
Approximation Algorithms for

Network Problems

Susanne Albers

University of Freiburg

Germany

Large networks

Buffer management in switches
Online, competitive analysis
A., Schmidt STOC’04

Web caching, request reordering
Offline, approx. algorithms
A. SPAA’04

Network creation game
Nash equilibria, price of anarchy
A. 05

Large networks

Buffer management in switches
Online, competitive analysis
A., Schmidt STOC’04

Web caching, request reordering
Offline, approx. algorithms
A. SPAA’04

Network creation game
Nash equilibria, price of anarchy
A. 05

Buffer management in switches

Buffer Buffer

Input Ports Output Ports

Switches forward data packets.

Buffers store packets temporarily if capacity available.

Goal: maximize throughput.

Virtual output queueing

Input Ports Output Ports

Each input port

�

maintains for each output port

�

a queue

���� .

Problem

� buffers, each of which can store

�

pakets.

In each time step
– new packets arrive online

�� :

�

packets in buffer

�

�� :

�

new packets at buffer

�

paket loss: � �� � �� 	 ��
 ��
�
 �

– one buffer can send one paket
to the output

Goal: maximize

�

transferred pakets

�
�

�
�

Competitive analysis

Online problem

� ��� �
�

:

Online

algorithm

� �� � � �

OPT:

Offline

algorithm

�

is �-competitive if

�
	 such that for all sequences �

� ��� � � �
� � �� ��� �
 	��

Previous results

� Every reasonable algorithm is

�

-competitive.

� Randomized upper bound: � � � �
 � � � �� ��

Azar, Richter 2003

� Lower bounds
Deterministic: 1.366
Randomized: 1.46 (

� � �

)
Azar, Richter 2003

� Single buffer problems: pakets have values
Upper bounds: 2, 1.75
Kesselman et al. 2001; Bansal et al. 2004

Greedy algorithms

Greedy: Always serve a buffer currently
storing a maximum number of packets.

Advantages:
– fast
– little extra memory
– best strategy to avoid packet loss

�
�

�
�

Our results

� Exact performance of all Greedy algorithms: 2-competitive

� New algorithm Semi-Greedy:

� � �� � �� � �

fast, little extra memory, serves full buffers

� Lower bounds (

�

arbitrary)
Deterministic: � � � �
 � � � �� ��

Randomized: 1.46

� Extra resources: larger buffers, higher transmission rates
Almost matching upper and lower bounds

� Optimal offline algorithm running in polynomial time

Semi-Greedy

In each time step execute the first
applicable rule.

1.

�

buffer with � � � �

packets

� serve a buffer with
max. number of packets

2.

�

non-empty buffer that has never been full

� amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

�
�

� � �

�
�

Semi-Greedy

In each time step execute the first
applicable rule.

1.

�

buffer with � � � �

packets

� serve a buffer with
max. number of packets

2.

�

non-empty buffer that has never been full

� amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

�
�

� � �

�
�

Semi-Greedy

In each time step execute the first
applicable rule.

1.

�

buffer with � � � �

packets

� serve a buffer with
max. number of packets

2.

�

non-empty buffer that has never been full

� amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

�
�

� � �

�
�

Semi-Greedy

In each time step execute the first
applicable rule.

1.

�

buffer with � � � �

packets

� serve a buffer with
max. number of packets

2.

�

non-empty buffer that has never been full

� amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

�
�

� � �

�
�

Semi-Greedy

Whenever all buffers are empty,
the hitherto maximum load of each
queue is set to 0.

�
�

� � �

Semi-Greedy

In each time step execute the first
applicable rule.

1.

�

buffer with � � � �

packets

� serve a buffer with
max. number of packets

2.

�

non-empty buffer that has never been full

� amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

�
�

� � �

�
�

Analysis

OPTSemi-Greedy

Partition input into subsequences so that at the end of each subsequence
Semi-Greedy’s buffers are empty.

