
Metric Labeling: Upper and Lower Bounds

SEFFI NAOR

COMPUTER SCIENCE DEPT.
TECHNION

HAIFA, ISRAEL

Based on Joint Work with:
CHANDRA CHEKURI, JULIA CHUZHOY, SANJEEV KHANNA, ROY SCHWARTZ, AND

LEONID ZOSIN.

Metric Labeling: The Problem

• Input:

– Undirected graph G with edge weights w(u, v).
– A set L of k labels equipped with a metric d.
– Cost function c : V (G) × L → R.

• Goal: An assignment f : V (G) → L (or a labeling of V (G)).

• Objective Function: minimize
∑

u∈V (G)

c(u, f(u))

︸ ︷︷ ︸

+
∑

u,v

w(u, v)d(f(u), f(v))

︸ ︷︷ ︸

Labeling Cost Separation Cost

1

Example

G

G

L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

2

Combinatorial Optimization: Related Problems

• Multiway Cut:

– Set of terminals t1, . . . , tk.
– Find minimum cut separating the terminals.
– Special case of ML: uniform metric and no assignment cost.

• 0-Extension:

– Same as multiway cut except that metric is arbitrary:
penalty of cut edge depends on terminals that endpoints belong to.

– Special case of ML.

• Quadratic Assignment: dropping the bijective property in QA yields
metric labeling.

3

Motivation

• Clean and general abstraction of classification problems [Kleinberg
and Tardos, 1999].

• Links to Markov random fields and their applications.

• Specific applications to image processing and analysis.

• Generalization of well known optimization problems.

4

Do assignment costs matter?

The (0,∞)-Extension Problem :

c(u, i) ∈ {0,∞} for all u ∈ V (G), 1 ≤ i ≤ k.

• Approximation preserving reduction from metric labeling with
arbitrary assignment costs to (0,∞)-extension.

• Reduction preserves label set, but changes graph (in a simple way).

Theorem. [Chuzhoy 2001] If there is a f(n, k)-approximation algorithm
for (0,∞)-extension, then there is a f(n+nk, k)-approximation algorithm
for general metric labeling.

5

Relaxation: Embedding in a Simplex

[Chekuri, Khanna, N., Zosin, 2001]

• For each v ∈ V : v 7−→ (x(v, 1), x(v, 2), . . . x(v, k)), where

k∑

i=1

x(v, i) = 1

Vertex v is mapped into a probability distribution over the label set.

6

• Distance between u and v defined by Earthmover Metric -
solution to a transportation problem between (u, 1), . . . (u, k) and
(v, 1), . . . , (v, k) with respect to label metric d.

dEM(u, v) =
∑

i,j

d(i, j) · x(u, i, v, j)

x(u, i, v, j) - flow on edge ((u, i), (v, j))

0.5

0.3

0.2
x(v)x(u)

0.6
0.1

0.3

0.1

0.5

0.4

H(u,v)

7

Linear Program: Computing the Embedding

• Result: Embedding in a simplex where distances are defined by an
earthmover metric (and not ℓ1).

• Objective Function: Minimize

∑

u∈V

k∑

i=1

c(u, i) · x(u, i)

︸ ︷︷ ︸

+
∑

(u,v)∈E

w(u, v)
∑

1≤i,j≤k

d(i, j) · x(u, i, v, j)

︸ ︷︷ ︸

labeling cost separation cost

8

Constraints

k∑

i=1

x(u, i) = 1 ∀ u ∈ V

k∑

j=1

x(u, i, v, j) − x(u, i) = 0 ∀ u, v ∈ V, i ∈ 1, . . . , k

x(u, i, v, j) − x(v, j, u, i) = 0 ∀ u, v ∈ V , i, j ∈ 1, . . . , k

x(u, i), x(u, i, v, j) ≥ 0

9

Uniform Metric

• For any i 6= j, d(i, j) = 1.

• What does the earthmover solution look like? for edge (u, v):

x(u, i, v, i) = min{x(u, i), x(v, i)}

• Thus,

dEM(u, v) =
∑

i,j

d(i, j)x(u, i, v, j) ≥ 1

2
·

k∑

i=1

|x(u, i) − x(v, i)|

10

Uniform Metric: Rounding Algorithm

Rounding an LP solution. [Kleinberg and Tardos, 1999].

Idea: Random choices should be correlated.

Algorithm: repeat until all vertices are labeled.

1. pick i at random from {1, 2, . . . , k}.

2. pick θ at random from the interval [0, 1].

3. label an unlabeled vertex u with i iff θ ≤ x(u, i).

