(x) =ce(x)/x
with decreasing �latency�
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A Simple Example

t

s

1 k

t1, t2, � tk

s1, s2, � sk
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A Simple Example

t

s

1 k

t1, t2, � tk

s1, s2, � sk

t

s

1 k

One NE:
each player 

pays 1/k
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A Simple Example

t

s

1 k

t1, t2, � tk

s1, s2, � sk

t

s

1 k

One NE:
each player 

pays 1/k

t

s

1 k

Another NE:
each player 

pays 1
64

Maybe Best Nash is good?

cost of best selfish outcome

�socially optimum� cost
Price of Stability=

Do we care?

We know price of anarchy is bad.

Game is a potential game so maybe Price 
of Stability is better.

65

Nash as Stable Design
Need to Find a Nash equilibrium

� Stable design: as no user finds it in their 
interest to deviate

Need to find a �good� Nash
� Best Nash/Opt ratio? = Price of Stability

[ADKTWR 2004] 
Design with a constraint for stability

66

Results for Network Design
Theorem [Anshelevich, Dasgupta, Kleinberg, 

Tardos, Wexler, Roughgarden FOCS�04]
Price of Stability is at most O(log k) for k 

players

proof:
� edge cost ce with ke > 0 users
� edge potential with ke > 0 users

e =ce·(1+1/2+1/3+�+1/k)
Ratio at most Hk=O(log k)
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

cost(OPT) = 1+
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

cost(OPT) = 1+
�but not a NE:

player k
pays (1+ )/k,
could pay 1/k
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

so player k
would deviate
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

now player k-1
pays (1+ )/(k-1),
could pay 1/(k-1)
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

so player k-1
deviates too
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Example: Bound is Tight

1 1
k

1
2

1
3

1 2 3 k

t

0 0 0 0

1+ . . . k-1

0

1
k-1

Continuing this 
process, all 
players defect.

This is a NE!
(the only Nash)
cost = 1 +    + � + 

Price of Stability is Hk = (log k)!

1            1
2         k
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Congestion games
Routing with delay:
� cost increasing with 

congestion
e.g.,  ce(x)= x e(x) =xd+1

Network Design Game:
� cost decreasing with 

congestion
e.g., e(x)= c(x)e/x

s t

xd 1

xd1
0

75

Contrast with Routing Games
Routing games
� ce(x) increasing
� Traffic maybe non-

atomic OK? to split traffic
� Nash is unique 
� Price of Stability grows 

with steepness of c: 
� worst case on 2 links
� bicriteria bound

Design with Fair Sharing

� ce(x) decreasing
� Choice atomic

need to select single path
� Many equilibria
� Price of Stability 

bounded by log n

x
s t1

Flow = .5

Flow = .5

76

Part III
Is Nash a reasonable concept?

Is the price of anarchy always small?
and what can be do when its too big 
(mechanism design)

Examples: 
� Network design and 
� Resource allocation

77

Why stable solutions?
Plan: analyze the quality of Nash equilibrium.
But will players find an equilibrium?

� Can a stable solution be found in poly. time?
� Does natural game play lead to an equilibrium?
� We are assuming non-cooperative players, 

what if there is cooperation?
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Why stable solutions?
Plan: analyze the quality of Nash equilibrium.
But will players find an equilibrium?

� Can a stable solution be found in poly. time?
� Does natural game play lead to an equilibrium?
� We are assuming non-cooperative players, 

what if there is cooperation?

Answer 1: A clean solution concept and exists 
([Nash 1952] if game finite)
Does life lead to clan solutions?
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Why stable solutions?

� Finding an equilibrium?

Nonatomic games:  we�ll see that equilibrium can be 
found via convex optimization [Beckmann�56]

Atomic game: finding an equilibrium is polynomial local 
search (PLS) complete [Fabrikant, Papadimitriou, Talwar

STOC�04]

80

Why stable solutions?

� Does natural game play lead to equilibrium?

we�ll see that natural �best response play� leads to 
equilibrium if players change one at-a-time

See also:
Fischer¥Räcke¥Vöcking�06, Blum¥Even-Dar¥Ligett�06 

also if players simultaneously play natural learning 
strategies

81

Why stable solutions?

� We are assuming non-cooperative players

Cooperation? No great models, 
see some partial results on Thursday.
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How to Design �Nice� Games?
(Mechanism Design)

Traditional Mechanism 
Design (VCG):

� use payments to induce 
all players to tell us his 
utility for connection

� Select a network to 
maximize social welfare 
(minimize cost)

83

How to Design �Nice� Games?
(Mechanism Design)

Traditional Mechanism 
Design (VCG): 

� use payments to induce 
all players to tell us his 
utility for connection

� Select a network to 
maximize social welfare 
(minimize cost)

Cost lot of money; lots of 
information to share
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How to Design �Nice� Games?
(Mechanism Design)

Here:
� design a simple/natural 

Nash game where users 

select their own graphs 

and

� analyze the Prize of 

Anarchy

Traditional Mechanism 
Design (VCG): 

� use payments to induce 
all players to tell us his 
utility for connection

� Select a network to 
maximize social welfare 
(minimize cost)

Cost lot of money; lots of 
information to share
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Network Design Mechanism
How should multiple players 
on a single edge split costs?

We used fair sharing �
[Herzog, Shenker, Estrin�97]

ci(P) = ce (ke ) /ke

where ke number of users on edge e

which makes network design a potential game

86

Network Design Game Revisited

Another approach: Why not free market? 
players can also agree on shares?   ...any division 

of cost agreed upon by players is OK. 

Near-Optimal Network Design with Selfish Agents        
STOC �03 Anshelevich, Dasgupta, Tardos, Wexler.

How should multiple players 
on a single edge split costs?

We used fair sharing �
[Herzog, Shenker, Estrin�97]

87

Network Design without Fairness

Results [Anshelevich, Dasgupta, Tardos, Wexler 
STOC�03]

Good news: Price of Stability 1 when all users 
want to connect to a common source

(as compared to log n for fair sharing)

But: with different source-sink pairs
� Nash may not exists (free riding problem)
� and may be VERY bad when it exists
Partial good news: low cost Approximate Nash

88

No Deterministic Nash:
Free Riding problem

Network Design

[ADTW STOC�03]

Users bid contribution on 

individual edges.

� Single source game: 

Price of Anarchy = 1

� Multi source: no Nash

s1

t1

t2

s2

1
1

1
1

s1

t1

t2

s2

1
1

1
1

?
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Mechanism Design

Example: Network design.

Results can be used to answer question: 

Should one promote �fair sharing� or �free 

market�?

90

Another Example: Bandwidth 

Allocation 

Many Users with diverse 

utilities for bandwidth. 

How should we share a 

given B bandwidth?
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Bandwidth Sharing Game

Assumption:

Users have a utility function Ui(x) for receiving x 

bandwidth. 

Ui(x)

xxi

Assume elastic users 
(concave utility functions)

92

A Mechanism:

Many Users with diverse 

utilities for bandwidth.

How should we share a 

given B bandwidth?

Kelly: proportional sharing

� Players offer money wi

for bandwidth. 

� Bandwidth allocated 

proportional to payments: 

� effective price p= ( i wi )/B

� player allocation xi = wi /p

93

A Mechanism:

Many Users with 
diverse utilities for 
bandwidth.

How should we share a 
given B bandwidth?

Kelly: proportional sharing
� Players offer money wi for 

bandwidth. 
� allocation proportional:

� unit price p= ( i wi )/B
� player i gets xi = wi /p

Thm: If players are price-takers 
(do not anticipate the effect 
of their bid on the price)
Selfish play results in optimal 
allocation

94

Price Taking Users
Given price p: 

how much bandwidth does user i want?

Ui(x)

xxi

Assume elastic users 
(concave utility functions)

Answer: keeps asking 
for more until marginal 
increase in happiness is 
at least p: 

Ui�(x)=p

slope p

95

Price Taking Users: 
Kelly Mechanism Optimal

Equilibrium at price p:

each user i wants xi such 
that  Ui�(xi)=p

Total bandwidth used up at 
price p
result optimal division of 
bandwidth

Ui(x)

xxi

Assume elastic users 
(concave utility functions)

slope p

Price taking users
standard assumption if many players

96

Kelly Proportional Sharing:

Players offer money 
wi for bandwidth. 

Bandwidth allocated 
proportional to 
payments

Johari-Tsitsikis, 2004: 

what if players do 
anticipate their effect 
on the price?

Theorem: Price of Anarchy
at most ¾ on any 
networks, and any 
number of users
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Kelly Proportional Sharing:

Players offer money wi
for bandwidth. 

Bandwidth allocated 
proportional to 
payments

Theorem [Johari-Tsitsikis, 
2004] Price of Anarchy at 
most ¾ on any networks, and 
any number of users

Why not optimal? big users 
�shade� their price. User 
choice

Ui�(xi)(1-xi)=p
assuming total bandwidth is 1

Worst case: one large user and 
many small users

98

Summary

We talked about many issues

Price of Anarchy/Stability/Coalitions 
in the context of some Network Games:

� routing, load balancing, network design, 
bandwidth sharing

� Designing games (mechanism design) 
� network design

99

Algorithmic Game Theory
� The main ingredients:

� Lack of central control like distributed computing

� Selfish participants game theory
� Common in many settings e.g., Internet

Most results so far:
� Price of anarchy/stability in many games, 

including many I did not mention
� e.g. Facility location (another potential game) 

[Vetta FOCS�02] and [Devanur-Garg-
Khandekar-Pandit-Saberi�04]:

100

Some Open Directions:

� Other natural network games with low 
lost of anarchy

� Design games with low cost of anarchy

� Better understand dynamics of natural 
game play

� Dynamics of forming coalitions
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Algorithmic Game Theory

and Internet Computing

Vijay V. Vazirani

Polynomial Time Algorithms

For Market Equilibria

Markets

Stock Markets

Internet Revolution in definition of markets
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Revolution in definition of markets

New markets defined by

Google 

Amazon

Yahoo!

Ebay

Revolution in definition of markets

Massive computational power available

Revolution in definition of markets

Massive computational power available

Important to find good models and

algorithms for these markets

Adwords Market

Created by search engine companies

Google

Yahoo!

MSN

Multi-billion dollar market

Totally revolutionized advertising, especially

by small companies.
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How will this market evolve??

The study of market equilibria has occupied

center stage within Mathematical Economics

for over a century.

The study of market equilibria has occupied

center stage within Mathematical Economics

for over a century.

This talk: Historical perspective 

&  key notions from this theory.

2).  Algorithmic Game Theory

Combinatorial algorithms for

traditional market models

3).  New Market Models

Resource Allocation Model of Kelly, 1997

3).  New Market Models

Resource Allocation Model of Kelly, 1997

For mathematically modeling

TCP congestion control

Highly successful theory
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A Capitalistic Economy

Depends crucially on 

pricing mechanisms to ensure:

Stability

Efficiency

Fairness

Adam Smith

The Wealth of Nations

2 volumes, 1776.

Adam Smith

The Wealth of Nations

2 volumes, 1776.

�invisible hand� of                 

the market   

Supply-demand curves

Leon Walras, 1874

Pioneered  general

equilibrium theory

Irving Fisher, 1891

First fundamental

market model
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Fisher�s  Model, 1891

milkcheese

wine
bread

¢¢

$$$$$$$$$$$$$$$$$$

$$

$$$$$$$$

People want to maximize happiness � assume 

linear utilities.Find prices s.t. market clears

Fisher�s Model

n buyers, with specified money, m(i) for buyer i

k goods (unit amount of each good)

Linear utilities:         is utility derived by i

on obtaining one unit of  j

Total utility of i, 

i ij ij
j

U u x

iju

]1,0[x

xuu

ij

ijj iji

Fisher�s Model

n buyers, with specified money, m(i)

k goods (each unit amount, w.l.o.g.)

Linear utilities:         is utility derived by i

on obtaining one unit of  j

Total utility of i, 

Find prices s.t. market clears, i.e., 

all goods sold, all money spent.

i ij ij
j

U u x

iju

xuu ijj iji

Arrow-Debreu Model, 1954

Exchange Economy

Second fundamental market model

Celebrated theorem in Mathematical 
Economics

Kenneth Arrow

Nobel Prize, 1972
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Gerard Debreu

Nobel Prize, 1983

Arrow-Debreu Model

n  agents,  k  goods

Arrow-Debreu Model

n  agents,  k  goods

Each agent has:  initial endowment of goods,

&  a utility function

Arrow-Debreu Model

n  agents,  k  goods

Each agent has:  initial endowment of goods,

&  a utility function

Find market clearing prices, i.e., prices s.t. if

Each agent sells all her goods

Buys optimal bundle using this money

No surplus or deficiency of any good

Utility function of agent i

Continuous, monotonic and strictly concave

For any given prices and money m,

there is a unique utility maximizing bundle

for agent i.

: k

iu R R

Agents: 
Buyers/sellers

Arrow-Debreu Model
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Initial endowment of goods
Agents

Goods

Agents

Prices

Goods

= $25                            = $15                       = $10

Incomes

Goods

Agents

=$25     =$15    =$10

$50

$40

$60

$40

Prices

Goods

Agents

1 2: ( , , )i nU x x x

Maximize utility

$50

$40

$60

$40

=$25     =$15    =$10
Prices

Find prices s.t. market clears

Goods

Agents

$50

$40

$60

$40

=$25     =$15    =$10
Prices

1: ( , )i nU x x

Maximize utility

Observe: If p  is market clearing

prices, then so is any scaling of  p

Assume w.l.o.g. that sum of

prices of k goods is 1.

k-1 dimensional

unit simplex

:k
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Arrow-Debreu Theorem

For continuous, monotonic, strictly concave

utility functions, market clearing prices

exist.

Proof

Uses Kakutani�s Fixed Point Theorem.

