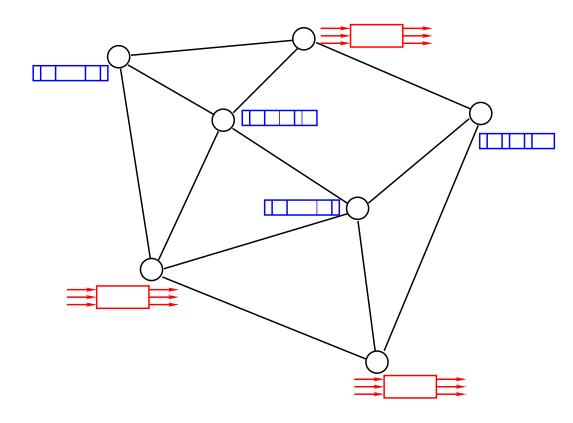
Approximation Algorithms for

Network Problems

Susanne Albers University of Freiburg Germany

Large networks



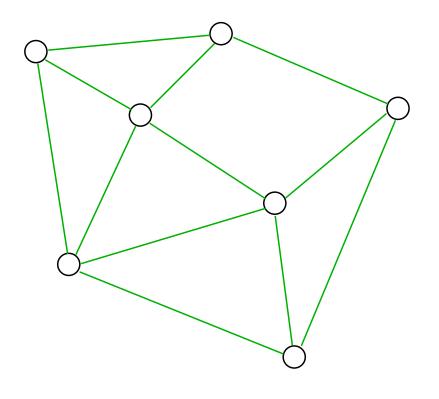
Buffer management in switches Online, competitive analysis A., Schmidt STOC'04

Web caching, request reordering Offline, approx. algorithms A. SPAA'04

Network creation game

Nash equilibria, price of anarchy A. 05

Large networks



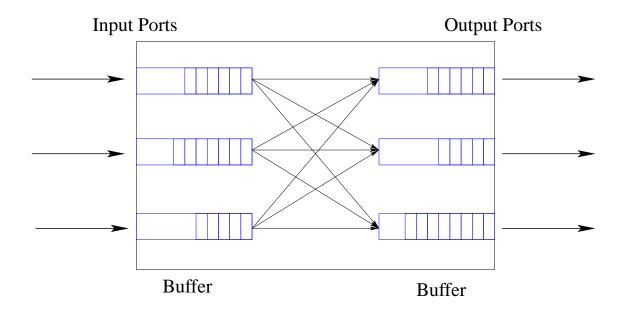
Buffer management in switches Online, competitive analysis A., Schmidt STOC'04

Web caching, request reordering Offline, approx. algorithms A. SPAA'04

Network creation game

Nash equilibria, price of anarchy A. 05

Buffer management in switches

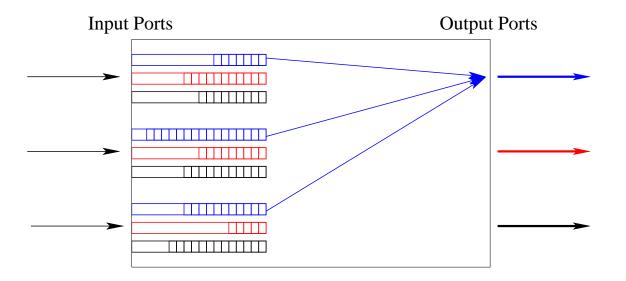


Switches forward data packets.

Buffers store packets temporarily if capacity available.

Goal: maximize throughput.

Virtual output queueing



Each input port *i* maintains for each output port *j* a queue Q_{ij} .

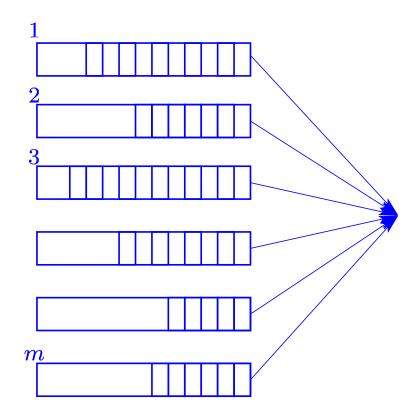
Problem

m buffers, each of which can store B pakets.