Compare: throughput Semi-Greedy / throughput OPT

Web caching

�� � ��

��

�

�

�

� 	

Documents are text files, im-
ages, html pages,� � �

Important properties:
documents have
different sizes and incur
different costs

Web caching

Request:

��� � � � � requests
documents

�

�

not in � ’s cache: Cost

� � �

Optional: loading

�

Goal: Minimize total service cost

� �� � �

�

�

�

�

�

�

�

�

�

� 	

��
�

� � � � � � � ��	 � � � ��
 � � � ��� � � � � ��
� � ��� � �� � �

Web caching

� � � � � � � � �

� � � � � � � � � � � � � � � � � �
cache

network node

� � � � �
remaining
network

�
�

� ���
�
����

�
�
� ��	�

�
��

�
�

	

Goal: Serve a sequence of requests
so that the total service cost at the node is minimized.

Request reordering

Proxy server: requests are independent

� � � � � � � � �

� � � � � � � � � � � � � � � � � �

�

cache
proxy server

� � � � �
network

�
�

� ���
�
����

�
�
� ��	�

�
��

�
�

	

� � � �

may be served before � � � �

if

�
 � � � � � ��

Advantage: improved cache hit rates

Feder, Motwani, Panigrahy, Zhu 2002

Cost models

Document

�

Size(

�

) Cost(

�

)

Uniform Model:
Cost(

�

) � Size(

�

) � 1

Bit Model:
Cost(

�

) � Size(

�

)

Fault Model:
Cost(

�

) � 1

General Model:
Cost(

�

) arbitrary

Previous results, reordering

Online
Uniform Model: (

� ��� 	 �

)-competitive (deterministic)
Bit and Fault Models: (

� ��� 	 �

)-competitive (deterministic)

Offline
General Model: Polynomial algorithm for cache size 1 if

� logarithmic in

� � �

or
�

distinct documents is constant

�

= size cache � = size smallest document

Feder, Motwani, Panigrahy, Seiden, van Stee, Zhu 2003

Our results

Online
General Model: optimal

� � ��� 	 � �

-competitive alg. (deterministic)

Offline

Approximation Extra memory

� � � �� Size

Uniform Model:

�

Bit Model:

� 	�� �
� �� � �� 	 � � �

Fault Model:
� 	�� � � 	 � �� � �

General Model:

�

Approach: reduce problem to one of computing batched schedules.

Batched processing

� � � � � �� � � � � � � � � � 	 � �� � � � � � � � � � � � 	 � �� � � � � � � �� � �

� � � �

Batch

�

�� � � � � � 	 � �� � � � � � � 	 � �

Batched processing

� � � � � �� � � � � � � � � � 	 � �� � � � � � � � � � � � 	 � �� � � � � � � �� � �

� �� �

Batch

�

�� � � � � � 	 � �� � � � � � � 	 � �

Batched processing

� � � � � �� � � � � � � � � � 	 � �� � � � � � � � � � � � 	 � �� � � � � � � �� � �

� � ��
�

Batch

�

�� � � � � � 	 � �� � � � � � � 	 � �

Batched processing

Lemma: Suppose that

�

serves � with cost
�

.
Then there exists

� �

that processes � in batches and
incurs a cost of at most

� �
.

Uniform Model

� �� � � � � � � � � � 	 � �� � � � � � � 	 � �� � � � � �

��

Algorithm BMIN

1. Serve requests to documents in cache;

2. while

� � � �� with unserved requests do
Serve requests to

�

;
Determine

�

in cache whose next unserved request is farthest in future;
if next unserved request to

�
is in a later batch than that to

�

then
Load

�

by evicting
�

;

Uniform Model

Algorithm BMIN

1. Serve requests to documents in cache;

2. while

� � � �� with unserved requests do
Serve requests to

�

;
Determine

�

in cache whose next unserved request is farthest in future;
if next unserved request to

�

is in a later batch than that to

�

then
Load

�

by evicting

�

;

� �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

�� �� �
��

�
�

Uniform Model

Algorithm BMIN

1. Serve requests to documents in cache;

2. while

� � � �� with unserved requests do
Serve requests to

�

;
Determine

�

in cache whose next unserved request is farthest in future;
if next unserved request to

�

is in a later batch than that to

�

then
Load

�

by evicting

�

;

� �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

�� �� �
��

�
�

Uniform Model

Lemma: BMIN is optimal among algorithms processing request sequences
in batches.