Deep theorem in topology

Proof

Uses Kakutani�s Fixed Point Theorem.

Deep theorem in topology

Will illustrate main idea via Brouwer�s Fixed

Point Theorem  (buggy proof!!)

Brouwer�s Fixed Point Theorem

Let                  be a non-empty, compact, convex set

Continuous function

Then

:f S S

nS R

: ( )x S f x x

Brouwer�s Fixed Point Theorem Idea of proof

Will define continuous function

If p  is not market clearing,  f(p)  tries to 

�correct� this.

Therefore fixed points of  f  must be 

equilibrium prices.

: k kf

480



Use  Brouwer�s Theorem
When is p an equilibrium price?

s(j):  total supply of good  j.

B(i):  unique optimal bundle which agent  i

wants to buy after selling her initial 

endowment at prices p.

d(j):  total demand of good j.

When is p an equilibrium price?

s(j):  total supply of good  j.

B(i):  unique optimal bundle which agent  i

wants to buy after selling her initial 

endowment at prices p.

d(j):  total demand of good j.

For each good   j:   s(j) = d(j).

What if  p  is not an equilibrium price?

s(j) < d(j)  =>        p(j)  

s(j) > d(j)  =>        p(j)

Also ensure  kp

Let 

S(j) < d(j)  =>  

S(j) > d(j)  =>  

N   is  s.t.   

( )
'( )

p j
p j

N

'( ) 1
j

p j

( ) [ ( ) ( )]
'( )

p j d j s j
p j

N

( ) 'f p p
is a cts. fn.

=>                               is a cts. fn. of  p

=>                               is a cts. fn. of  p

=>      f is a cts. fn. of  p

: ( )i B i

: ( )j d j

: ii u
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is a cts. fn.

=>                               is a cts. fn. of  p

=>                               is a cts. fn. of  p

=>      f is a cts. fn. of  p

By Brouwer�s Theorem,  equilibrium prices exist.

: ( )i B i

: ( )j d j

: ii u is a cts. fn.

=>                               is a cts. fn. of  p

=>                               is a cts. fn. of  p

=>      f is a cts. fn. of  p

By Brouwer�s Theorem,  equilibrium prices exist.

q.e.d.!

: ( )i B i

: ( )j d j

: ii u

Kakutani�s Fixed Point Theorem

convex, compact set

non-empty, convex, 

upper hemi-continuous correspondence

s.t.

: 2Sf S

x S ( )x f x

nS R

Fisher reduces to Arrow-Debreu

Fisher: n  buyers,  k  goods

AD: n+1 agents  

first  n have money, utility for goods

last agent has all goods, utility for money only.
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Combinatorial Algorithms for 

Market Equilibria

Vijay V. Vazirani

Arrow-Debreu Theorem:   Equilibria exist.

Arrow-Debreu Theorem:   Equilibria exist.

Do markets operate at equilibria?

Arrow-Debreu Theorem:   Equilibria exist.

Do markets operate at equilibria?

Can equilibria be computed efficiently?

Arrow-Debreu is highly non-constructive Arrow-Debreu is highly non-constructive

�Invisible hand� of  the market: Adam Smith

Scarf, 1973:  approximate fixed point algs.

Convex programs: 

Fisher:  Eisenberg & Gale, 1957

Arrow-Debreu:  Newman and Primak, 1992
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Used for deciding tax policies, price of new

products etc.

New markets on the Internet

Algorithmic Game Theory

Use powerful techniques from modern algorithmic 

theory and notions from game theory to address 

issues raised by Internet.

Combinatorial algorithms for finding market 

equilibria.

Two Fundamental Models

Fisher�s model

Arrow-Debreu model,

also known as exchange model

Combinatorial Algorithms

Primal-dual schema based algorithms

Devanur, Papadimitriou, Saberi & V., 2002

Combinatorial algorithm for Fisher�s model

Auction-based algorithms

Garg & Kapoor, 2004

Approximation algorithms.

Approximation 

Find prices s.t. all goods clear

Each buyer get goods providing 

at least                 optimal  utility.(1 )

Primal-Dual Schema

Highly successful algorithm design

technique from exact and 

approximation algorithms
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Exact Algorithms for Cornerstone                    

Problems in P:

Matching (general graph)

Network flow

Shortest paths

Minimum spanning tree

Minimum branching

Approximation Algorithms

set cover                             facility location

Steiner tree                         k-median

Steiner network                  multicut

k-MST                                feedback vertex set

scheduling  . . .  

Main new idea

Previous:  problems captured via

linear programs

DPSV algorithm:  problem captured via a

nonlinear convex program

Fisher�s Model

n buyers, with specified money, m(i) for buyer i

k goods (unit amount of each good)

Linear utilities:         is utility derived by i

on obtaining one unit of  j

Total utility of i, 

i ij ij
j

U u x

iju

]1,0[x

xuu

ij

ijj iji

Fisher�s Model

n buyers, with specified money, m(i)

k goods (each unit amount, w.l.o.g.)

Linear utilities:         is utility derived by i

on obtaining one unit of  j

Total utility of i, 

Find prices s.t. market clears

i ij ij
j

U u x

iju

xuu ijj iji

Eisenberg-Gale Program, 1959

0:

1:

)(:

..

)(log)(max

x

x

xu

ij

i ij

ijj ij

i

ij

j

iui

ts

iuim
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DPSV  Algorithm

�primal� variables:  allocations of goods

�dual� variables:  prices

algorithm:   primal & dual improvements

Allocations Prices

Buyer i�s optimization program:

Global Constraint:

Market Equilibrium

People Goods

$100

$60

$20

$140

Prices and utilities

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

utilities

Bang per buck

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

Bang per buck

Utility of  $1 worth of goods

Buyers will only buy goods providing

maximum bang per buck
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Equality subgraph

$100

$60

$20

$140

$20

$40

$10

$60

10

20

4

2

10/20

20/40

4/10

2/60

Equality subgraph

$100

$60

$20

$140

$20

$40

$10

$60

Most desirable goods for each buyer

Any goods sold in equality subgraph make 

agents happiest

How do we maximize sales in equality 

subgraph?

Any goods sold in equality subgraph make 

agents happiest

How do we maximize sales in equality 

subgraph?

Use max-flow!

Max flow

100

60

20

140

20

40

10

60

infinite capacities

Idea of Algorithm

Invariant: source edges form min-cut 

(agents have surplus)

Iterations: gradually raise prices, 

decrease surplus

Terminate: when surplus = 0, i.e.,

sink edges also form a min-cut
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Ensuring Invariant initially

Set each price to 1/n

Assume buyers� money integral

How to raise prices?

Ensure equality edges retained

i

j

l

ij il

j l

u u

p p

How to raise prices?

Ensure equality edges retained

i

j

l

ij il

j l

u u

p p

� Raise prices proportionately
j ij

l il

p u

p u

ij il

j l

u u

p p

100

60

20

140

20x

40x

10x

60x

initialize:  x = 1

x

100

60

20

140

20x

40x

10x

60x

x = 2: another min-cut

x>2: Invariant violated

100

60

20

140

40x

80x

20

120

active

frozen
reinitialize: x = 1
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100

60

20

140

50

100

20

120

active

frozen
x = 1.25

100

60

20

140

50

100

20

120

100

60

20

140

50

100

20

120

unfreeze

100

60

20

140

50x

100x

20x

120x

x = 1,   x

m

buyers goods

m p

buyers goods

ensure 

Invariant
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m p

buyers goods
equality

subgraph ensure 

Invariant
m px

x = 1,   x

}{ S( )S

( ) ( ( ))x p S m S

}{ S( )S

( ) ( ( ))x p S m S freeze S 

tight set

}{ S( )S

prices in S are market clearing x = 1,   x

S( )S

active

frozen

px
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x = 1,   x

S( )S

active

frozen

px

x = 1,   x

S( )S

active

frozen

px

new edge enters equality subgraph

S( )S

active

frozen

unfreeze component

active

frozen

� All goods frozen => terminate 

(market clears)

� All goods frozen => terminate 

(market clears)

� When does a new set go tight?

�Solve as parametric cut problem
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Termination

Prices in S* have denominators

Terminates in                   max-flows. 

,nnU

max { }ij ijU u

2 2Mn

Polynomial time?

Problem:  very little price increase

between freezings

Polynomial time?

Problem:  very little price increase

between freezings

Solution:  work with buyers  having

large surplus

Max flow

100

60

20

140

20

40

10

60

100

60

20

140

20

40

10

60

20

0

10

60

40

0

Max flow surplus(i) =  m(i) � f(i)

100

60

20

140

20

40

10

60

20

0

10

60

40

0

40

60

20

70
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surplus(i) =  m(i) � f(i)

100

60

20

140

20

40

10

60

20

0

10

60

40

0

40

60

20

70

Surplus vector =  (40, 60, 20, 70)

Balanced flow

A max-flow that minimizes  l2  norm of

surplus vector

tries to make surpluses as equal as possible

Algorithm

Compute balanced flow
active

frozen

Active subgraph:  Buyers with 

maximum surplus

active

frozen

x = 1,   x

px active

frozen

new edge enters equality subgraph
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active

frozen

Unfreeze buyers having residual path to 

active subgraph

active

frozen

Unfreeze buyers having residual path to 

active subgraph

Do they have large surplus?

f:   balanced flow

R(f): residual graph

Theorem: If R(f) has a path from i to j then

surplus(i)   >   surplus(j) active

frozen

New set tight

active

frozen

New set tight:  freeze

Theorem: After each freezing, l2  norm of 

surplus vector drops by (1 - 1/n2 ) factor.

Two reasons:

total surplus decreases

flow becomes more balanced
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Idea of Algorithm

algorithm:   primal & dual improvements

measure of progress:  l2-norm of surplus vector

Allocations Prices

Polynomial time

2 2( ( log log ))O n n U MnTheorem:                                       

max-flow computations suffice.

Weak gross substitutability

Increasing price of one good cannot decrease

demand for another good.

Weak gross substitutability

Increasing price of one good cannot decrease

demand for another good.

=>  never need to decrease

prices (dual variables).

Weak gross substitutability

Increasing price of one good cannot decrease

demand for another good.

=>  never need to decrease

prices (dual variables).

Almost all primal-dual algs work this way.

Arrow-Debreu Model

Approximate equilibrium algorithms:

Jain, Mahdian & Saberi, 2003:  

Use DPSV as black box.

Devanur & V.,   2003: More efficient, by

opening DPSV.

495



Garg & Kapoor, 2004

Auction-based algorithm

Start with very low prices

Keep increasing price of good that is in demand

B has excess money.  Favorite good:  g 

Currently at price p and owned by B�

B outbids B�

(1 )p

p

B 'B

p(1 )p

Outbid

Auction-based algorithm

Go in rounds: 

In each round, total surplus decreases

by              factor

Hence                    iterations suffice,

M= total moneytotal money

1 2, ,... nB B B

(1 )

(1 )log M

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)

Perform outbid and update agents� money

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)

Perform outbid and update agents� money

Any good with price  >1  is fully sold

Arrow-Debreu Model

Start with all prices 1

Allocate money to agents (initial endowment)

Perform outbid and update agents� money

Any good with price  >1  is fully sold

Eventually every good will have price  >1  

maxmax

min min

ij

ij

uprice

price u
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Garg, Kapoor & V.,  2004:

Auction-based algorithms for

additively separable concave utilities

satisfying weak gross substitutability

Kapoor, Mehta & V.,  2005:

Auction-based algorithm for 

a (restricted) production model

Q:  Distributed algorithm for equilibria?

Appropriate model?

Primal-dual schema operates via 

local improvements
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Algorithmic Game Theory

and Internet Computing

Vijay V. Vazirani

New Market Models

Resource Allocation Markets

Fisher�s Model

n buyers, with specified money, m(i) for buyer i

k goods (unit amount of each good)

Linear utilities:         is utility derived by i

on obtaining one unit of  j

Total utility of i, 

i ij ij
j

U u x

iju

]1,0[x

xuu

ij

ijj iji

Fisher�s Model

n buyers, with specified money, m(i)

k goods (each unit amount, w.l.o.g.)

Linear utilities:         is utility derived by i

on obtaining one unit of  j

Total utility of i, 

Find prices s.t. market clears

i ij ij
j

U u x

iju

xuu ijj iji

Eisenberg-Gale Program, 1959

0:

1:

)(:

..

)(log)(max

x

x

xu

ij

i ij

ijj ij

i

ij

j

iui

ts

iuim

Via KKT Conditions can establish:

Optimal solution gives equilibrium 

allocations

Lagrange variables give prices of goods

Equilibrium exists (under mild conditions)

Equilibrium utilities and prices are unique

Eisenberg-Gale program 

helps establish:
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Equilibrium exists (under mild conditions)

Equilibrium utilities and prices are unique

Rational!!

Eisenberg-Gale program 

helps establish:
Kelly�s resource allocation model, 1997

Mathematical framework for understanding 

TCP congestion control

Kelly�s  model

Given:

network G = (V,E) 

(directed or undirected)

capacities on edges

source-sink pairs (agents)

m(i): money/unit time agent i

is willing to pay

)1(m

t1

s2

t2

)(ecs1

)2(m

Kelly�s  model

Network  determines:

f(i):  flow rate of agent i

Assume utility u(i) = m(i) log f(i)

Total utility is additivet1

s2

t2

s1

Convex Program for Kelly�s Model

0:,

)()(:

)(:

..

)(log)(max

f

f

p

i

p

p

i

i

pi

eceflowe

ifi

ts

ifim

Kelly�s  model

t1

s2

t2

)(eps1 Lagrange variables:

p(e):  price/unit flow
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Kelly�s  model

t1

s2

t2

)(eps1

Optimum flow and edge prices

are in equilibrium:

1). p(e)>0  only if e is saturated

2) flows go on cheapest paths

3) money of each agent is fully used 

Let rate(i) = cost of cheapest path for i

m(i) = f(i) rate(i)

Kelly�s  model

t1

s2

t2

)(eps1

Optimum flow and edge prices

are in equilibrium:

1). p(e)>0  only if e is saturated

2) flows go on cheapest paths

3) money of each agent is fully used 

Let rate(i) = cost of cheapest path for i

f(i)�s and rate(i)�s are unique!