In each time step

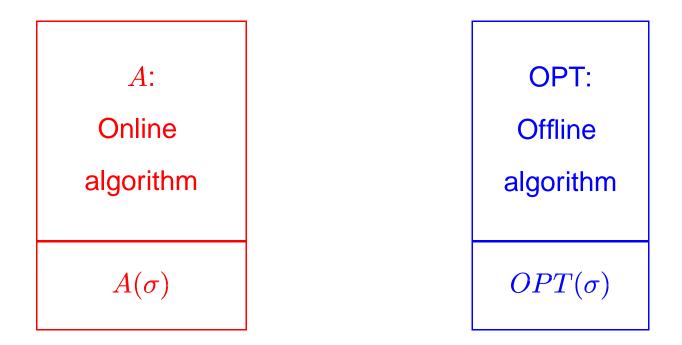
- new packets arrive online P_i : #packets in buffer *i* N_i : #new packets at buffer *i* paket loss: max{ $N_i + P_i - B, 0$ }
- one buffer can send one paket to the output

Goal: maximize #transferred pakets



Competitive analysis

Online problem



A is *c*-competitive if $\exists a$ such that for all sequences σ

$$A(\sigma) \geq \frac{1}{c} \cdot OPT(\sigma) - a.$$

Previous results

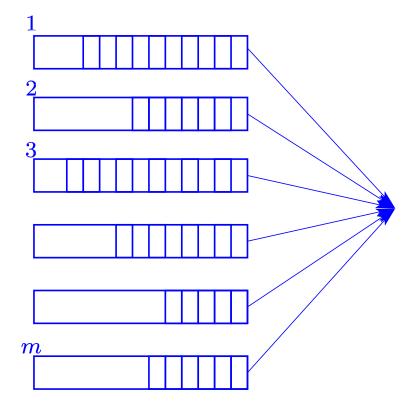
- Every reasonable algorithm is 2-competitive.
- Randomized upper bound: $e/(e-1) \approx 1.58$ Azar, Richter 2003
- Lower bounds Deterministic: 1.366Randomized: 1.46 (B = 1)Azar, Richter 2003
- Single buffer problems: pakets have values Upper bounds: 2, 1.75 Kesselman et al. 2001; Bansal et al. 2004

Greedy algorithms

Greedy: Always serve a buffer currently storing a maximum number of packets.

Advantages:

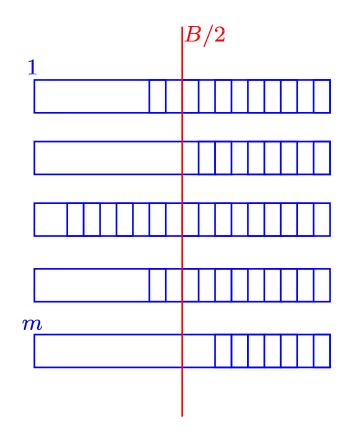
- fast
- little extra memory
- best strategy to avoid packet loss



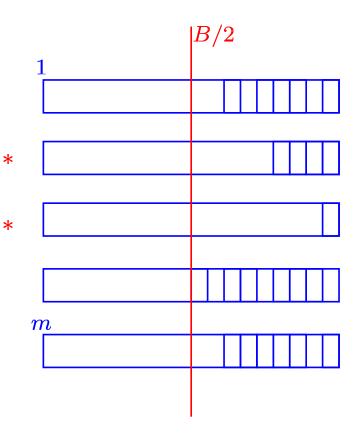
Our results

- Exact performance of all Greedy algorithms: 2-competitive
- New algorithm Semi-Greedy: $17/9 \approx 1.89$ fast, little extra memory, serves full buffers
- Lower bounds (*B* arbitrary) Deterministic: $e/(e-1) \approx 1.58$ Randomized: 1.46
- Extra resources: larger buffers, higher transmission rates Almost matching upper and lower bounds
- Optimal offline algorithm running in polynomial time