11

Uniform Metric: Integrality Gap

Observation: Probability of assigning i to u is exactly x(u, i).

Lemma: Probability that u and v get different labels is at most

k∑

i=1

|x(u, i) − x(v, i)|

Recall: dEM(u, v) ≥ 1
2 ·

∑k
i=1 |x(u, i) − x(v, i)|

Theorem: For a uniform metric, integrality gap ≤ 2.

Open Question: Can the 2-approximation be improved?

12

General Metrics

• Solve the simplex embedding LP.

• Approximate the fractional solution to the LP by a deterministic HST
metric losing a factor of O(log k).

• The integrality gap on an HST tree is O(1).

• Yielding an O(log k)-approximation for general metrics [Kleinberg
and Tardos, 1999].

13

Linear Metric

Rounding of LP solution:

• Assume w.l.o.g. labels are integers 1, 2, . . . , k.

• For each vertex u, define α(u, i) =

i∑

j=1

x(u, j).

• Pick θ uniformly at random from [0, 1].

• L(u) = i iff α(u, i − 1) < θ ≤ α(u, i).

• All vertices get a label since α(u, k) = 1.

14

Lemma 1: dEM(u, v) ≥
k∑

i=1

|α(u, i) − α(v, i)|.

Flow is uncrossing

v

ui

Flow crossing i is exactly |α(u, i)−α(v, i)|. 2

15

Analysis

Lemma 1: dEM(u, v) ≥
k∑

i=1

|α(u, i) − α(v, i)|.

Lemma 2: E [d((L(u), L(v))] =

k∑

i=1

|α(u, i) − α(v, i)|.

⇓

Theorem: The integrality gap of the LP for the line metric is 1.

16

Convex functions on the line

• d(i, j) = f(|i − j|) where f is convex and increasing.

• d is a metric iff f is linear.

• The linear programming formulation is useful for convex f .

• Integrality gap is 1 since flow is uncrossing.

17

Truncated Linear Metric

• d(i, j) = min{M, |i − j|}.

• Applications to image processing.

• Generalizes uniform and linear metrics and is NP-hard.

• 2 +
√

2 ≃ 3.414-approximation by generalizing the linear algorithm.
[Chekuri, Khanna, N., Zosin, 2001]

• Open Question : Improve the approximation factor.

18

Truncated Quadratic Distance

• d(i, j) = min{(i − j)2, M}. Not a metric!

• Useful function for vision applications.

• O(
√

M)-approximation easy.

• Open Questions:

– NP-hard?
– LP gap?
– O(1) approximation?

19

0-Extension Problem

• Input:

– Graph G with edge weights w(u, v).
– T ⊂ V (G) - Set of k terminals.
– d - Metric on T .

• Solution : Partitioning of the graph, s.t. each terminal is in a different
connected component.

– t(v) - terminal in connected component of v.

• Objective : minimize
∑

(u,v)∈E(G)

w(u, v) · d(t(u), t(v)).

20

0-Extension Problem: Open Questions

• Is 0-extension easier than (0,∞)-extension?

• I.e., if each non-terminal vertex can be labeled for free, does that
make the metric labeling problem easier?

• Best approximation factor known: O
(

log k
log log k

)

[FHRT] for general

metrics (improving a previous factor of O(log k) [CKR]).

21

Balanced Metric Labeling

• Input: Metric labeling instance.

• Additional constraint:

Each label can be assigned to at most ℓ vertices.

[N., Schwartz, STOC 2005]

22

Motivation

• Minimum weight k-way balanced partitioning:

– Each part contains at most 2n/k vertices.
– Minimizing weight of edge cuts.

• Special case of balanced metric labeling:

– Label is equivalent to a Part.
– ℓ ≤ 2n/k.
– Uniform metric.

23

Motivation (contd.)

• What if each vertex can only be labeled by a subset of the labels?

– The balanced {0,∞}-extension problem.

• Application: Clustering Base Transceiver Stations in GSM networks:

– Weighted graph on the BTS-s: traffic 7→ edge weight.
– Each cluster is controlled by a Base Station Controller (= label).
– Base Station Controller have bounded capacity.
– Each BTS can only be assigned to a subset of the BSC-s.

• Graph arrangement problems:

– E.g., linear-arrangement: linear metric and capacity = 1.

24

Balanced Uniform Metric Labeling - Difficulties

• Bounding the number of vertices assigned to each label?

– Not obvious in the methods developed for uncapacitated uniform
metric labeling, e.g., the Kleinberg-Tardos algorithm.

• Incorporating label assignment costs?