TCP Congestion Control

f(i): source rate 

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas) 

p(e):

TCP Congestion Control

f(i): source rate 

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas) 

Kelly: Equilibrium flows are

proportionally fair: only way of

increasing an agent�s flow by 5% is to 

decrease other agents� flow by at least 5%

p(e):

TCP Congestion Control

f(i): source rate 

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas) 

Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

p(e):

TCP Congestion Control

f(i): source rate 

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas) 

Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

AIMD + RED converges to equilibrium

primal-dual (source-link) alg.

p(e):
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TCP Congestion Control

f(i): source rate 

prob. of packet loss (in TCP Reno)

queueing delay (in TCP Vegas) 

Low, Doyle, Paganini: continuous time algs.

for computing equilibria (not poly time).

FAST: for high speed networks with large

bandwidth

p(e):

Combinatorial Algorithms

Devanur, Papadimitriou, Saberi & V.,  2002:

for Fisher�s linear utilities case

Kelly & V.,  2002: Kelly�s model is a 

generalization of Fisher�s model.

Find comb. poly time algs!

Irrational for 2 sources & 3 sinks

s1 t
1

1

s2

t
2

1

t21 2

$1 $1

$1

Irrational for 2 sources & 3 sinks

s1 t
1

1

s2

t
2

1

t2

31

3

3

Equilibrium prices

1 source & multiple sinks

2 source-sink pairs

s

t1

t2

2

2

1
10$

10$
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s

t1

t2

2

2

1
10$

10$

$5

$5

s

t1

t2

2

2

1
10$

10$

120$

s

t1

t2

2

2

1
120$

10$

$10

$40

$30

Jain & V., 2005:  strongly poly alg

Primal-dual algorithm

Usual: linear programs & LP-duality

This: convex programs & KKT conditions

Ascending price auction

Buyers: sinks (fixed budgets, maximize flow)

Sellers: edges (maximize price)

s

t1

t2

t3

t4

rate(i):  cost of cheapest             path ts i

s

t1

t2

t3

t4

t
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s

t1

t2

t3

t4

t

Capacity of             edge  =tt i

)(

)(

irate

im

s

t1

t2

t3

t4

t

min s-t cut

s

t1

t2

t3

t4

t

p

s

t1

t2

t3

t4

t

p

s

t1

t2 t3

t4

t

pp
0

prate
0

)2(

s

t1

t2 t3

t4

t

p
0

p prate
0

)2(
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t1

t2 t3

t4

t

p
0
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1

prate
0
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ppraterate
10
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s

t1

t2 t3

t4

t

p
0

p
1 p

s

t1

t2 t3

t4

t

p
0

p
1 p

2

nested cuts

s

t1

t2 t3

t4

t

p
0

p
1 p

2

prate
0

)2(

ppraterate
10

)3()1(

ppprate
210

)4(

Find s-t max flow 

Flow and prices will:

Saturate all red cuts

Use up sinks� money

Send flow on cheapest paths

s

t1

t2

2

2

1
120$

10$

a

b
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120
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a

b
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s

t1

t2

2

2

1 10
120

11010

a

b

t

10p

s

t1

t2

2

2

1 p10

120

1

a

b

t

10
0

p p

s

t1

t2

2

2

1
3

3010

120

1

a

b

t

10
0

p 30p

s

t1

t2

2

2

1
120$

10$

$10

$40

$30

Rational!!
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Max-flow min-cut theorem

Other resource allocation markets

2 source-sink pairs (directed/undirected)

Branchings rooted at sources (agents)

Spanning trees 

Network coding

Eisenberg-Gale-Type Convex Program

i
iuim )(log)(max

s.t.    packing constraints

Eisenberg-Gale Market

A market whose equilibrium is captured

as an optimal solution to an 

Eisenberg-Gale-type program

Megiddo, 1974:  Let T = set of sinks (agents)

For                define v(S) to be the max-flow

possible from s to sinks in S.  

Then v  is a submodular function, i.e., for 

TS

)()()()(

,

,

AvtAvBvtBv

At

TBA

Simpler convex program for 

single-source market

0)(:

)()(:

..

)(log)(max

ifi

SvifTS

ts

ifim

Si

i
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Submodular Utility Allocation Market

Any market which has simpler program

and  v is submodular

Submodular Utility Allocation Market

Any market which has simpler program

and  v is submodular

Theorem: Strongly polynomial algorithm

for SUA markets.

Submodular Utility Allocation Market

Any market which has simpler program

and  v is submodular

Theorem: Strongly polynomial algorithm

for SUA markets.

Corollary: Rational!!

Theorem:   Following markets are SUA:

2 source-sink pairs, undirected (Hu, 1963)

spanning tree (Nash-William & Tutte, 1961)

2 sources branching (Edmonds, 1967 + JV, 2005)

3 sources branching: irrational

Theorem:   Following markets are SUA:

2 source-sink pairs, undirected (Hu, 1963)

spanning tree (Nash-William & Tutte, 1961)

2 sources branching (Edmonds, 1967 + JV, 2005)

3 sources branching: irrational

Open (no max-min thoerems):

2 source-sink pairs, directed

2 sources, network coding

Theorem:   Following markets are SUA:

2 source-sink pairs, undirected (Hu, 1963)

spanning tree (Nash-William & Tutte, 1961)

2 sources branching (Edmonds, 1967 + JV)

3 sources branching: irrational

Open (no max-min thoerems):

2 source-sink pairs, directed

2 sources, network coding

Chakrabarty, Devanur & V.,  2006
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EG[2]:  Eisenberg-Gale markets with 2 agents

Theorem: EG[2] markets are rational.

EG[2]:  Eisenberg-Gale markets with 2 agents

Theorem: EG[2] markets are rational.

Combinatorial EG[2] markets:   polytope

of feasible utilities can be described via

combinatorial LP.

Theorem: Strongly poly alg for Comb EG[2].

EG

Rational

Comb EG[2]

SUA

EG[2]

3-source branching

Fisher

2 s-s undir

2 s-s dir

Single-source

Other properties:

Efficiency

Fairness (max-min + min-max fair)

Competition monotonicity

Open issues

Strongly poly algs for approximating

nonlinear convex programs

equilibria

Insights into congestion control protocols?
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Random Sampling Techniques

and Approximation of CSP Problems

Marek Karpinski

University of Bonn

(NHC Spring School Lectures, Tokyo, March 1, 2006)

Abstract. We present some recent results and new sampling
techniques for absolute and relative approximation of general
Constraint Satisfaction Problems (CSP). The methods used are

threefold and based on: Smooth or Linearized Integer Programs,
combinatorial arguments, and special linear algebraic techniques.

In particular we apply those techniques to construct polynomial
time approximation schemes (PTASs) for certain instances of

both MAX- and MIN-CSP including dense and subdense in-
stances and general metric and quasimetric instances of those
problems. In that context we study the generic sample com-

plexity for approximating arbitrary CSP instances and try to
establish tight upper bounds for their underlying core-sample

sizes. We go also beyond CSP optimization problems and design
first PTASs for general metric and quasimetric size-constraint

Partitioning Problems.

1
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0

APPROXIMATION SCHEMES

FOR METRIC BISECTION 

AND PARTITIONING

MAREK KARPINSKI

UNIVERSITY OF BONN

1

APPROXIMATING METRIC

MAREK KARPINSKI

BISECTION AND RELATED 

PARTITIONING PROBLEMS

UNIVERSITY OF BONN

( JOINT WORK WITH W.F. DE LA VEGA AND CLAIRE KENYON )

2

MOTIVATED BY

�BALANCED� METRIC

AND QUASIMETRIC

CLUSTERING

AND

PARTITIONING

PROBLEMS

2

MOTIVATED BY

�BALANCED� METRIC

AND QUASIMETRIC

CLUSTERING

AND

PARTITIONING

PROBLEMS

( MINIMIZING HAMILTONIANS )

3

MIN-BISECTION

OF

GRAPHS,

METRIC SPACES, 

SET SYSTEMS, ...

´MIN-CONNECTIVITY´

50 % 50 %

3

MIN-BISECTION

OF

GRAPHS,

METRIC SPACES, 

SET SYSTEMS, ...

´MIN-CONNECTIVITY´

50 % 50 %
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4

METRIC SITUATIONS:

PARTITIONING

OF
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Approximation Algorithms for Facility Location

Jens Vygen

University of Bonn

Outline

Introduction

Uncapacitated Facility Location

Capacitated and Universal Facility Location

Facility Location and Network Design with Service Capacities

Facility Location: Applications

� manufacturing plants

� storage facilities, depots

� warehouses, retail stores

� libraries, fire stations, hospitals

� servers in the internet

� base stations for wireless services

� buffers distributing signals on a chip

� ...

Goal: Optimum service for clients at minimum cost

Common features of facility location problems

� Two sets: clients and potential facilities

� Each client must be served.
� A potential facility can be opened or not.
� Clients can only be served by open facilities.

� Two cost components: facility cost and service cost.

� Opening a facility involves a certain cost.
� Serving a client from a facility involves a certain cost.

� The total cost is to be minimized.

But there are many variants

� Can a client’s demand be satisfied by more than one facility?

� Are there constraints on the total demand, or total service
cost, that a facility can handle?

� Do the service costs satisfy the triangle inequality?

� Are there finitely or infinitely many potential facilities?

� Do the facility costs depend on the total demand served?

� Is it allowed to serve only a subset of clients, and pay for
those that are not served?

� Is there a bound on the number of facilities that we can open?

� Does the total service cost of a facility depend on the sum of
the distances to its clients, or the length of a shortest tour, or
the length of an optimal Steiner tree?

� Are we interested in the sum of all service costs, or rather in
the maximum service cost?

� Do we need to serve facilities by second-stage facilities (etc.)?

Example 1: Fermat-Weber Problem
The most prominent example for continuous facility location

Locating a single facility in R
n: Given a1, . . . , am ∈ R

n and weights
w1, . . . , wm ∈ R+, find p ∈ R

n minimizing

m
∑

i=1

wi ||p − ai ||.

� For �1-norm solvable in linear time (Blum et al. 1973)

� �2-norm, n = 2, m = 3: Simple geometric solution (Fermat,
Torricelli, Cavalieri, Simpson, Heinen)

� For �2-norm: construction by ruler and compasses impossible
(Bajaj 1988)

� Approximate solution for �2-norm: Weiszfeld’s algorithm
(Weiszfeld 1937, Kuhn 1973, Vardi and Zhang 2001,
Rautenbach et al. 2004)
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Example 2: Uncapacitated Facility Location (UFL)
The most prominent example for discrete facility location

Instance:

� a finite set D of clients;

� a finite set F of potential facilities;

� a fixed cost fi ∈ R+ for opening each facility i ∈ F ;

� a service cost cĳ ∈ R+ for each i ∈ F and j ∈ D.

We look for:

� a subset S of facilities (called open) and

� an assignment σ : D → S of clients to open facilities,

� such that the sum of facility costs and service costs

∑

i∈S

fi +
∑

j∈D
cσ(j)j

is minimum.

More examples discussed later

� Capacitated Facility Location

� Universal Facility Location

� Facility Location and Network Design with Service Capacities

These are more general and more realistic in many applications.

Approximation Algorithms: Definition

Let f be a function assigning a real number to each instance.
An f -approximation algorithm is an algorithm for which a
polynomial p exists such that for each instance I :

� the algorithm terminates after at most p(size(I )) steps,

� the algorithm computes a feasible solution, and

� the cost of this solution is at most f (I ) times the optimum
cost of instance I .

f is called the approximation ratio or performance guarantee.
If f is a constant, we have a (constant-factor) approximation
algorithm.

Uncapacitated Facility Location is as hard as Set Covering

Set Covering: Given a finite set U, a family S of subsets of U
with

⋃

S∈S S = U, and weights w : S → R+, find a set R ⊆ S
with

⋃

R∈R R = U with minimum total weight
∑

R∈R w(R).

� No o(log |U|)-approximation algorithm exists unless P = NP.
(Raz, Safra 1997)

� Greedy algorithm has performance ratio 1 + ln |U|.
(Chvátal 1979)

� Set Covering is a special case of Uncapacitated

Facility Location: define D := U, F := S, fS = w(S) for
S ∈ S, cSj := 0 for j ∈ S ∈ S and cSj := ∞ for j ∈ U \ S .

� Conversely, the greedy algorithm for Set Covering can be
applied to Uncapacitated Facility Location:
Set U := D, S = F × 2D, and w(i , D) := fi +

∑

j∈D cĳ .
(Hochbaum 1982)

A natural assumption: metric service costs

Therefore we assume henceforth metric service costs:

cĳ ≥ 0

and
cĳ + ci ′j + ci ′j ′ ≥ cĳ ′

for all i , i ′ ∈ F and j , j ′ ∈ D.

Equivalently, we assume c to be a (semi)metric on D ∪ F .

Motivation:

� The general problem is as hard as Set Covering.

� In many practical problems service costs are proportional to
geometric distances, or to travel times, and hence are metric.