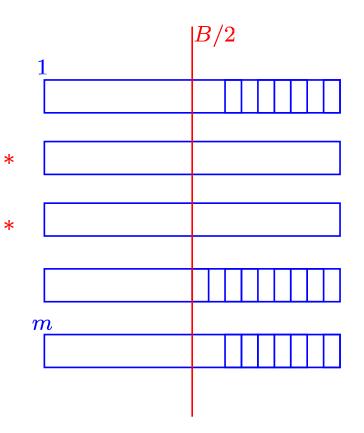
- **1.** \exists buffer with > B/2 packets
 - \rightarrow serve a buffer with max. number of packets
- 2. \exists non-empty buffer that has never been full
 - \rightarrow amongst these, serve one with max. number of packets
- 3. Serve a buffer with max. number of packets



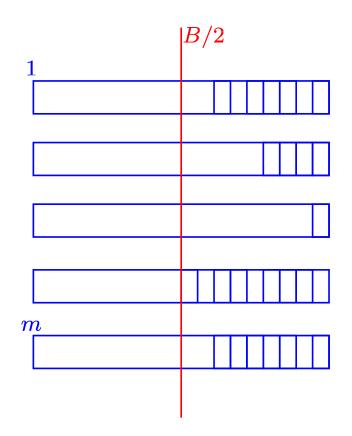
- 1. \exists buffer with > B/2 packets
 - \rightarrow serve a buffer with max. number of packets
- 2. \exists non-empty buffer that has never been full
 - \rightarrow amongst these, serve one with max. number of packets
- 3. Serve a buffer with max. number of packets



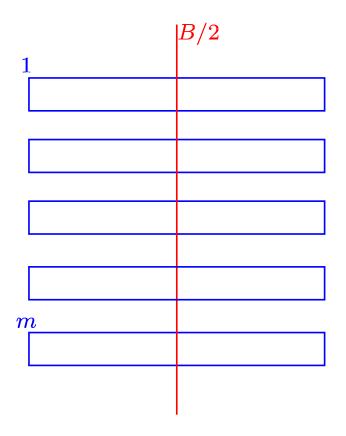
- **1.** \exists buffer with > B/2 packets
 - \rightarrow serve a buffer with max. number of packets
- 2. \exists non-empty buffer that has never been full
 - \rightarrow amongst these, serve one with max. number of packets
- 3. Serve a buffer with max. number of packets



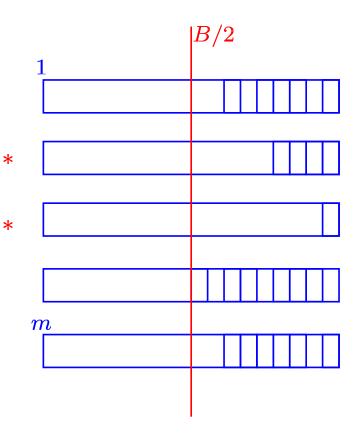
- **1.** \exists buffer with > B/2 packets
 - \rightarrow serve a buffer with max. number of packets
- 2. \exists non-empty buffer that has never been full
 - \rightarrow amongst these, serve one with max. number of packets
- 3. Serve a buffer with max. number of packets

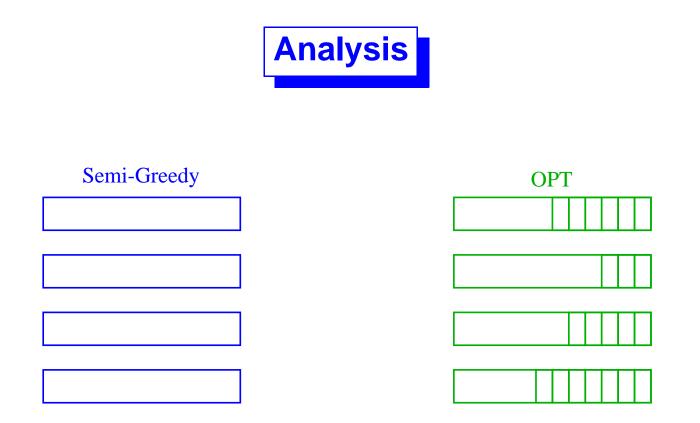


Whenever all buffers are empty, the hitherto maximum load of each queue is set to 0.