– Not obvious in the techniques developed for approximating graph
partitioning problems ([LR], [ENRS], and [ARV]).

– For example, there may not always exist a label that can be
assigned to all vertices in a single cluster of the partition.

25

Spreading Constraints

• Very useful for approximating graph partitioning problems.

• Example: ∀S ⊆ V,∀u ∈ S:
∑

v∈S

d(u, v) ≥ |S| − ℓ.

• For large subsets S, there is a radius guarantee:

∃v ∈ S : d(u, v) ≥ 1 − ℓ

|S|

• Radius guarantee ⇒ Ball growing techniques can be applied.

26

The Relaxation

• Embedding in a k-dimensional simplex.

• Spreading constraints.

• Capacity constraints:

∀ labelj :
∑

v∈V

x(v, j) ≤ ℓ

• Closeness constraints.

27

The Relaxation: Closeness Constraints

• Closeness of u and v wrt label j: cj(u, v) ≤ x(u, j), x(v, j).

• Variation distance: ∀u, v,

d(u, v) = 1 −
∑

j∈L

cj(u, v)

• Triangle inequality: ∀u, v, w ∈ V ,

∑

j

∣
∣cj(u, v) − cj(u,w)

∣
∣ ≤ 1 −

∑

j

cj(v, w)

28

The Approximation Algorithm

• Overview: A combination of randomized metric decomposition and
label assignment techniques.

• Initial Labeling: Each vertex v is assigned a root labeling,
f∗ : V → L, satisfying:

Pr[f∗(v) = j] = x(v, j) , ∀v ∈ V, ∀ labelj.

• Iteratively: Each vertex, in its turn, is a root and labels a subset of
the unlabeled vertices.

29

Radius and Label Tests

• Current root: Vertex u.

• Radius test:

– Choose radius R from the distribution:

fR(r) =

(
n

n − 1

)

· 1 + ε

ε
· lnn · n−r·1+ε

ε , r ∈
[

0,
ε

1 + ε

]

– Define a ball of radius R, with respect to metric d, around root
vertex u:

{x | d(u, x) ≤ R}

30

Radius and Label Tests (contd.)

• Label Test:

– Choose uniformly in random α ∈ [0, x(u, f∗(u))].
– Define vertices close to the root u with respect to root label f∗(u):

{
x | cf∗(u)(u, x) ≥ α

}

• Labeling: All unlabeled vertices that pass both radius and label tests
receive label f∗(u)).

31

Approximation Algorithm: Summary

• For each u ∈ V , iteratively:

– Apply radius and label test.

• Output labeling.

Theorem: Upon termination, all vertices are labeled.

Proof: Each vertex passes the radius and label tests when it becomes
the root vertex.

32

The Approximation Algorithm - Example

u1

u2 u5

u6

u3

u4

L = {Red, Blue, Green}

33

The Approximation Algorithm - Example

u1

u2 u5

u6

u3

u4

L = {Red, Blue, Green}

34

The Approximation Algorithm - Example

L = {Red, Blue, Green}

R1

u1

u3
u2

u6

u4

u5

35

The Approximation Algorithm - Example

L = {Red, Blue, Green}

R1

u1

u3
u2

u6

u4

u5

36

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

37

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5R2

38

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5R2

39

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

40

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

R3

41

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

R3

42

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

43

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

R4

44

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

R4

45

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

46

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5R5

47

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5R5

48

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

49

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5
R6

50

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5
R6

51

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

52

The Approximation Algorithm - Example

L = {Red, Blue, Green}

u1

u3
u2

u6

u4

u5

53

Analysis

• Difficulty:

– Capacity: Easy to bound the number of vertices assigned to a label
with independent random labels.

– Vertex separation costs: If the labels chosen for the vertices are
dependent [KT], cost of vertex separation is bounded.

54

Analysis (contd.)

• Main Ingredient: The algorithm balances the dependencies
between the labels assigned to the vertices.

– Label of a vertex depends on only a limited number of other labels:
Labels of vertices that are far from each other are independent.

– Spreading constraints: not too many vertices are close.

– Number of vertices assigned to each label is bounded via a new
inequality of Janson for tail bounds of (partly) dependent random
variables.

– Separation cost is bounded.

55

Approximation Factor

• Bicriteria approximation factor: For any 0 < ε < 1,

– O
(
ln n
ε

)
-approximation to the solution cost.

– min
{

O(ln k)
1−ε , ℓ + 1

}

(1 + ε) ℓ vertices are assigned to each label.

• For ℓ = O(1) or k = O(1), capacity is violated by a constant
multiplicative deviation.