But: Greedy algorithm has performance guarantee
Ω(log n/ log log n) even for metric instances. (Jain et al. 2003)

Integer Linear Programming Formulation

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cĳxĳ

subject to
xĳ ≤ yi (i ∈ F , j ∈ D)

∑

i∈F
xĳ = 1 (j ∈ D)

xĳ ∈ {0, 1} (i ∈ F , j ∈ D)

yi ∈ {0, 1} (i ∈ F)

(Balinski 1965)
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Linear Programming Relaxation

minimize
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
cĳxĳ

subject to
xĳ ≤ yi (i ∈ F , j ∈ D)

∑

i∈F
xĳ = 1 (j ∈ D)

xĳ ≥ 0 (i ∈ F , j ∈ D)

yi ≥ 0 (i ∈ F)

The Dual LP

maximize
∑

j∈D
vj

subject to
vj − wĳ ≤ cĳ (i ∈ F , j ∈ D)

∑

j∈D
wĳ ≤ fi (i ∈ F)

wĳ ≥ 0 (i ∈ F , j ∈ D)

First Approximation Algorithm: LP Rounding

� Compute an optimum solutions (x∗, y∗) and (v∗, w∗) to the
primal and dual LP.

� By complementary slackness, x∗
ĳ > 0 implies v∗

j − w∗
ĳ = cĳ ,

and thus cĳ ≤ v∗
j .

� Let G be the bipartite graph with vertex set F ∪D containing
an edge {i , j} iff x∗

ĳ > 0.

� Assign clients to clusters iteratively as follows.
� In iteration k, let jk be a client j ∈ D not assigned yet and

with v∗

j smallest.
� Create a new cluster containing jk and those vertices of G that

have distance 2 from jk and are not assigned yet.
� Continue until all clients are assigned to clusters.

� For each cluster k we choose a neighbour ik of jk with fik
minimum, open ik , and assign all clients in this cluster to ik .

Analysis of the LP Rounding Approximation Algorithm

� The service cost for client j in cluster k is at most

cik j ≤ cĳ + cĳk
+ cik jk ≤ v∗

j + 2v∗
jk

≤ 3v∗
j ,

where i is a common neighbour of j and jk .
� The facility cost fik can be bounded by

fik ≤
∑

i∈F
x∗

ĳk
fi =

∑

i∈F :{i ,jk}∈E(G)

x∗
ĳk

fi ≤
∑

i∈F :{i ,jk}∈E(G)

y∗
i fi .

As jk and jk′ cannot have a common neighbour for k 	= k ′,
the total facility cost is at most

∑

i∈F y∗
i fi .

� The total cost is at most

3
∑

j∈D
v∗

j +
∑

i∈F
y∗

i fi ,

which is at most four times the LP value. Hence we get:

Theorem
This is a 4-approximation algorithm for metric UFL.

(Shmoys, Tardos and Aardal 1997)

Better approximation ratios for metric UFL

technique ratio RT authors year

LP-Rounding 3.16 – Shmoys, Tardos, Aardal 1997

LP-Rounding+Greedy 2.41 – Guha, Khuller 1998

LP-Rounding 1.74 – Chudak 1998

Local Search 5.01 ◦ Korupolu, Plaxton, Ra-
jaraman

1998

Primal-Dual 3.00 + Jain, Vazirani 1999

Primal-Dual+Greedy 1.86 + Charikar, Guha 1999

LP-Rounding+Primal-
Dual+Greedy

1.73 – Charikar, Guha 1999

Local Search 2.42 ◦ Arya et al. 2001

Primal-Dual 1.61 + Jain, Mahdian, Saberi 2002

LP-Rounding 1.59 – Sviridenko 2002

Primal-Dual+Greedy 1.52 + Mahdian, Ye, Zhang 2002

RT : running time; – : slow; ◦ : medium; + : fast

Primal-Dual Algorithm by Jain, Mahdian and Saberi (2002)

Start with U := D and time t = 0. Increase t, maintaining vj = t
for all j ∈ U. Consider the following events:

� vj = cĳ , where j ∈ U and i is not open. Then start to increase
wĳ at the same rate, in order to maintain vj − wĳ = cĳ .

�

∑

j∈D wĳ = fi . Then open i . For all j ∈ D with wĳ > 0:
freeze vj and set wi ′j := max{0, cĳ − ci ′j} for all i ′ ∈ F , and
remove j from U.

� vj = cĳ , where j ∈ U and i is open. Then freeze vj and set
wi ′j := max{0, cĳ − ci ′j} for all i ′ ∈ F , and remove j from U.
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Improvement by Mahdian, Ye and Zhang (2002)

� Multiply all facility costs by 1.504.

� Apply the Jain-Mahdian-Saberi algorithm.

� Now consider the original facility costs.

� Apply greedy augmentation (Charikar, Guha 1999):
Let gi be the service cost saving induced by adding facility i .
Iteratively pick an element i ∈ F maximizing gi

fi
as long as

this ratio is greater than 1.

Theorem
This is a 1.52-approximation algorithm for metric UFL.

Lower bound on approximation ratios

Theorem
There is no 1.463-factor approximation algorithm for metric UFL
unless P = NP.

(Sviridenko [unpublished], based on Guha and Khuller [1999] and
Feige [1998])

Local Search as a general heuristic

Basic Framework:

� Define a neighbourhood graph on the feasible solutions.

� Start with any feasible solution x .

� If there is a neighbour y of x that is (significantly) better, set
x := y and iterate.

Features:

� Quite successful for many practical (hard) problems

� Many variants of local search heuristics

� Typically no guarantees of running time and performance
ratio.

Local Search in Combinatorial Optimization

Example: TSP

� Even simple 2-opt typically yields good solutions. Variants
(chained Lin-Kernighan) with empirically less than 1% error

� Worst-case running time of k-opt is exponential for all k.

� Performance ratio Ω(n
1

2k ).

(Applegate et al. 2003, Chandra, Karloff, Tovey 1999)

Example: Facility Location

� Probably the first nontrivial problem where local search led to
constant-factor approximation algorithms.
(Korupolo, Plaxton and Rajamaran 2000, Arya et al. 2004)

� But: for metric UFL worse in theory (maybe also in practice)

� The only known technique to obtain a constant-factor
approximation for Capacitated Facility Location.

Capacitated Facility Location (CFL)

Instance:

� finite sets D (clients) and F (potential facilities);

� metric service costs cĳ ∈ R+ for i ∈ F and j ∈ D;

� an opening cost fi ∈ R+ for each facility i ∈ F ;

� a capacity ui ∈ R+ for each facility i ∈ F ;

� a demand dj for each client j ∈ D.

We look for:

� a subset S of facilities (called open) and

� an assignment x : S ×D → R+ with
∑

i∈S xĳ = dj for j ∈ D
and

∑

j∈D xĳ ≤ ui for i ∈ S

� such that the sum of facility costs and service costs

∑

i∈S



fi +
∑

j∈D
cĳxĳ





is minimum.

Splittable or Unsplittable Demands

Assume that facilities with given capacities are open.
Task: assign the clients to these facilities, respecting capacity
constraints.

� Splittable (or uniform) demand:
Hitchcock transportation problem.

� Unsplittable non-uniform demand:
Generalizes bin packing.

Consequence: CFL with unsplittable demands has no
approximation algorithm. It is strongly NP-hard to distinguish
between instances with optimum cost 0 and ∞.

Hence consider splittable demands only.
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Universal Facility Location (UniFL)

Instance:

� finite sets D (clients) and F (potential facilities);

� metric service costs, i.e. a metric c on D ∪ F ;

� a demand dj ≥ 0 for each j ∈ D;

� for each i ∈ F a cost function fi : R+ → R+ ∪ {∞},
left-continuous and non-decreasing.

We look for:

� a function x : F ×D → R+ with
∑

i∈F xĳ = dj for all j ∈ D

(a feasible solution), such that c(x) := cF (x) + cS(x) is minimum,
where

cF (x) :=
∑

i∈F
fi

(

∑

j∈D
xĳ

)

and cS(x) :=
∑

i∈F

∑

j∈D
cĳxĳ .

UniFL: Facility cost function given by an oracle

fi (z): cost to install capacity z at facility i .

Given by an oracle that, for each i ∈ F , u, c ∈ R+ and t ∈ R,
computes fi (u) and

max{δ ∈ R : u + δ ≥ 0, fi (u + δ) − fi (u) + c|δ| ≤ t}.

Proposition

There always exists an optimum solution.

(Mahdian and Pál 2003)

UniFL: important special cases

� Uncapacitated Facility Location:
dj = 1 (j ∈ D), and fi (0) = 0 and fi (z) = ti for some ti ∈ R+

and all z > 0 (i ∈ F).

� Capacitated Facility Location:
fi (0) = 0, fi (z) = ti for 0 < z ≤ ui and fi (z) = ∞ for z > ui ,
where ui , ti ∈ R+ (i ∈ F).

� Soft-Capacitated Facility Location:
dj = 1 (j ∈ D), and fi (z) = � z

ui
�ti for some ui ∈ N, ti ∈ R+

and all z ≥ 0 (i ∈ F).

Simple local search operations

� Add: open a facility (CFL); add capacity to a facility (UniFL).

� Drop: close a facility (CFL).

� Swap: open one facility, close another one (CFL).

Even for CFL with non-uniform demands, these operations do not
suffice:
When closing one facility, it may be necessary to open many other
ones (and re-assign the demand along the edges of a star).

Previous approximation algorithms for CFL and UniFL

Kuehn, Hamburger 1963 add,drop,swap CFL —

Korupolu, Plaxton, Raja-
maran 1998

add,drop,swap CFL 8.001 uniform
capacities

Chudak, Williamson
1999

add,drop,swap CFL 5.829 uniform
capacities

Pál, Tardos, Wexler 2001 add,star CFL 8.532

Mahdian, Pál 2003 add,star UniFL 7.873

Zhang, Chen, Ye 2004 add,double-star CFL 5.829

Garg, Khandekar, Pandit
2005

add,double-star UniFL 5.829 not poly-
nomial!

Vygen 2005 add,comet UniFL 6.702

All based on
local search.

cometdouble starstar

Add Operation for UniFL

Let t ∈ D and δ > 0. Replace current solution x by an optimum
solution y of the transportation problem

min

{

cS(y)

∣

∣

∣

∣

∣

y : F ×D → R+,
∑

i∈F
yĳ = dj (j ∈ D),

∑

j∈D
yĳ ≤

∑

j∈D
xĳ (i ∈ F \ {t}),

∑

j∈D
ytj ≤

∑

j∈D
xtj + δ

}

.

We denote by

cx(t, δ) := cS(y) − cS(x) + ft





∑

j∈D
xtj + δ



 − ft





∑

j∈D
xtj





the estimated cost (which is at least c(y) − c(x)).
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How to find a profitable Add operation

Lemma
Let ε > 0 and t ∈ F . Let x be a feasible solution. Then there is an
algorithm with running time O(|V |3 log |V |ε−1) that

� finds a δ ∈ R+ with cx(t, δ) ≤ −εc(x)

� or decides that no δ ∈ R+ exists for which cx(t, δ) ≤ −2εc(x).

(Mahdian, Pál 2003)

Pivot Operation

Let x be a feasible solution. Let A be a graph with V (A) = F and

δ ∈ ∆x
A :=







δ ∈ R
F

∣

∣

∣

∣

∣

∣

∑

j∈D
xĳ + δi ≥ 0 for all i ∈ F ,

∑

i∈F
δi = 0







.

Then we consider the operation Pivot(A, δ), which means:

� Compute a minimum-cost (w.r.t. c) uncapacitated δ-flow in
(A, c).

� W.l.o.g., the edges carrying flow form a forest.

� Scan these edges in topological order, reassigning clients
according to flow values.

� This increases the cost of the solution by at most the cost of
the flow plus

∑

i∈F
fi

(

∑

j∈D
xĳ + δi

)

− fi

(

∑

j∈D
xĳ

)

.

How to find a profitable Pivot operation

But: how to choose δ?

� δ cannot be chosen almost optimally for the complete graph
(unless P = NP).

� We show how to choose δ almost optimally if A is a forest.

Restrict attention to Pivot on arborescences

Let A be an arborescence with V (A) = F . Let x be a feasible
solution.
For δ ∈ ∆x

A define

cx
A,i (δ) := fi

(

∑

j∈D
xĳ + δi

)

− fi

(

∑

j∈D
xĳ

)

+

∣

∣

∣

∣

∣

∑

j∈A+
i

δj

∣

∣

∣

∣

∣

cip(i)

for i ∈ F and
cx(A, δ) :=

∑

i∈F
cx

A,i (δ).

Here A+
i denotes the set of vertices reachable from i in A, and p(i)

is the predecessor of i .

How to find a profitable Pivot for an arborescence

Lemma
Let ε > 0. There is an algorithm with running time O(|F|4ε−3)
that

� finds a δ ∈ ∆x
A with cx(A, δ) ≤ −εc(x)

� or decides that no δ ∈ ∆x
A exists for which

cx(A, δ) ≤ −2εc(x).

(Vygen 2005)

Bounding the cost of a local optimum

Let 0 < ε < 1. Let x , x∗ be feasible solutions to a given instance.

Lemma
If cx(t, δ) ≥ − ε

|F|c(x) for all t ∈ F and δ ∈ R+, then

cS(x) ≤ cF (x∗) + cS(x∗) + εc(x).

(Pál, Tardos and Wexler 2001)

Lemma
If cx(A, δ) ≥ − ε

|F|c(x) for all stars and comets A and δ ∈ ∆x
A, then

cF (x) ≤ 4cF (x∗) + 2cS(x∗) + 2cS(x) + εc(x).

(Vygen 2005)
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The total cost of a local optimum

These two lemmata imply:

Theorem
If cx(t, δ) > − ε

8|F|c(x) for t ∈ F and δ ∈ R+ and

cx(A, δ) > − ε

8|F|c(x) for all stars and comets A and δ ∈ ∆x
A, then

c(x) ≤ (1 + ε)(7cF (x∗) + 5cS(x∗)).

By scaling facility costs by
√

41−5
2

we get a polynomial-time

(
√

41+7
2

+ ε)-approximation algorithm for UniFL.