- 1. \exists buffer with > B/2 packets
 - \rightarrow serve a buffer with max. number of packets
- 2. \exists non-empty buffer that has never been full
 - \rightarrow amongst these, serve one with max. number of packets
- 3. Serve a buffer with max. number of packets

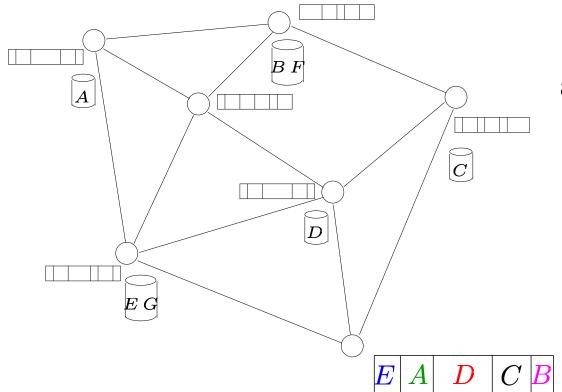




Partition input into subsequences so that at the end of each subsequence Semi-Greedy's buffers are empty.

Compare: throughput Semi-Greedy / throughput OPT

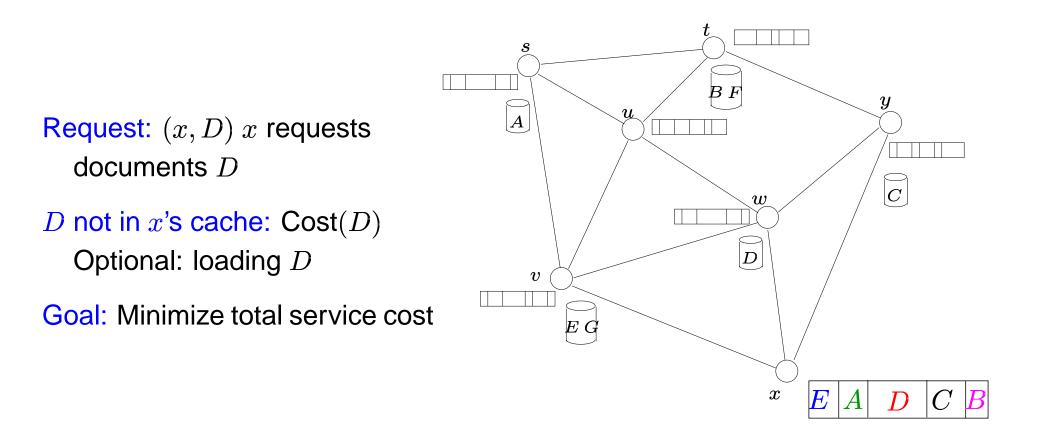
Web caching



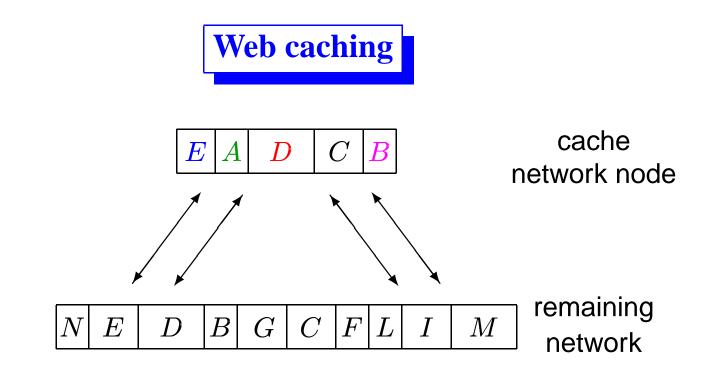
Documents are text files, images, html pages, ...

