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Buffer management in switches

Buffer Buffer

Input Ports Output Ports

Switches forward data packets.

Buffers store packets temporarily if capacity available.

Goal: maximize throughput.



Virtual output queueing

Input Ports Output Ports

Each input port

�

maintains for each output port

�

a queue

���� .



Problem

� buffers, each of which can store

�

pakets.

In each time step
– new packets arrive online

�� :

�

packets in buffer

�

�� :

�

new packets at buffer

�

paket loss: � �� � �� 	 �� 
 ��
�
 �

– one buffer can send one paket
to the output

Goal: maximize

�

transferred pakets

�
�

�
�



Competitive analysis

Online problem

� ��� �
�

:

Online

algorithm

� �� � � �

OPT:

Offline

algorithm

�

is �-competitive if

�
	 such that for all sequences �

� ��� � � �
�  � �� ��� � 
 	��



Previous results

� Every reasonable algorithm is

�

-competitive.

� Randomized upper bound: � � � � 
 � � � �� ��

Azar, Richter 2003

� Lower bounds
Deterministic: 1.366
Randomized: 1.46 (

� � �

)
Azar, Richter 2003

� Single buffer problems: pakets have values
Upper bounds: 2, 1.75
Kesselman et al. 2001; Bansal et al. 2004



Greedy algorithms

Greedy: Always serve a buffer currently
storing a maximum number of packets.

Advantages:
– fast
– little extra memory
– best strategy to avoid packet loss

�
�

�
�



Our results

� Exact performance of all Greedy algorithms: 2-competitive

� New algorithm Semi-Greedy:

� � �� � �� � �

fast, little extra memory, serves full buffers

� Lower bounds (

�

arbitrary)
Deterministic: � � � � 
 � � � �� ��

Randomized: 1.46

� Extra resources: larger buffers, higher transmission rates
Almost matching upper and lower bounds

� Optimal offline algorithm running in polynomial time



Semi-Greedy

In each time step execute the first
applicable rule.

1.

�

buffer with � � � �

packets

� serve a buffer with
max. number of packets

2.

�

non-empty buffer that has never been full

� amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

�
�

� � �

�
�
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Semi-Greedy

Whenever all buffers are empty,
the hitherto maximum load of each
queue is set to 0.

�
�

� � �
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�
�

� � �

�
�



Analysis

OPTSemi-Greedy

Partition input into subsequences so that at the end of each subsequence
Semi-Greedy’s buffers are empty.

Compare: throughput Semi-Greedy / throughput OPT



Web caching

�� � ��

��

�

�

�

� 	

Documents are text files, im-
ages, html pages,� � �

Important properties:
documents have
different sizes and incur
different costs



Web caching

Request:

��� � � � � requests
documents

�

�

not in � ’s cache: Cost

� � �

Optional: loading

�

Goal: Minimize total service cost

� �� � �

�

�

�

�

�

�

�

�

�

� 	

��
�

� � � � � � � ��	 � � � ��
 � � � ��� � � � � ��
� � ��� �  �� � �



Web caching

� � � � � �  � � �

� � � � � � �  � � � � � � � � � � � 
cache

network node

� � � � �
remaining
network

�
�

� ���
�
����

�
�
� ��	�

�
��


�
� 


	

Goal: Serve a sequence of requests
so that the total service cost at the node is minimized.



Request reordering

Proxy server: requests are independent

� � � � � �  � � �

� � � � � � �  � � � � � � � � � � � 

�

cache
proxy server

� � � � �
network

�
�

� ���
�
����

�
�
� ��	�

�
��


�
� 


	

� � � �

may be served before � � � �

if

� 
 � � � � � ��

Advantage: improved cache hit rates

Feder, Motwani, Panigrahy, Zhu 2002



Cost models

Document

�

Size(

�

) Cost(

�

)

Uniform Model:
Cost(

�

) � Size(

�

) � 1

Bit Model:
Cost(

�

) � Size(

�

)

Fault Model:
Cost(

�

) � 1

General Model:
Cost(

�

) arbitrary



Previous results, reordering

Online
Uniform Model: (

� ��� 	 �

)-competitive (deterministic)
Bit and Fault Models: (

� ��� 	 �

)-competitive (deterministic)

Offline
General Model: Polynomial algorithm for cache size 1 if

� logarithmic in

� � �

or
�

distinct documents is constant

�

= size cache � = size smallest document

Feder, Motwani, Panigrahy, Seiden, van Stee, Zhu 2003



Our results

Online
General Model: optimal

� � ��� 	 � �

-competitive alg. (deterministic)

Offline

Approximation Extra memory

� � � �� Size

Uniform Model:

� 


Bit Model:

� 	�� �
� �� � �� 	 � � � 

Fault Model:
� 	�� � � 	 � �� � �

General Model:

� 


Approach: reduce problem to one of computing batched schedules.