How to bound the facility cost

Let x be the current solution and x∗ be an optimum solution.
Let b(i) :=

∑

j∈D(xĳ − x∗
ĳ ) (i ∈ F).

Let y be an optimum transshipment from S := {i ∈ F : b(i) > 0}
to T := {i ∈ F : b(i) < 0}.
W.l.o.g., the edges where y is positive form a forest F .
The cost of y is at most cS(x∗) + cS(x).

Using F and y , we will define a set of pivot operations on stars
and comets, whose total estimated cost is at most
4cF (x∗) − cF (x) + 2cS(x∗) + 2cS(x).
An operation (A, δ) closes s ∈ S if δs = −b(s) < 0, and it opens
t ∈ T if 0 < δt ≤ −b(t).
Over all operations to be defined, we will close each s ∈ S once,
open each t ∈ T at most four times, and use an estimated routing
cost at most twice the cost of y .

How to define the operations (1)

Orient F as a set of arborescences rooted at elements of T .
Call a vertex weak if there is more flow on downward than on
upward incident arcs, otherwise strong. Let t ∈ T .
Open t up to twice if t is strong and up to three times if t is weak.
For each child s of t: Close s once, and open each child of s at
most once (if weak) or twice (if strong).
Example: t

weak weak weak strong strong strong strong strong

strongstrong weakweak

weak

How to define the operations (2)

weak weak strong strong strong strong strongweak

weak weak strong strong strong strong strongweak

weak weak strong strong strong strong strongweak

weak weak strong strong strong strong strongweak

weak

weak

weak

weak

t

t

t

t

VLSI Design: Distributing a signal to several terminals

blue: terminals red: facilities

Problem Statement
Instance:

� metric space (V , c),
� finite set D ⊆ V (terminals/clients),
� demands d : D → R+,
� facility opening cost f ∈ R+,
� capacity u ∈ R+.

Find a partition D = D1∪̇ · · · ∪̇Dk and
Steiner trees Ti for Di (i = 1, . . . , k) with

c(E (Ti )) + d(Di ) ≤ u

for i = 1, . . . , k such that
k

∑

i=1

c(E (Ti )) + kf

is minimum.
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Complexity Results

(All the following results are by Maßberg and Vygen 2005)

Proposition

� There is no (1.5 − ε)-approximation algorithm (for any ε > 0)
unless P = NP.

� There is no (2 − ε)-approximation algorithm (for any ε > 0)
for any class of metrics where the Steiner tree problem cannot
be solved exactly in polynomial time.

� There is a 2-approximation algorithm for geometric instances
(similar to Arora’s approximation scheme for the TSP).
However, this is not practically efficient.

Lower bound: spanning forests

Let F1 be a minimum spanning tree for (D, c).
Let e1, . . . , en−1 be the edges of F1 so that c(e1) ≥ . . . ≥ c(en−1).
Set Fk := Fk−1 \ {ek−1} for k = 2, . . . , n.

Lemma
Fk is a minimum weight spanning forest in (D, c) with exactly k
components.

Proof.
By induction on k. Trivial for k = 1. Let k > 1.
Let F ∗ be a minimum weight k-spanning forest.
Let e ∈ Fk−1 such that F ∗ ∪ {e} is a forest. Then

c(Fk) + c(ek−1) = c(Fk−1) ≤ c(F ∗) + c(e) ≤ c(F ∗) + c(ek−1).

Lower bound: Steiner forests

A k-Steiner forest is a forest F with D ⊆ V (F ) and exactly k
components.

Lemma
1
α

c(Fk) is a lower bound for the cost of a minimum weight
k-Steiner forest, where α is the Steiner ratio.

Lower bound: number of facilities

Let t ′ be the smallest integer such that

1

α
c(Ft′) + d(D) ≤ t ′ · u

Lemma
t ′ is a lower bound for the number of facilities of any solution.

Let t ′′ be an integer in {t ′, . . . , n} minimizing

1

α
c(Ft′′) + t ′′ · f .

Theorem
1
α

c(Ft′′) + t ′′ · f is a lower bound for the cost of an optimal
solution.

Algorithm A

1. Compute a minimum spanning tree on (D, c).

2. Compute t ′′ and spanning forest Ft′′ as above.

3. Split up overloaded components by a bin packing approach.

It can be guaranteed that for each new component at least u
2

of
load will be removed from the initial forest.

Analysis of Algorithm A

Recall: 1
α

c(Ft′′) + t ′′ · f is a lower bound for the optimum.

We set Lr := 1
α

c(Ft′′) and Lf := t ′′ · f .

Observe: Lr + d(D) ≤ u
f
Lf .

The cost of the final solution is at most

c(Ft′′) + t ′′f +
2

u

(

c(Ft′′) + d(D)
)

f

= αLr + Lf +
2f

u

(

αLr + d(D)
)

≤ αLr + Lf + 2αLf

Theorem
Algorithm A is a (2α + 1)-approximation algorithm.
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Algorithm B

Define metric c ′ by c ′(v , w) := min{c(v , w), uf
u+2f

}.

1. Compute a Steiner tree F for D in (V , c ′) with some
β-approximation algorithm.

2. Remove all edges e of F with c(e) ≥ uf
u+2f

.

3. Split up overloaded components of the remaining forest as in
algorithm A.

Theorem
Algorithm B has perfomance ratio 3β.

Using the Robins-Zelikovsky Steiner tree approximation algorithm
we get a 4.648-approximation algorithm.

With a more careful analysis of the Robins-Zelikovsky algorithm we
can get a 4.099-approximation algorithm in O(n210000

) time.

Algorithm C

Define metric c ′′ by c ′′(v , w) := min{c(v , w), uf
u+f

}

1. Compute a tour F for D in (V , c ′′) with some
γ-approximation algorithm.

2. Remove the longest edge of F .

3. Remove all edges e of F with c(e) ≥ uf
u+f

.

4. Split up overloaded components of the remaining forest as in
algorithm A.

Theorem
Algorithm C has perfomance ratio 3γ.

Using Christofides’ TSP approximation algorithm we get a
4.5-approximation algorithm in O(n3) time.

Comparison of the three approximation algorithms

� Algorithm A computes a minimum spanning tree.

� Algorithm B calls the Robins-Zelikovsky algorithm.

� Algorithm C calls Christofides’ algorithm.

� Then each algorithm deletes expensive edges and splits up
overloaded components.

algorithm metric perf.guar. runtime

A (R2, �1) 4 O(n log n)
A general 5 O(n2)

B general 4.099 O(n210000
)

C general 4.5 O(n3)

Experimental Results

Algorithm A on six real-world instances:

inst1 inst2 inst3 inst4 inst5 inst6

# terminals 3675 17140 45606 54831 109224 119461
MST length 13.72 60.35 134.24 183.37 260.36 314.48

t ′ 117 638 1475 2051 3116 3998
Lr 8.21 31.68 63.73 102.80 135.32 181.45

Lr + Lf 23.07 112.70 251.06 363.28 531.05 689.19

# facilities 161 947 2171 2922 4156 5525
service cost 12.08 54.23 101.57 159.93 234.34 279.93

total cost 32.52 174.50 377.29 531.03 762.15 981.61

gap (factor) 1.41 1.55 1.59 1.46 1.44 1.42

Reduction of power consumption

Algorithm A on four chips, compared to the previously used
heuristic:

chip Jens Katrin Bert Alex

technology 180nm 130nm 130nm 130nm
# clocktrees 1 3 69 195
total # sinks 3805 137265 40298 189341

largest instance 375 119461 16260 35305

power (W, old) 0.100 0.329 0.306 2.097
power (W, new) 0.088 0.287 0.283 1.946

difference −11.1% −12.8% −7.5% −7.2%
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Some Open Problems

� Close the gap between 1.46 and 1.52 for the approximability
of Uncapacitated Facility Location.

� Find better lower bounds than 1.46 for capacitated problems
(such as CFL).

� Is Universal Facility Location really harder than CFL?

� Improve the approximation ratio for the problem with service
capacities (in (R2, �1), with a practically efficient algorithm).

� In some real-world instances, there exists an interval graph on
the terminals, and we have to partition this graph into cliques.
Is there an approximation algorithm for the resulting problem?

� What other interesting problems combining facility location
with network design, or routing, can be approximated?

� What about multi-stage extensions?

Further Reading

� J. Vygen. Approximation Algorithms for Facility Location
Problems (lecture notes, with complete proofs and references).
Can be downloaded at
http://www.or.uni-bonn.de/~vygen

� B. Korte, J. Vygen. Combinatorial Optimization: Theory and
Algorithms (Chapter 22). Springer, Berlin, third edition 2006.
Also available in Japanese!

� J. Maßberg, J. Vygen. Approximation Algorithms for Network
Design and Facility Location with Service Capacities.
Proceedings of the 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization
Problems (APPROX 2005); LNCS 3624, Springer, Berlin
2005, pp. 158–169
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Algorithms for a Networked World 
 

 

Magnús M. Halldórsson 
 

Dept. of Computer Science, University of Iceland 

 

 

Abstract: 

 

The realization of Moore�s law has ensured that computing ability has increased 

dramatically in our times. The law has held not only for processor power and quantity of 

internal and external memory, but also for the ability to communicate information. The 

resulting impact on essentially all spheres of society and life has been nothing less than 

astounding.  

 

Along with increased connectivity, we are also seeing the introduction of a wide range of 

compact computing entities, possibly mobile and often non-statically connected into 

largely wireless networks. The explosion of the web and the internet as not only a source 

of information but also as a resource of computational intelligence, is poised to lead to a 

dramatic change in the way we view computation. The traditional view of an algorithm 

with full random access to its input, operating serially on a single processor, is on the 

retreat.  

 

In comparison, it can be said that changes in CS theory are less dramatic. Surely, each 

year and each conference brings new topics, new subjects, new treatments, and new 

directions. Yet, we can also easily detect a great deal of consistency [one that is certainly 

comforting at times], and a measured pace of change. Are we theoreticians then by nature 

reactionaries? One of the theses of this talk is that the objects of study in CS theory are 

inherently fundamental and long-lasting, applying also to this Panopticon world of global 

and ubiquitous computing.  

 

Yet, we cannot rest on our laurels, with self-satisfied smugness.  We must find ways to 

treat the new means, ways, possibilities and limitations of computation in a systematic 

framework that continues to provide applied fields with rigorous guidance. The aim of 

the talk is to discuss some objectives, measures, and paradigms that address the changing 

nature of computing in a networked world. The concrete examples discussed will mostly 

relate to problems of coloring and packing, the topics of main focus of the speakers 

research.  

 

This will by no means be a comprehensive overview � in fact, it is unlikely to be even a 

balanced introduction. Instead, the hope is that by posing some questions, some members 

of the audience will eventually be prompted to find some of the answers.  
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Algorithms for Sequence 
Manipulation and Related Problems

D. T. Lee 

Institute of Information Science 
Academia Sinica

&
Department of Computer Science and Information Engineering

National Taiwan University

2006 NHC Spring School Workshop March 2-3, 2006

2/92

Combinatorial Optimization

n The combinatorial optimization typically 
deals with problems of maximizing or 
minimizing a function of one or many 
variables subject to a number of inequality 
constraints.

n Consider two categories of problems on 
sequences: 
n Optimization Problems 
n Range Search Problems 

3/92

Optimization on Sequences 

n Given a sequence A = a1, a2, …, an, an 
optimization problem on sequences is to 
maximize or minimize some function, such 
as: sum of subsequence, density of 
subsequence, etc., with some constraints, 
such as: length, weight, etc. 

4/92

Range Search Problems

n A range (query) search problem is typically 
to report the subset S' to count the total 
number of elements of the subset S' of a set 
S contained in a query range Q subject to 
certain conditions.
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Range Search on Sequences 

n Given a sequence A = a1, a2, …, an, and a 
range query, we want to report or count 
some subsequences of A contained in the 
query range satisfying certain conditions.

6/92

Focus of Talk
n Focus on the optimization and range search

problems on sequences, give a survey and present 
efficient problem-solving techniques for them.

n Many elegant and sometimes sophisticated 
techniques have been developed and applied to 
these problems in the past decade.

n Key: To exploit the combinatorial nature of these 
problems to obtain simpler and faster algorithms 
or algorithms with faster query time for range 
search problems.

7/92

Notations 2

n Let A be a sequence of n real numbers      
a1, a2, …, an. 

n segment of A(i, j) is a consecutive
subsequence ai, ai+1, …, aj

n width w(i, j) of A(i, j): j - i + 1
n density d(i, j) of A(i, j): 

(ai + ai+1 + … + aj)/w(i, j) 
n sum s(i, j) of A(i, j): ai + ai+1 + … + aj. 

8/92

Notations 1

n Given two positive real numbers ℓ and  u with 
ℓ ≤ u, we say A(i, j) = ai, ai+1, …, aj of A is 
feasible if ℓ ≤ w(i, j) = j-i+1 ≤ u.

n rank r(x, S) of an element x in a set S:         
the number of elements in S no greater than x, 
i.e., r(x, S) = |{y | y ∈ S, y ≤ x}|.
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Optimization Problems on 
Sequences

n Sum of subsequence, 
n Density of subsequence
n Selection of subsequence
n subject to constraints on length, or weight 

of subsequences. 