Important properties: documents have different sizes and incur different costs

Web caching



 $\sigma = (x, \mathbf{D}) (y, \mathbf{E}) (z, A) (v, C) (w, \mathbf{B}) (x, \mathbf{F}) \dots$

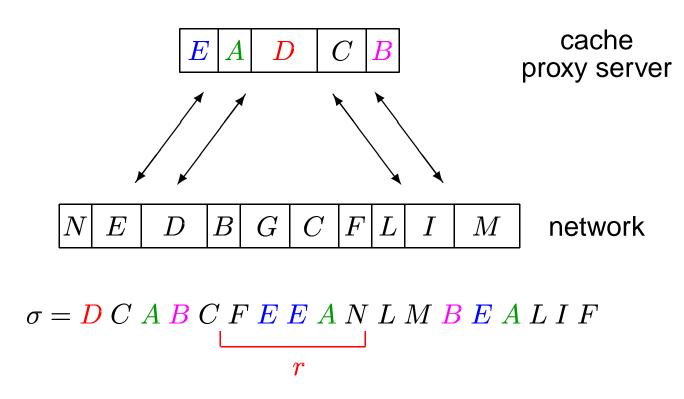


 $\sigma = \mathbf{D} C A \mathbf{B} C F \mathbf{E} C N I L M \mathbf{B} \mathbf{E} A L I F$

Goal: Serve a sequence of requests so that the total service cost at the node is minimized.

Request reordering

Proxy server: requests are independent



 $\sigma(j)$ may be served before $\sigma(i)$ if j - i < r $r \in \mathbb{N}$ Advantage: improved cache hit rates Feder, Motwani, Panigrahy, Zhu 2002 **Cost models**

Document D **Size**(D) **Cost**(D)

Uniform Model: Cost(D) = Size(D) = 1

Bit Model: Cost(D) = Size(D)

Fault Model:

Cost(D) = 1

General Model: Cost(*D*) arbitrary

Previous results, reordering

Online Uniform Model: (K/s+2)-competitive (deterministic) Bit and Fault Models: (K/s+3)-competitive (deterministic)

Offline

General Model: Polynomial algorithm for cache size 1 if r logarithmic in $|\sigma|$ or #distinct documents is constant

K = size cache s = size smallest document

Feder, Motwani, Panigrahy, Seiden, van Stee, Zhu 2003

Our results

Online

General Model: optimal (K/s + 1)-competitive alg. (deterministic)

Offline

	Approximation	Extra memory	$S = \max Size$
Uniform Model:	2	—	
Bit Model:	$2 + \epsilon$	$rac{1}{(1+\epsilon/2)}S$	$\epsilon \ge 0$
Fault Model:	$2+\epsilon$	$(1+2/\epsilon)S$	
General Model:	8		

Approach: reduce problem to one of computing batched schedules.

Batched processing

$$\sigma = \underbrace{\sigma(1) \dots \sigma(r)}_{B_1} \sigma(r+1) \dots \sigma(2r) \sigma(2r+1) \dots \sigma(3r) \dots$$

Batch *i*

 $B_i = \sigma(ir+1)\dots\sigma(ir+r)$

Batched processing

$$\sigma = \sigma(1) \dots \sigma(r) \sigma(r+1) \dots \sigma(2r) \sigma(2r+1) \dots \sigma(3r) \dots$$

$$B_2$$

Batch *i*

 $B_i = \sigma(ir+1)\dots\sigma(ir+r)$

Batched processing

$$\sigma = \sigma(1) \dots \sigma(r) \sigma(r+1) \dots \sigma(2r) \sigma(2r+1) \dots \sigma(3r) \dots$$

$$B_3$$

Batch *i*

 $B_i = \sigma(ir+1)\dots\sigma(ir+r)$

Lemma: Suppose that A serves σ with cost C. Then there exists A' that processes σ in batches and incurs a cost of at most 2C.

$$\sigma = \dots \sigma(ir+1) \dots \sigma(ir+r) \dots B_i$$

Algorithm **BMIN**

- 1. Serve requests to documents in cache;
- 2. while ∃D ∈ B_i with unserved requests do Serve requests to D;
 Determine E in cache whose next unserved request is farthest in future;
 if next unserved request to E is in a later batch than that to D then Load D by evicting E;