Theorem: BMIN achieves an approximation ratio of 2.

Approximations

Construct schedules that serve � in batches

Bit, Fault Models: Formulate problems as ILP.

General Model: Formulate problem as a loss minimization problem.
Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber 2001

Network creation game

� agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Network creation game

� agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Network creation game

agent

�
Cost of � �

for each edge.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Network creation game

agent

�
Shortest path distance to agent

�

, for all

� � � �

.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Problem

� agents � �

Cost

�

agent

� � � � �

edges built by agent

�

	
� ��� �

shortest path distance to agent

�

� �� �

Dist(agent

�

)

Nash equilibria

No agent can improve its cost if other agents keep their strategies.

Price of anarchy:

� � � ��

Nash eq.
� Cost

�

agent

� �

Cost(OPT)

Koutsoupias, Papadimitriou ’99

Previous results

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

� � �

, � � �
�

�

is constant

� � � � �
�

�

is bounded by

�
�

Tree-conjecture:

� �

s.t. for � � �

every Nash equilibrium is a tree.

Our results

� �

:

� � � � � 	 � � � � � �
�

� �
�

�
�

� � � � � �

� � �
�:

�

is constant

�
� � � � �:

�

increasing, bounded by �
� � �

� � �:

�

decreasing, constant for � � �
�

 N N**2

Our results

Upper bounds can be extended to:
Weighted game:

��� � traffic sent from agent

�

to
�

Cost sharing: agent can pay for a fraction of an edge

For any � and �
� � � � � �
� �

�

Nash equilibria that contain cycles.
Transient:

�

seq. of players’ changes leading to non-equilibrium state.

Nash equilibrium representing a chordal graph is transient.

Upper bound

Nash equilibrium

� � � � �
�

� �

Shortest path tree rooted at agent

�

agent

�

depth

�

depth

�
depth

�

Cost(agent

�

)

� � � � 	 � � �
 � � � � � �

tree edges built by agent

�

Upper bound

Nash equilibrium

� � � � �
�

� �

Shortest path tree rooted at agent

�

agent

�

depth

�

depth

�
depth

�

Cost(agent

�

)

� � � � 	 � � �
 � � � � � �

tree edges built by agent

�

Cost of agent

�

agent
�

agent

�

Cost(agent

�

)

� � � � 	 � +
� � �
 � �

Cost of agent

�

agent

�

agent
�

Cost(agent

�

)

� � � � 	 � +
� � 	 � � � �
 � �

Cost of agent

�

agent

�

agent
�

Cost(agent

�

)

� � � � 	 � +
� � 	 � � � �
 � �

Cost Nash

Cost(agent

�

)

� � � � 	 � � �
 � �

Cost(agent

�

)

� � � � 	 � 	 � � 	 � � � �
 � �

Cost(Nash eq.)

� �
�

�
 � � 	 �
�

�
 � � 	 � � 	 � � � �
 � � �

Analysis

�

�
�

� �
� �

� �

� �
�

�

��� � �

��� � �

	 �

Price of anarchy

Cost(Nash eq.)

� � �
�

�
 � � 	 � � �
� �

	 � � �
�
 � � �

Cost(OPT)
� �
�

�
 � � 	 �
�

�
 � �

Open problems

Buffer management:

Determine competitiveness of randomized algorithms.

Packets have limited lifeliness.

Web caching

Improve approximations guarantees.

Complexity in the Uniform, Fault Models.

Network creation

Settle price of anarchy of any �.

Study other network creation games.