10/92

Max-Sum Segment Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u.

n Output:
n a segment A(i*, j*) with maximum sum over all 

O((u-ℓ) n) feasible segments such that s(i*, j*) 
= max{ s(i, j) | A(i, j) is feasible.}

11/92

Example  – Max-Sum Segment
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2,  u = 4

n Output: s(4, 5) = 11

n Sums of all feasible segments:
s(1, 2) = -1, s(1, 3) = -3, s(1, 4) = 2
s(2, 3) = -6, s(2, 4) = -1, s(2, 5) = 5
s(3, 4) = 3, s(3, 5) = 9
s(4, 5) = 11

12/92

Application: Max-Sum Segment

n Finding the most rich GC-rich region in a 
DNA sequence can be cast as a maximum-
sum segment problem. 

n Input sequence A corresponds to a given 
DNA sequence, where ai = 1 if the 
corresponding nucleotide in the DNA 
sequence is G or C, ai = 0 otherwise. 

n Output feasible segment corresponds to the 
GC-rich region of the given DNA sequence. 
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Applications in Bioinformatics
n Useful applications in bioinformatics including 

n finding tandem repeats, which are commonly 
used to map disease genes

n locating DNA segments with rich CG content
is a key step in gene finding and promoter 
prediction

n low complexity filter, which is most 
commonly applied in sequence database search.

14/92

Max-Sum Segment Problem 
n Prior Results:

n O(n) time for the special case ℓ = 1, u = n   
Gries [Science of Computer Programming’82]

n O(n) time for the special case ℓ = 1, u = n  
Bentely. [Commun. ACM ’84]

n O(n) time. Lin, Jiang and Chao. [Journal of 
Computer and System Sciences ’02]

n O(n) time. Fan, Lee, Lu, Tsou, Wang, and Yao. 
[CIAA ’03]

15/92

Technique Used – Lin et al.

n Lin, Jiang and Chao gave an O(n) time 
algorithm based on a clever technique 
called left-negative decomposition.
J. of Computer and System Sciences ’02

16/92

Lin et al. Algorithm [‘02]

n A sequence A= a1, a2, …, an is left-negative iff
the sum of each proper prefix a1, a2, …, ai is 
negative or zero for all 1 ≤ i ≤ n-1.

n A partition of the sequence A= A1A2…Ak is 
minimal left-negative if each Ai, 1 ≤ i ≤ k, is 
left-negative, and, for each 1 ≤ i ≤ k-1, the 
sum of Ai is positive. 
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Example – left-negative sequence

n The sequence -4, 1, -2, 3 is left-negative.
n The sequence -5, 3, 4, -1, 2, -6 is not left-negative.
n The partition (-5, 3, 4), (-1, 2), (-6) is minimal left-

negative.
n For every suffix of a sequence we can find a minimal 

left-negative partition.
n (3)(4)(-1,2)(-6); (4)(-1,2)(-6); (-1,2)(-6), (2)(-6); (-6) 

are all possible minimal left-negative partitions

18/92

Example – left-negative sequence
n Lemma: Every sequence of real numbers can be 

uniquely partitioned in linear time into blocks of 
minimal left-negative segments, and the right end of 
a maximum sum segment must be at a block 
boundary.

n (-5, (3), (4)), (-1, (2)), (-6)
n Prefix sum sequence S= 0, -5, -2, 2, 1, 3, -3
n Sum(1st) = 2, Sum(2nd) = 1, Sum(3rd) =  -6
n Max-Sum segment is a2, a3 a4 a5 of sum s5 - s1 = 8

19/92

Max-Density Segment Problem 

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u.

n Output:
n a segment A(i*, j*) with maximum density over 

all O((u-ℓ) n) feasible segments such that      
d(i*, j*) = max{ d(i, j) | A(i, j) is feasible.}

20/92

Example –Max-Density Segment

n Input:
n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4

n Output: d(4, 5) = 11/2

n Densities of all feasible segments:
d(1, 2) = -1/2, d(1, 3) = -1, d(1, 4) = 1/2
d(2, 3) = -3, d(2, 4) = -1/3, d(2, 5) = 5/4
d(3, 4) = 3/2, d(3, 5) = 3
d(4, 5) = 11/2
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Application: Max-Density Segment

n Finding the segment with the largest GC-ratio in a 
DNA sequence can be cast as a maximum-density 
segment problem. 

n Input sequence A corresponds to the given DNA 
sequence, where ai = 1 if the corresponding 
nucleotide G or C; and ai = 0 otherwise.

n Output feasible segment corresponds to the region 
with the largest GC-ratio. 

22/92

Application in Bioinformatics

n Maximum-Density Segment Problem arises from the 
investigation of non-uniformity of nucleotide 
composition within genomic sequences, which was 
first revealed through thermal melting and gradient 
centrifugation experiments. 

n Researchers observed that the compositional 
heterogeneity is highly correlated to the GC content
of the genomic sequences, and this motivates finding 
the segment with the largest GC-ratio. 

23/92

Max-Density Segment Problem
n Prior Results:

n O(n ℓ) time algorithm for the special case u = n    
Huang. [Computer Appl. in the Biosciences ’94]

n O(n log ℓ) time algorithm for the special case u = n   
Lin, Jiang, and Chao. [J. Comp. and Syst. Sci. ’02]

n O(n log (u-ℓ)) time algorithm.  Goldwasser, Kao, and 
Lu. [J. of Comp. and Syst. Sci. ’03]

n O(n) time algorithm.  Kim. [IPL ’03]– has a flaw
n O(n) time algorithm. Chung and Lu. [SICOMP ’04]

24/92

Technique Used – Kim. IPL ’03 3

n Construct a point set in the plane P = {pk | pk = 
(k, sk), k = 1, 2, …, n, where  sk = a1+a2+…+ak
is the prefix sum of sequence A.

n Construct lower hull of Pj = {pj-ℓ, pj-ℓ+1, …, pj-u} 
and find tangent segment tj from pj to Pj.

n The tangent segment of the maximum slope is 
the maximum-density segment of A.
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Technique-- Kim. IPL ’03 2

Pj

pi = ptj

pj

pj-u

pj-ℓ

),1(
...1

jid
ij

aaa

ij

pp ijjij
+=−

+++
=−

− −

26/92

Technique-- Kim. IPL ’03 1

pi-1 = ptj-1

pj-1

pj-u

pj-ℓ

For each j, 
(1) we need to do tangent query from pj 

If  pj lower than the line ptj-1
pj-1 we do nothing

If  pj higher than the line ptj-1
pj-1 we do tangent query from pj 

(2) we then delete pj-u from Pj and insert pj-ℓ+1 into Pj to obtain Pj+1

pj-u+1

pj-ℓ+1

pj

pj

27/92

Technique– Chung & Lu

n Based on a clever observation that                     
d(x, y), d(y+1, z) and d(x, z) with x ≤ y < z are 
related as follows: 

d(x, y) ≤ d(y+1, z) 
⇔ d(x, y) ≤ d(x, z) 
⇔ d(x, z) ≤ d(y+1, z)

n Chung and Lu, SIAM Journal on Computing ’04.

28/92

k-Maximum Sums Problem
n Input:

n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n k feasible segments such that their sums are the 

k largest over all O((u-ℓ) n) feasible segments.
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Example – k-Max. Sums
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n k = 3

n Output: s(4, 5) = 11, s(3, 5) = 9 , s(2, 5) = 5

n Sums of all feasible segments:
s(1, 2) = -1, s(1, 3) = -3, s(1, 4) = 2
s(2, 3) = -6, s(2, 4) = -1, s(2, 5) = 5
s(3, 4) = 3, s(3, 5) = 9
s(4, 5) = 11

30/92

k-Maximum Sums Problem

n Prior Results: (special case ℓ = 1, u = n) 
n O(kn) time algorithm for the Bae and Takaoka. 

[Int’l Symp. on Parallel Architectures, 
Algorithms and Networks ’04]

n O(min {k + n log2n, nk1/2) time algorithm                                     
Bengtsson and Chen. ISAAC 2004

n O(n + k log(min{n, k})) time algorithm                          
Cheng, Chen, Tien, and Chao. ISAAC 2005

31/92

Technique Used – Cheng et al.

n Prune-and-Search technique
n There are n subsequences A(1, n), A(2, n), …, 

A(n, n) of A, where A(i, n) = ai, ai+1, …, an

n At iteration i, it prunes away a fraction (½ ) of 
the n/2i-1 subsequences, so that no more than 
2ik/n segments are in the set of feasible k-
maximum sum segments.

n Cheng, Chen, Tien, and Chao. ISAAC 2005.

32/92

Random Sampling Technique

n Recent Result:
n We obtain an O(n log (u - ℓ) + h) time randomized 

algorithm based on random sampling technique.        
Lin and Lee. ISAAC 2005

n Solve the kth-Sum Selection Problem using 
random sampling technique.

n After finding the kth largest feasible segment s*, 
we can find k largest sum segments by sum range 
search algorithm, introduced later.
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k-Maximum Densities Problem 

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n the k segments such that their densities are the 

k largest over all O((u-ℓ) n) feasible segments.

34/92

Example – k-Max Densities
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n k = 3

n Output: d(4, 5) = 11/2, d(3, 5) = 3, d(2, 5) = 5/4

n Densities of all feasible segments:
d(1, 2) = -1/2, d(1, 3) = -1, d(1, 4) = 1/2
d(2, 3) = -3, d(2, 4) = -1/3, d(2, 5) = 5/4
d(3, 4) = 3/2, d(3, 5) = 3
d(4, 5) = 11/2

35/92

Random Sampling Technique

n Recent Result:
n We obtain an O(n log (u - ℓ) + h) time randomized 

algorithm based on random sampling technique. 

n Solve the kth-Density Selection Problem using 
random sampling technique.

n After finding the kth largest density d*, we can 
find k largest density segments by density range 
search algorithm, introduced later.

36/92

kth-Sum Selection Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n the segment A(i*, j*) over all O((u-ℓ) n) 

feasible segments such that the rank of the sum 
s(i*, j*) in the set of sums of possible feasible 
segments is k.
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kth-Sum Selection Problem
n Prior Result:

n O(n log n) time randomized algorithm for the 
special case ℓ = 1, u = n based on random 
sampling technique by Lin and Lee. ISAAC 
2005

n New results:
n We obtain an O(n log (u - ℓ)) time randomized 

algorithm based on random sampling technique. 

38/92

Technique – Random Sampling
n Contract initial interval [sl, sr] = (-∞, ∞) into a smaller 

subinterval [sl', sr'] such that it contains the kth largest 
feasible segment s* and the subinterval [sl', sr'] contains 
at most O(n2/n1/2)= O(n3/2) feasible segments. 

n Contract the interval [sl', sr'] into a smaller subinterval 
[sl", sr"] such that it contains not only s* but also at 
most O(n3/2/n1/2)= O(n) feasible segments.

n If both steps are successful, output all the segments in 
[sl", sr"] and find the solution segment with an 
appropriate rank, whose sum is s*, by using any 
standard selection algorithm. 

39/92

kth-Density Selection Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a positive integer k.

n Output:
n the segment A(i*, j*) over all O((u-ℓ) n) 

feasible segments such that the rank of the 
density d(i*, j*) in the set of densities of 
possible feasible segments is k.

40/92

Sum Finding Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a real number s*

n Output:
n the segment over all O((u-ℓ) n) feasible segments 

such that its sum s(i*, j*) is closest to s*
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Example – Sum Finding
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n s* = 1.5

n Output: s(1, 4) = 2

n Sums of all feasible segments:
s(1, 2) = -1, s(1, 3) = -3, s(1, 4) = 2
s(2, 3) = -6, s(2, 4) = -1, s(2, 5) = 5
s(3, 4) = 3, s(3, 5) = 9
s(4, 5) = 11 Open

42/92

Density Finding Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n a real number d*

n Output:
n the segment over all O((u-ℓ) n) feasible segments 

such that its density d(i*, j*) is closest to d*

43/92

Example – Density Finding
n Input:

n A = 3, -4, -2, 5, 6
n ℓ = 2, u = 4
n d* = 1.5

n Output: d(3, 4) = 3/2

n Densities of all feasible segments:
d(1, 2) = -1/2, d(1, 3) = -1, d(1, 4) = 1/2
d(2, 3) = -3, d(2, 4) = -1/3, d(2, 5) = 5/4
d(3, 4) = 3/2, d(3, 5) = 3
d(4, 5) = 11/2

44/92

Density Finding Problem

n Result to date:
n We obtain an O(n log2 (u-ℓ)) time and O(n log (u-ℓ)) 

space algorithm based on maintaining a data 
structure of the left branch of an upper hull.
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Technique – maintaining a data 
structure of left branch of upper hull 3

n We first reduce this problem to a geometric slope 
finding problem

n Input:
n Given a set of points P = {p0, p1, …, pn} in R2, 

and
n two integers ℓ, u

n Output: 
n a feasible line segment s(i, j) that minimizes the 

slope m(i, j), where m(i, j) ≥ 0.

46/92

Technique – maintaining a data 
structure of left branch of upper hull 2

n Let xi=a1+ …+ai, i=1, 2, …, n, and let x0=0. 
n Let P = {x0, x1, …, xn}.
n Let Pj = {xj-u, xj-u+1, …, xj-ℓ}.
n Let Pj

+= {pi∈Pj | m(i, j) ≥ 0}.
n Let ptj

be the tangent point of  the upper hull 
UH(Pj

+) from pj.
n Lemma: ptj

must be a hull point on the left 
branch of the upper hull UH(Pj

+).

47/92

Technique – maintaining a data 
structure of left branch of upper hull 1

n m(tj, j) = min {m(i, j) | pi ∈ Pj
+ } = m(ij

*, j).
n Find m(tj, j) for each j and take the minimum. 

ptj = pij*

Pj
+

pj

pj-u

pj-ℓ

UH(Pj
+)

48/92

Generalization to Higher Dimen.

n We can generalize the optimization problems on 
sequences to higher dimensional space.

n Given an m×n matrix, the maximum subarray
problem is to find a rectangular subarray with the 
largest possible sum among all such subarrays.

n For example, the 2D maximum-sum segment 
problem with ℓ = 1, u = n, referred to as maximum 
sum subarray problem, has many applications in 
graphics and data mining.
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Range Search Problems

n Single-shot mode query:  O(n) query time is 
optimal for this query mode. 

n Repetitive mode query: Preprocessing 
allowed, and obtaining an o(n) time query 
time is the goal. A trade-off between 
storage and query time is expected. 