Uniform Model

Algorithm **BMIN**

- 1. Serve requests to documents in cache;
- 2. while ∃D ∈ B_i with unserved requests do Serve requests to D;
 Determine E in cache whose next unserved request is farthest in future;
 if next unserved request to E is in a later batch than that to D then Load D by evicting E;

$$\sigma = \dots A B A A D \dots A B B D D \dots B A B B E$$

$$B_{i} \qquad B_{j} \qquad B_{k}$$

$$B_{k}$$

Uniform Model

Algorithm **BMIN**

- 1. Serve requests to documents in cache;
- 2. while ∃D ∈ B_i with unserved requests do Serve requests to D;
 Determine E in cache whose next unserved request is farthest in future;
 if next unserved request to E is in a later batch than that to D then Load D by evicting E;

$$\sigma = \dots A B A A D \dots A B B D E \dots B A B B E$$

$$B_{i} \qquad B_{j} \qquad B_{k}$$

$$B_{k}$$

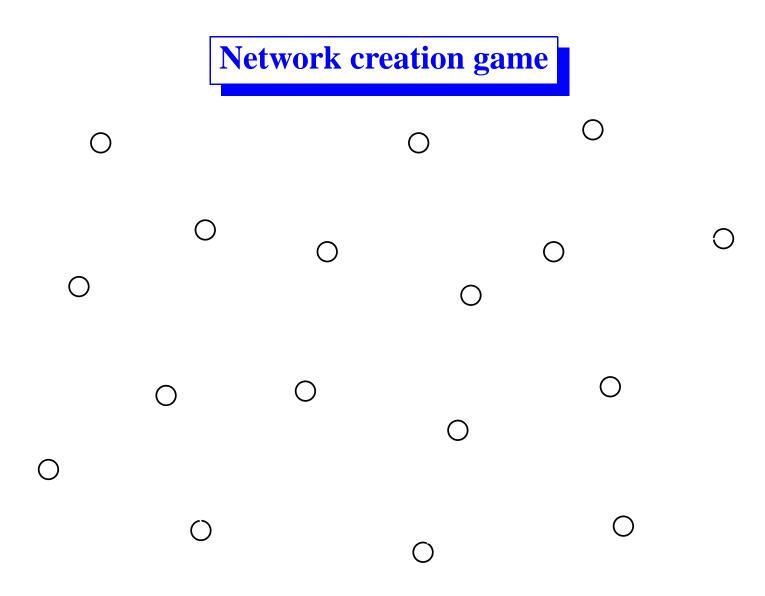
Lemma: BMIN is optimal among algorithms processing request sequences in batches.

Theorem: BMIN achieves an approximation ratio of 2.

Construct schedules that serve σ in batches

Bit, Fault Models: Formulate problems as ILP.

General Model: Formulate problem as a loss minimization problem. Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber 2001



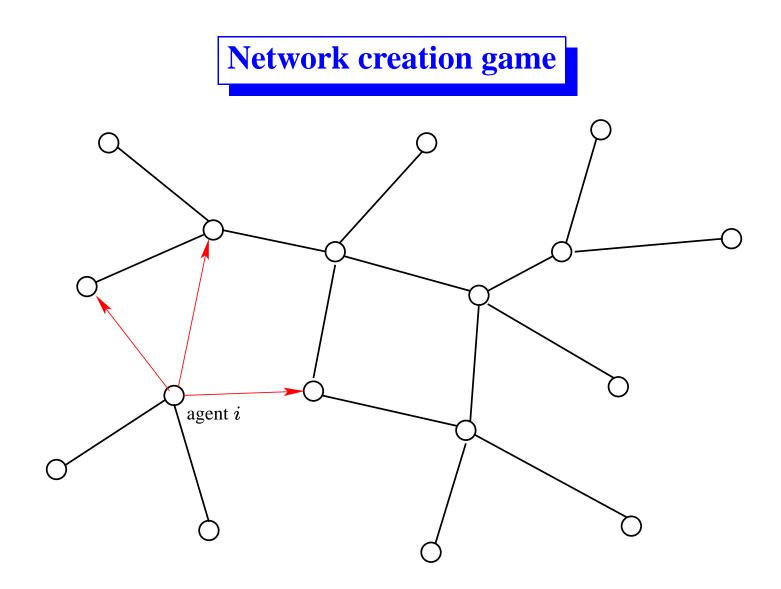
n agents have to build a connected network.