Batched processing

� � � � � �� � � � � � � � � � 	 � �� � � � � � � � � � � � 	 � �� � � � � � � �� � �

� � � �

Batch

�

�� � � � � � 	 � �� � � � � � � 	 � �
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Batched processing

� � � � � �� � � � � � � � � � 	 � �� � � � � � � � � � � � 	 � �� � � � � � � �� � �

� � ��
�

Batch

�

�� � � � � � 	 � �� � � � � � � 	 � �



Batched processing

Lemma: Suppose that

�

serves � with cost
�

.
Then there exists

� �

that processes � in batches and
incurs a cost of at most

� �
.



Uniform Model

� �� � � � � � � � � � 	 � �� � � � � � � 	 � �� � � � � �

��

Algorithm BMIN

1. Serve requests to documents in cache;

2. while

� � � �� with unserved requests do
Serve requests to

�

;
Determine

�

in cache whose next unserved request is farthest in future;
if next unserved request to

�
is in a later batch than that to

�

then
Load

�

by evicting
�

;
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�

then
Load

�
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�
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� �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

�� �� �
��

�
�



Uniform Model

Algorithm BMIN

1. Serve requests to documents in cache;

2. while

� � � �� with unserved requests do
Serve requests to

�

;
Determine

�

in cache whose next unserved request is farthest in future;
if next unserved request to

�

is in a later batch than that to

�

then
Load

�

by evicting

�

;

� �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

�� �� �
��

�
�



Uniform Model

Lemma: BMIN is optimal among algorithms processing request sequences
in batches.

Theorem: BMIN achieves an approximation ratio of 2.



Approximations

Construct schedules that serve � in batches

Bit, Fault Models: Formulate problems as ILP.

General Model: Formulate problem as a loss minimization problem.
Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber 2001



Network creation game

� agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03
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Network creation game

agent

�
Cost of � � 

for each edge.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03



Network creation game

agent

�
Shortest path distance to agent

�

, for all

� � � �

.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03



Problem

� agents � � 

Cost

�

agent

� � � � �

edges built by agent

�

	
� ��� �

shortest path distance to agent

�

� �� �

Dist(agent

�

)



Nash equilibria

No agent can improve its cost if other agents keep their strategies.

Price of anarchy:

� � � ��

Nash eq.
� Cost

�

agent

� �

Cost(OPT)

Koutsoupias, Papadimitriou ’99



Previous results

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

� � �

, � � �
�

�

is constant

� � � � �
�

�

is bounded by

�
�

Tree-conjecture:

� �

s.t. for � � �

every Nash equilibrium is a tree.



Our results

� � 

:

� � � � � 	 � � � � � �
�

� �
�

�
�

� � � � � �

� � �
�:

�

is constant

�
� � � � �:

�

increasing, bounded by �
� � �

� � �:

�

decreasing, constant for � � �
�
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Our results

Upper bounds can be extended to:
Weighted game:

��� � traffic sent from agent

�

to
�

Cost sharing: agent can pay for a fraction of an edge

For any � and �
� � � � � �
� �

�

Nash equilibria that contain cycles.
Transient:

�

seq. of players’ changes leading to non-equilibrium state.

Nash equilibrium representing a chordal graph is transient.



Upper bound

Nash equilibrium

� � � � �
�

� �

Shortest path tree rooted at agent

�

agent

�

depth

�

depth

�
depth

�

Cost(agent

�

)

� � � � 	 � � � 
 � � � � � �

tree edges built by agent

�



Upper bound

Nash equilibrium

� � � � �
�

� �

Shortest path tree rooted at agent

�

agent

�

depth

�

depth

�
depth

�

Cost(agent

�

)

� � � � 	 � � � 
 � � � � � �

tree edges built by agent

�



Cost of agent

�

agent
�

agent

�

Cost(agent

�

)

� � � � 	 � +
� � � 
 � �



Cost of agent

�

agent

�

agent
�

Cost(agent

�

)

� � � � 	 � +
� � 	 � � � � 
 � �



Cost of agent

�

agent

�

agent
�

Cost(agent

�

)

� � � � 	 � +
� � 	 � � � � 
 � �



Cost Nash

Cost(agent

�

)

� � � � 	 � � � 
 � �

Cost(agent

�

)

� � � � 	 � 	 � � 	 � � � � 
 � �

Cost(Nash eq.)

� �
�

� 
 � � 	 �
�

� 
 � � 	 � � 	 � � � � 
 � � �



Analysis

�

�
�

� �
� �

� �

� �
�

�

��� � �

��� � �

	 �



Price of anarchy

Cost(Nash eq.)

� � �
�

� 
 � � 	 � � �
� �

	 � � �
� 
 � � �

Cost(OPT)
� �
�

� 
 � � 	 �
�

� 
 � �



Open problems

Buffer management:

Determine competitiveness of randomized algorithms.

Packets have limited lifeliness.

Web caching

Improve approximations guarantees.

Complexity in the Uniform, Fault Models.

Network creation

Settle price of anarchy of any �.

Study other network creation games.