50/92

Sum Range Search Problem 
single-shot mode

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers sl, sr with sl ≤ sr.

n Output:
n the segments over all O((u-ℓ) n) feasible

segments such that their sums are between sl
and sr.

51/92

Sum Range Search Problem 
single-shot mode

n Related work :
n O(n log (u-ℓ) + h) time algorithm, where h is 

the output size.   Lin and Lee. ISAAC 2005
n Straightforward

n Ordinary binary search trees (order-statistic tree)

52/92

Technique – maintaining an 
order-statistic tree 2

n prefix sum xi  of the sequence A,              
xi = a1+ …+ai, i=1, 2, …, n, and let x0 = 0. 

n Let P = {x0, x1, …, xn}.
n Let Pj = {xj-u, xj-u+1, …, xj-ℓ}.

n Maintain an order-statistic tree T(Pj) on 
Pj. by scanning the sequence of prefix sums.
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Order-Statistic Tree

n An order-statistic tree is a balanced binary 
search tree with size information, size[z], 
stored in each node z of the tree, and 
containing the total number of nodes in the 
subtree rooted at z. 

n For an internal node z, size[z] = size[left[z]] 
+ size[right[z]] + 1

n For a leaf node z, size[z]= 1.

54/92

Order-Statistic Tree: Example

7
8

5
5

3
3

6
1

8
2

9
1

1
1

4
1

key

size

55/92

Technique – maintaining an 
order-statistic tree 1

n To solve this problem, it suffices to iterate on each 
j finding all xi ∈ Pj such that sl ≤ xj - xi ≤ sr. 

n At each iteration j, 
n maintain T(Pj) dynamically such that we can 

find all the numbers xi ∈[xj - sr, xj - sl] by 
binary search in O(log (u-ℓ) + hj) time 

n delete xj-u and insert xj-ℓ+1 into T(Pj) to obtain 
T(Pj+1) in O(log (u-ℓ) ) time.

56/92

Basic Lemmas

n The rank r(x, Pj) = | {y | y ∈ Pj, y ≤ x} | of 
any x not necessarily in Pj can be 
determined using T(Pj) in O(log n) time. 

n An element in T(Pj) of a given rank can be 
found in O(log n) time.

n Both insertion and deletion operations in 
T(Pj) can be done in O(log n) time.
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Density Range Search Problem 
single-shot mode

n Input:
n a sequence A of n real numbers a1, a2, …, an

n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers dl, dr with dl ≤ dr.

n Output:
n the segments over all O((u-ℓ) n) feasible

segments such that their densities are between 
dl and dr

58/92

Density Range Search Problem 
single-shot mode

n Recent result:
n We obtain an O(n log (u-ℓ) + h) time algorithm, 

where h is the output size.
n Use problem transformation

n Maintain a priority search tree T(Pj) on Pj.

59/92

Problem Transformation

n Transform the Density Range Search Problem 
into a geometric slope range query problem as 
follows. 

n Consider the point set P = {p0, p2, ..., pn} in R2 

based on the prefix sums of the sequence A, where 
pi = (xi, yi) = (i, a1 + a2 + … + ai), i=1, 2, ..., n and 
p0 = (0, 0).

n Slope of segment connecting pi and pj corresponds 
to density d(i+1,j)

60/92

Geometric Slope Range Search

n Input:
n A point set P = {p0, p2, ..., pn} in R2, 
n two integers ℓ, u
n two real numbers dl, dr, 

n Output:
n find all feasible line segments s(i, j) such that 

their densities m(i, j) satisfying  dl ≤ m(i, j) ≤ dr.
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Point-Line Duality Transform

n We can further transform this geometric 
slope range search problem into its dual 
problem, by mapping a point pi = (xi, yi) 
into its dual line ℓi: y = xix - yi. 

n For any two points pi, and pj, their 
corresponding dual lines ℓi, ℓj will intersect 
at the x-coordinate xij = (yj - yi)/(xj - xi) 
which equals m(i, j). 

62/92

Dual of Geometric Slope Range 
Search– Intersection Search

n Input:
n a set of lines L = {ℓ0, ℓ1 ,..., ℓn} in R2, where 

each line ℓi: y = xix - yi, 
n two integers ℓ, u
n two real numbers dl, dr, 

n Output:
n find all intersection points pij=(xij, yij) of two 

feasible dual lines ℓi, ℓj such that their abscissae
xij lie in  [dl, dr].

63/92

Intercept to Point Transform

n Let uk = xkdl - yk denote the y-intercept of 
line ℓk at dl and vk = xkdr – yk .the y-intercept 
of line ℓk at dr

n Denote Q = {q0, q1 ,..., qn} ,               
where qk = (uk, vk) = (xkdl - yk, xkdr - yk). 

n Let Qj ={qj-u,qj-u+1,..., qj-l} = Qj-u, j-l

64/92

n By the monotonically increasing property of 
the slopes of lines in L, i.e., the slope of ℓj is 
larger than each ℓi∈Lj for i < j, any dual line 
ℓi in Lj intersects ℓj in [d1, dr] iff  ui ≥ uj and 
vi ≤ vj.
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65/92d1 dr

uj-l

uj

uj-u

vj

vj-u

vj-l

lj

qj-l

qj-u

Rj

qj

66/92

Algorithm for Intersection Search 

n The Intersection Search problem is now 
equivalent to an orthogonal range search of 
the form Rj = [uj, ∞) ×(-∞, vj] to report all 
the points of Qj which lie in Rj for each j = 1, 
2, …, n.

n We use a data structure called  priority 
search tree to support the above orthogonal 
range queries in logarithmic time. 

67/92

Priority Search Tree - Definition

n A priority search tree for a set of ordered 
pairs {(xi, yi) | i = 1, 2, …, n} is a hybrid of 
a heap (say in y) and a balanced binary 
search tree (say in x) used for orthogonal 
range query where at least one of sides of 
the query range is unbounded.

68/92

Priority Search Tree - Construction

n The priority search tree T({Pj}) can be constructed in 
O(n log n) time using any balanced binary search 
tree as follows: 
n For a given set S of points Pj, if S is empty, then the 

priority search tree T(S) is null. 
n Otherwise, let point Pi be the point in S with the smallest 

y-coordinate and xm be the median of the x-coordinates of 
the remaining point set S\{Pi}. Let Sl = { Pk (xk, yk) ∈
S\{Pi} | xk ≤ xm } and Sr = { Pk (xk, yk) ∈ S\{Pi} | xk > xm }.

n The root of T(S) contains Pj (and key  xm) and its left child 
is T(Sl ) and right child is T(Sr ).
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Priority Search Tree: Example

p4

p3

p2

p1

p5

p6

p6

p1 p4

p2 p3 p5

70/92

Sum Range Search Problem 
repetitive mode -- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers sl, sr with sl ≤ sr

n Online Query:
n for an intervals [sl, sr], reports the segments 

over all O((u-ℓ) n) feasible segments such that 
their sums are between sl and sr.

71/92

Sum Range Search Problem 
repetitive mode

n Work to Do:
n Try to preprocess A into an appropriate data 

structure such that the query time is o(n + h).

72/92

Density Range Search Problem 
repetitive mode -- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two nonnegative real numbers ℓ, u with ℓ ≤ u
n two real numbers dl, dr with dl ≤ dr.

n Online Query:
n for an intervals [dl, dr], reports the segments over all 

O((u-ℓ) n) feasible segments such that their densities 
are between dl and dr.
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Density Range Search Problem 
repetitive mode

n Work to Do:
n Try to preprocess A into a nice appropriate  

structure such that the query time is o(n + h).

74/92

Aggregate Range Search Problem 
-- definition

n Given S and a range query Q, compute an 
aggregate function on the subset S'=S∩Q  
An aggregation function can be Min, Max, 
Sum, Count, Mean, Median (of S’), etc.  

75/92

Range Minimum Search Problem 
-- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an.

n two real numbers i, j, i ≤ j.

n Online Query:
n for each query interval [i, j], reports the index k 

with i ≤ k ≤ j such that ak achieves minimum.

76/92

Range Minimum Search Problem 
-- example

RMSA(3, 7) = 4

3 1634 137 19 10 128 5

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

RMSA(1, 6) = 2

Sequence A

548



20

77/92

Range Minimum Search Problem

n Related work :
n O(n) preprocessing time and O(1) query time 

under the unit-cost RAM model. -- Gabow, 
Bentley, and Tarjan. STOC 1984

n O(n) preprocessing time and O(1) query time 
under the unit-cost RAM model. -- Bender and 
Colton. In Proc. the 4th Latin American 
Symposium on Theoretical Informatics 2000

78/92

Technique Used
n ±1RMS problem: adjacent elements of the input sequence A 

differ by +1 or -1 
n Least Common Ancestor (LCA) problem reduces to ±1RMS 

problem by depth first search traversal of input tree T of 
LCA.

n An (O(n log n), O(1))-time table-lookup algorithm for RMS
n Using the above algorithm on a smaller array A' obtained by 

partitioning A into 2n/logn blocks, each of size (log n)/2 and 
making use of the ±1 property, we can solve ±1RMS in 
(O(n), O(1))-time.

n RMS reduces to LCA building the Cartesian tree of A. 

79/92

Problem Reduction

n LCA problem reduces to ±1RMS problem
n Observation: The LCA of nodes u and v in 

T is the lowest node encountered between 
the visits to u and to v during a depth first 
traversal of T, where the depths of the nodes 
in T differ by exactly one.  

80/92

(O(n log n), O(1))-time 
Algorithm for RMS

n Table-lookup algorithm 
n Pre-compute the n by log n matrix M[i, j],                    

1 ≤ i ≤ n, 0 ≤ j ≤ log n
M[i, j] = RMS(i, i + 2j)

n For any RMS(i, j) query:
n Let k = max {r| 2r < j-i+1}
n RMS(i, j) = min{M(i, k), M(j-2k+1, k)}
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Problem Reduction
n RMS can be reduced to LCA by building a 

Cartesian tree of A.
n The root of a Cartesian tree is the minimum 

element of the array. The root is labeled with 
the position k of this minimum element.

n The left and right children of the root are the 
roots of recursively constructed Cartesian trees 
of the left and right subarrays respectively.

82/92

Range Maximum-Sum Segment 
Search Problem -- definition

n Input:
n a sequence A of n real numbers a1, a2, …, an to 

be preprocessed.
n real numbers i, j, i ≤ j and  k, l, k ≤ l.

n Online Query:
n for two query intervals [i, j] and [k, l], reports 

A(x, y) with i ≤ x ≤ j and k ≤ y ≤ l that 
maximizes s(x, y).

83/92

Range Maximum-Sum Segment 
Search Problem

n Related work :
n O(n) preprocessing time and O(1) query time 

under unit-cost RAM model by Chen and Chao. 
ISAAC 2004

84/92

Technique Used

n Let S = s1, s2, …, sn be the sequence where           
sk = a1+a2+…+ak is the prefix sum of sequence A.

n Disjoint case: by min= RMinS(S, i, j),            
max= RMaxS(S, k, l),   Ans.= smax - smin

n Overlapping case: Divide into 3 possible cases and 
take minimum of the outputs of these three cases.
n [i, k] and [k, l]: by RMinS(S, i, k), RMaxS(S, k, l)
n [k, j] and [j, l]: by RMinS(S, k, j), RMaxA(S, j, l)
n [k, j] and [k, j]: by RMSSS(k, j), a special case!
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Range Maximum-Sum Segment 
Search Problem- A Special Case 

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two real numbers i, j, i ≤ j.

n Online Query:
n for any query interval [i, j], reports A(x, y) with 

i ≤ x ≤ y ≤ j such that A(x, y) is the maximum-
sum segment of A(i, j).

86/92

Range Maximum-Sum Segment 
Search Problem- A Special Case

n Related work :
n O(n) preprocessing time and O(1) query time 

under the unit-cost RAM model by Chen and 
Chao. ISAAC 2004

n They solved RMSSS by using RMinS and 
RMaxS.

87/92

Algorithm
n Let C[⋅] be the array of prefix sum of A.
n Define: left bound L[k] of A at index k to be the 

largest index l with 1≤ l ≤k-1 such that C[l] ≥ C[k], 
and L[k]=0, if no such l exists.

n Define: partner P[k] of A at index k to be the 
largest index p with L[k]+1 ≤ p ≤ k that minimizes 
C[p-1].

n A(P[k], k) is a candidate segment of A at index k 
with sum M[k] = s (P[k], k), for 1≤ k ≤ n.

88/92

RMax-SumSegSearch
n Algorithm of RMSSS(A, i, j)

r  ← RMaxS(M, i, j), i.e. M[r] is maximum
if P[r] < i then

p  ← RMinS(C, i-1, r-1)+1
s  ← RMaxS(C, i-1, r-1)+1
if C[r]-C[p-1] < M(s) 
then output (P[s], s)
else output (p, r)

else output (P[r], r)

551



23

89/92

Range Maximum-Density Segment 
Search Problem

n Input:
n a sequence A of n real numbers a1, a2, …, an

n Online Query:
n for two intervals [i, j] and [k, l], reports A(x, y) 

with i ≤ x ≤ j and k ≤ y ≤ l that maximizes
d(x, y).

90/92

Range Maximum-Density Segment 
Search Problem- A Special Case 

n Input:
n a sequence A of n real numbers a1, a2, …, an.
n two real numbers i, j, i ≤ j.

n Online Query:
n for any query interval [i, j], reports A(x, y) with 

i ≤ x ≤ y ≤ j such that A(x, y) is the maximum-
density segment of A(i, j).

91/92

Generalization

n We can also generalize the above 
aggregation range search problems to other 
aggregation functions or consider the 
dynamic range query problems which 
support insertion, deletion, concatenation 
operations.