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03



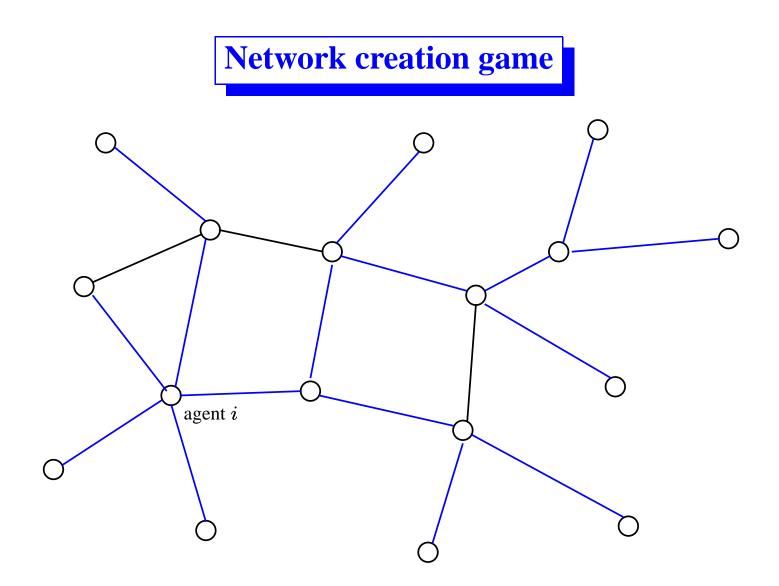
n agents have to build a connected network.

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03



Cost of $\alpha \geq 0$ for each edge.

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03



Shortest path distance to agent j, for all $j \neq i$. Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03

n agents $\alpha \ge 0$

$Cost(agent i) = \alpha \# edges built by agent i$

$$+\sum_{j \neq i}$$
 shortest path distance to agent j

No agent can improve its cost if other agents keep their strategies.

Price of anarchy:

$$P = \max_{\text{Nash eq.}} \frac{\sum_{i} \text{Cost}(\text{agent } i)}{\text{Cost}(\text{OPT})}$$

Koutsoupias, Papadimitriou '99

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03

 $lpha \leq 1, \quad \alpha > n^2$ $P ext{ is constant }$

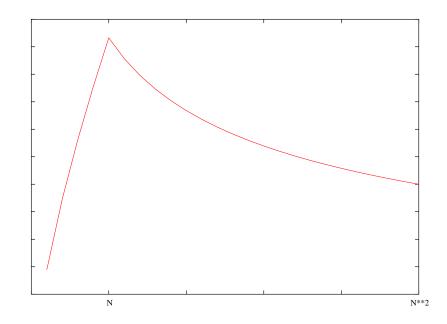
 $1 < lpha \leq n^2$ *P* is bounded by \sqrt{lpha}

Tree-conjecture: $\exists C \text{ s.t. for } \alpha > C \text{ every Nash equilibrium is a tree.}$

Our results

$$\alpha > 0$$
: $P = O(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3})$

- $\begin{array}{ll} \alpha \leq \sqrt{n} & P \text{ is constant} \\ \sqrt{n} < \alpha \leq n & P \text{ increasing, bounded by } n^{1/3} \end{array}$
- $n < \alpha$: P decreasing, constant for $\alpha \ge n^2$



Upper bounds can be extended to:

Weighted game: t_{ij} = traffic sent from agent *i* to *j* Cost sharing: agent can pay for a fraction of an edge

For any n and $n/4 \le \alpha \le n/3$

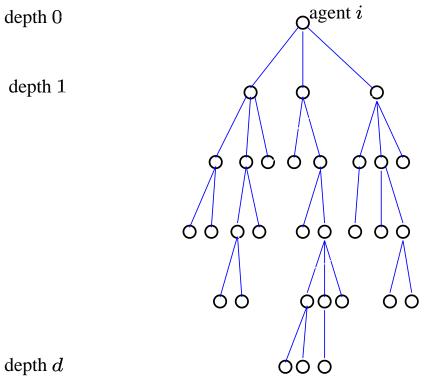
 \exists Nash equilibria that contain cycles.