92/92

Conclusion
n We considered optimization and range 

search problems on sequences, gave a 
survey and presented recent results for these 
problems. 

n Open problems 
n Sum Range Search Problem (repetitive mode)
n Density Range Search Problem (repetitive mode)
n Range Maximum-Density Segment Search Problem
n Problems for which the elements are each chosen from 

an (error) interval
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Geometric embeddings and graph expansion

James R. Lee

jrl@ias.edu

Institute for Advanced Study (Princeton)

and University of Washington (Seattle)

Abstract

Beginning in the early-90’s, it became gradually apparent that techniques from high-dimensional
geometry were highly relevant for a variety of computational tasks. At the center of this connection
is the study of graph partitioning problems which involve breaking a graph into two or more large
parts while minimizing the size of the “interface” between them. These problems are of central
importance in numerous computational settings like data clustering, divide and conquer algorithms,
and packet routing in networks. Additionally, the techniques involved have applications to areas
like Markov chains, nearest-neighbor search, and learning theory.
We will discuss an approach to these problems based on geometric embeddings. The basic idea

is to represent a graph G = (V,E) as a geometric object by mapping the vertices of G to points
in a high-dimensional Euclidean space, and then to use geometric techniques to find good cuts in
G—these are cuts which separate G into “large” pieces while minimizing the number of edges that
are cut.

In the Sparsest Cut problem, the input is given as a graph G = (V,E) along with a subset of
pairs of vertices D ⊆ V × V called demands. For a subset S ⊆ V , let E(S, S̄) be the set of edges
crossing from S to its complement S̄, and let D(S, S̄) be the set of demands crossing from S to S̄.
The sparsity of a cut (S, S̄) is defined as the ratio

Φ(S) =
|E(S, S̄)|

|D(S, S̄)|
,

and the goal of the Sparsest Cut problem is to find the cut (S, S̄) which minimizes Φ(S). Since
solving this problem exactly is NP-hard, we will instead search for a set S ⊆ V for which Φ(S) is
approximately optimal, i.e. is within some factor C of the sparsest cut.
During the talk, I will first explain the relationship between geometric embeddings and the

Sparsest Cut problem, and then I will discuss the current state-of-the-art techniques in constructing
such embeddings. These employ a beautiful mix of semi-definite programming, high-dimensional
convex geometry, probability theory, and combinatorics. A brief outline of the talk (with references)
now follows.
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The relation of geometric embeddings to the Sparsest Cut problem was first realized in the two
papers [LLR95, AR98]. The basic approach follows.

1. Associate a metric to the graph G. This is a value d(u, v) for every pair of vertices u, v ∈ V

which is symmetric, i.e. d(u, v) = d(v, u) and satisfies the triangle inequality

d(u, v) ≤ d(u,w) + d(w, v)

for every triple of points u, v, w ∈ V . This metric is closely related to the structure of multi-

commodity flows in G, and is the solution to a linear programming relaxation of the Sparsest
Cut problem.

2. Given the metric d, we can think of (V, d) as a metric space. The second step is to embed this
space into Rn (where n = |V |) such that the embedding preserves the structure of (V, d). Such
a mapping is called a low-distortion embedding. This is a map f : V → R

n which satisfies

d(u, v) ≤ ‖f(u)− f(v)‖ ≤ C · d(u, v) for all u, v ∈ V.

The factor C is called the distortion of the map f , and our goal is to make C as small as
possible. (Note that ‖f(u)− f(v)‖ is the Euclidean distance between f(u) and f(v).)

3. The final step is to use the geometric embedding to find a cut in G. One way to do this is
by projecting the image of G (under the embedding f) onto a randomly oriented line. If we
number the points of G from left to right on the line 1, 2, . . . , n then there are n − 1 cuts of
the form ({1, 2, . . . , i}, {i + 1, i + 2, . . . , n}). The final step of the algorithm returns the cut
(S, S̄) among these which has the smallest sparsity Φ(S).

Remarkably, it turns out that with high probability, the cut we return after step (3) will be
within a factor C of optimal, where C is the distortion of the embedding from step (2)!

After discussing this general approach, we will examine the new techniques that achieve the
best-known approximation factor for Sparsest Cut. These are based on semi-definite programming
and novel high-dimensional arguments from [ARV04] (see also [Lee05, CGR05]), as well as new
techniques for constructing low-distortion embeddings [KLMN05, Lee05, ALN05].
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Distance Trisector curve and   

Voronoi diagram 

with neutral zone

Takeshi Tokuyama (Tohoku U)
joint work with Tetsuo Asano (JAIST)

and Jiri Matousek (Charles U)

Grand Challenge of NHC project

� Throw right on Computational Barriers

� Identifying barriers (something looking impossible)

� Breaking/proving/avoiding barriers

� Making properties of barriers clearer

� Well-known barriers in TCS
� Computability 

� P vs NP,  NP vs PSPACE etc

� Approximation hardness, approximation ratio

� Randomness (P vs PP, primarity checking, Yao�s minmax principle)

� Lower bounds for online algorithms 

� Cryptographic barriers (Discrete log etc)

� Hopefully,  find some more new barriers, because they will 
help progress of TCS

Classical barriers in  math history

� Incomputable geometric/arithmetic problems

� Compute diagonal length of a unit square

� Find a cube of volume 2

� Dilemma of Pythagoreans 

� Draw a circle with the unit area

� It is easier to square the circle than to get round a 

mathematician. August de Morgan

� Draw regular n-gon

� Trisect a given angle

Let no one ignorant of Mathematics enter here. (plato)

Progress in math history

� Necessity is the mother of invention.

� Diagonal length computation

� Cube with volume 2 

� Unit area circle Transcendental number 

� Draw regular n-gon

� Trisect a given angle

Complex numbers, Groups, Elliptic functions

God created the integers, all else is the work of man.

( Leopold Kronecker )

Solvability of

algebraic equations

Irrational numbers

Radicals

Inventing tools to measure what we cannot directly measure.

Same in CS:  NP-complete theory,  Proof checking,�.

Story of this talk
� In a  computational geometric problem , we find   

a simple and natural geometric tool named 

distance trisector curve.

� A new transcendental curve??

� Some initial results have been obtained 

� Existence and uniqueness of the trisector curves

� An algorithm to compute it.

� Use of the trisector curves.

� A new possibility in computational geometry

� Relaxed �computability� of geometric problems.

Tool to resolve a small but curious barrier. Voronoi diagram
� Subdivision of plane (space)  into cells

� S = {p1,p2,�pn}  points in the plane

� V(pi) = { x :  d(x, pi) < d(x, pj) for all j  i}

� Voronoi cell:  dominating region of  pi

� Great geometric structure with many applications

� Mesh generation , Graphics, 

� Simulating economic/political equilibrium

� Simulating biological cells / crystallization

� Efficient algorithm : O( n log n) time

� Many variants:  VD of lines/discs/regions,  higher 
dimension, non-Euclidean metric,  power diagrams. 
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N-Voronoi diagram on 7 points 

Questions

� Bisector ??

� Distance trisector curves: 

� Known or unknown?

� As easy as angle trisection?

Ruler, Compass, and 

red-ink (Archimedes)

Distance trisector

� Different from Apollonius�s circle

� Natural and simple definition (see next slide) 

� Surprisingly, seems to be a new curve

Apollonius s circle

Distance Trisector Curves

Equally-spaced curves CP and CQ:

for any point p on CP, dist(p, P) = dist(p, CQ) and

for any point q on CQ, dist(q, Q) = dist(q, CP).

where dist(p, C) is the distance from p to a point on C

that is closest to p.

PQ

Q P P(1,0)Q(-1,0)

y=x+1y=-x+1

Note:

Drawing curves 

was not easy. 

Only possible 

after revealing  

some theoretical 

results 
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P(1,0)Q(-1,0)

normal line 

to the curve CQ

bisector of 

segment

X�P

Observation:  Each point X on CP is the intersection of 

the normal line of CQ at its partner point X� and the 

perpendicular bisector of X�P

X�

X

Corollary.

If we exactly 

determine CP at a 

small neighbor of P, 

we can determine 

whole CP

We have a system of 

differential equation

P(1,0)Q(-1,0)

tangent line 

from P

to the curve 

CQ

Implication

�No point beyond 

the tangent point A 

can be a partner 

point of a point of 

NV(P)

A

Indeed, it suffices 

to compute CP for 

x<5.65

Nice nature of the curve

� Convex and smooth (revealed to be analytic)

� Satisfies a system of differential equations 

� Specialists did not know how to solve it

� It suffices to compute in the range [0, 5.65]

� Important curves satisfy this

� sin (x) [0, 2 ],  log x [1,10]  

� Problems:  Existence, uniqueness, computation

Existence and uniqueness

� P=(0,1), Q = (0,-1)

� y=f1(x) is x-axis (bisector of PQ)

� y = g1(x) :bisector parabola of P and x-axis

� y=fj(x): bisector curve of P and y=-gj-1(x)

� y=gj(x):bisector curve of P and y= -fj(x)

Lemma. The trisecting curve CP must be 

above f j (x) and below gj(x)

P = (0,1)

(0, -1)
y= -gi-1(x)

y=gi(x)

y=fi(x)

y= -fi(x)
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N-Voronoi diagram on many 

points

Now we have trisector curves. 

Can we draw N-Voronoi diagram of  

more than two points by using them??   

What happens if the 

third point is given

Insertion of a new 

point

New enemy may contribute to you

Basic properties

� Boundary curve of NV(pi) is the bisector 

between pi and (the union of) boundary 
curves of other regions

� Each region is convex and nonempty

� It may happen that there is no unbounded 
region  (different from an ordinary Voronoi 
diagram)
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Voronoi edges

� Definition: If p is a boundary point on NV(pi) 

and q is its nearest point among other region 

boundaries, we call q the partner point of p.

� Definition: The boundary of NV(pi) is 

decomposed into curve segments each of which 

consists of points whose partner points are in a 

same region.  The connected components are 

called Voronoi edges.

Combinatorial complexity

� Theorem.   Number of Voronoi edges is O(n) in 

an N-Voronoi diagram on n points.

Proof:  Rays towards nearest enemy�s-boundary 

do not cross each other (cheating a little)

reduced to the linearity of  number of edges in a 

planar graph +Davenport-Schinzel sequence 

argument.

Questions 

� N-Voronoi diagram always exists?

� Yes

� Unique for a given point set?

� Yes

� Efficient algorithm exist?

� Yes, if we are given some oracles 

� Really efficient in practice?

� No��

Existence 
Given a set of regions R1,R2,�Rn

such that 

Rj contains pj, consider an operator F

F(R1, R2, � Rn) = (Q1, Q2, � Qn ) 

where  Qj = { x:  d(x, pj) < d(x, y) for 

y i Ri }

Theorem.  F has at least one fixed point 

From Schauder-Kakutani�s fixed point theorem 

Corollary.  N-Voronoi diagram is given as a fixed 

point of F

Note: Fixed point theorem

Brower(1910),Schauder(1930),Kakutani(1941)

Z: Banach space,  

K:  Compact convex subset of Z (nonempty)

F:  K K   continuous map

Then, F has a fixed point

� Z: space of n-tupple of convex regions (R1,R2,..Rn)

� We need to introduce norm, and define convexity etc�

� Continuous dimensional space (Shauder-Kakutani�s version)
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Uniquness

� Fixed point theorem does not assure uniqueness.

� Uniqueness is given in a constructive fashion

� Crystallization algorithm:

� Growing radius of disks

� Analogous to the space-sweep algorithm for 

computing a (classical) Voronoi diagram as a lower 

envelope of parabolic cylinders.
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Curves in a N-Vonoroi diagram

F consists of :

�Distance trisectors of pairs of input points are in F.

�Bisector curves of an input point and a curve (or 

point) C in F.

� Intersection points of curves in F.

Property 1:  N-Voronoi diagram is a subset of an 

arrangement of  curves in a curve family F

Property 2: The number of applications of bisector 

operations is finite to obtain F

Analysis of crystallization algorithm

� For planar case, the algorithm shows uniqueness of 

N-Voronoi diagram

� Number of �structural changes� is O(n) 

� Terminates in finite steps if we can draw

1. bisector curve of a point and given point

2. distance trisector curve

� Terminates in polynomial time if we assume that 

we can draw an �generalized� trisector curve 

Generalized trisector curves

Generalized trisector curves
Some more ideas and problems

� Computability of geometric problems

� Is the N-Voronoi diagram computable? 

� Bisector of a point and a curve not easy 

� Not difficult in digital (pixel) geometry

� Especially, the trisector curves are only given 
by point-wise enumeration 

� Same situation as sin and cos curves.

� Current algorithm needs iterative computation 
of bisectors accumulating error!

� Is there fundamental difference from some 
�paper algorithms� in computational geometry?
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Generalized N-Voronoi diagram

� S = {p1,p2,�pn}  points in the plane

� GNV(pi) = { x :  d(x, pi) < d(x, y) 

for  every y GNV(pj) for  j i}

if Voronoi diagram.  

y
x

Convexity fails in an N- Voronoi diagram for 1.5

Multi-sector curves

� Given two points P and Q in the plane and an integer n, 

draw n equally-spaced curves C1, C2, ... , Cn between them 

s.t.  for any point p on a curve Ci, 

dist(p, Ci-1) = dist(p, Ci+1)

C0 = P, and Cn+1 = Q

Trisector is the case where n=2

Q P

Conclusion

� N-Voronoi diagram:  Interesting generalization 

of Voronoi diagram that admits a neutral zone.

� Many unsolved questions:

� Is the trisector curve really transcendental?

� Concrete analysis of N-Voronoi diagram algorithms.

� Uniqueness of N-Voronoi diagram of a given point 

is not clear for high-dimensional cases 

� Generalization for (convexity fails)

� N-sector curves 
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