Transient: \exists seq. of players' changes leading to non-equilibrium state.

Nash equilibrium representing a chordal graph is transient.

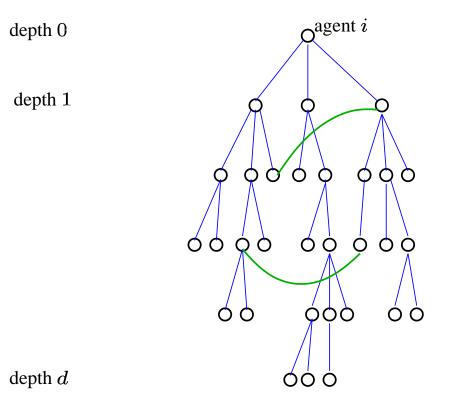
Upper bound

Nash equilibrium $N \quad G = (V, E)$ Shortest path tree rooted at agent *i*



Upper bound

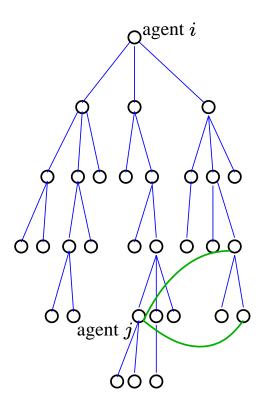
Nash equilibrium N G = (V, E)Shortest path tree rooted at agent *i*



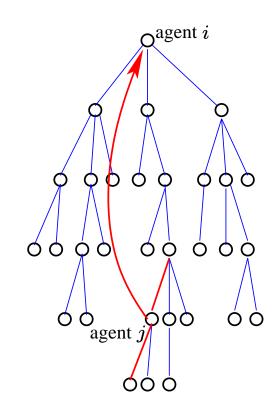
Cost(agent *i*) $\leq \alpha T_i + d(n-1)$

 $T_i = \#$ tree edges built by agent *i*

Cost of agent *j*

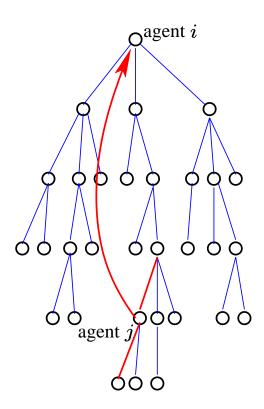


Cost of agent *j*



$$\alpha T_j + \alpha + (d+1)(n-1)$$

Cost of agent *j*



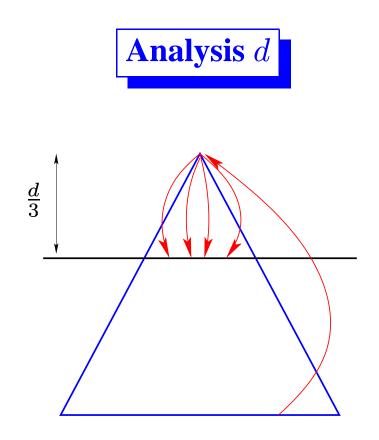
Cost(agent j) $\leq \alpha T_j + \alpha + (d+1)(n-1)$

Cost Nash

Cost(agent *i*) $\leq \alpha T_i + d(n-1)$

Cost(agent j) $\leq \alpha T_j + \alpha + (d+1)(n-1)$

 $Cost(Nash eq.) \leq \alpha(n-1) + \alpha(n-1) + (d+1)(n-1)n$



$$d \le \frac{3\alpha}{n^c}$$
 $c = \frac{1}{3}\left(\frac{\log \alpha}{\log n} + 1\right)$

Price of anarchy

Cost(Nash eq.) $\leq 2\alpha(n-1) + \left(\frac{3\alpha}{n^c} + 1\right)(n-1)n$

$$Cost(OPT) \ge \alpha(n-1) + n(n-1)$$

Open problems

Buffer management:

Determine competitiveness of randomized algorithms.

Packets have limited lifeliness.

Web caching

Improve approximations guarantees.

Complexity in the Uniform, Fault Models.

Network creation

Settle price of anarchy of any α .

Study other network creation games.