• Compare with balanced k-way partitioning:

Either (O(log n), const), [ENRS] or (O(
√

log n log k), const) [ARV].

56

Open Questions

• Can we improve the approximation factor?

• Can we obtain the same biciriteria factor (log n, constant) known for
balanced partitioning?

57

Hardness of Metric Labeling

• Back to uncapacitated metric labeling [Chuzhoy, N., FOCS 2004]:

• There is no constant approximation for Metric Labeling unless P=NP.

• No log
1
2−δ n-approximation exists unless NP ⊆ DTIME(npoly log n) (for

any constant δ).

• Hardness is proved for (0,∞)-extension.

58

Gap 3SAT(5)

Input : A 3SAT(5) formula ϕ on n variables.

• ϕ is a YES-instance if it is satisfiable.

• ϕ is a NO-instance (with respect to some ε) if at most a (1−ε)-fraction
of the clauses are simultaneously satisfiable.

Theorem: [ALMSS’92] There is some 0 < ε < 1, such that it is NP-hard
to distinguish between YES and NO instances.

59

A 2-prover Protocol for 3SAT(5) Formula ϕ

• Verifier: randomly chooses clause C and one of its variables x.

• Prover 1: receives the clause C and answers with an assignment to
the variables of C that satisfy it.

• Prover 2: receives variable x and answers with an assignment to x.

• Verifier: checks that the two assignments match.

Theorem :
• If ϕ is a YES-instance: there is a strategy of the provers such that the
verifier always accepts.
• If ϕ is a NO-instance: for any strategy, the acceptance probability is at
most

(
1 − ε

3

)
.

60

The Raz Verifier

• Performs ℓ parallel repetitions of the 2-Prover Protocol.

• A query to prover 1 is an ℓ-tuple of clauses and a query to prover 2
is an ℓ-tuple of variables.

• If ϕ is a YES-instance: then there is a strategy of the two provers that
makes the verifier always accept.

• If ϕ is a NO-instance: then for any strategy of the two provers the
acceptance probability is at most 2−O(ℓ).

61

A Simple (3 − ε)-Hardness

• Start from a 3SAT(5) formula ϕ.

• Use the Raz verifier with ℓ repetitions (ℓ is a large constant) to
produce a (0,∞)-extension instance:

– If ϕ is a YES-instance, then there is a solution of cost |R|.

– If ϕ is a NO-instance, then the cost of any solution is at least (3 −
δ)|R|.

62

A (3 − ε)-Hardness: Label Set

• ∀ query-answer pair (q, a) of each prover, there is a label ℓ(q, a).

• Given:

– random string r.
– queries q1, q2 sent to the provers under r.
– a1 and a2 is a pair of consistent answers to q1 and q2.

=⇒ There is an edge of length 1 between (q1, a1) and (q2, a2).

• Label distances are defined by shortest paths in the label graph.

• Label graph is bipartite: Part ⇔ Prover. Distances: either 1, or ≥ 3.

63

A (3 − ε)-Hardness: the Graph

• For each possible query q to provers 1 and 2 there is a vertex v(q)
that can only be assigned to its corresponding labels (ℓ(q, a)).

• For each random string r, let q1, q2 be the queries sent to the two
provers under r. There is an edge between v(q1) and v(q2).

Note that every assignment of the vertices to the labels defines a
strategy for the provers and vice versa.

64

Properties

• If ϕ is a YES-instance:

– ∃ strategy of provers s.t. their answers are always consistent.
– Strategy defines an assignment of vertices to labels of cost |R|.

• If ϕ is a NO-instance:

– Assignment of labels to vertices defines a strategy for the provers.
– Acceptance probability of this strategy is at most 2−O(ℓ).
– Hence, almost all the edges in the graph pay (at least) 3.
– The solution cost is arbitrarily close to 3|R|.

65

Extending to
√

log n-Hardness

Difficulty:

• Suppose queries q1 and q2 are sent to the two provers.

• If their answers a1,a2 are inconsistent, then there is a path of length
(precisely) 3 in the label graph between the labels ℓ(q1, a1) and
ℓ(q2, a2).

• This is true even if the answers are inconsistent in many coordinates.

Goal: If the answers are inconsistent in many coordinates, the length of
the path between them should also be large.

66

Plan

k−prover protocol

GAP 3SAT(5)(0;1)-extension2-prover protocol(Raz veri�er)
67

A New k-Prover System

For each pair of provers (i, j), 1 ≤ i < j ≤ k:

• The verifier chooses randomly and independently clause Cij and one
of its variables xij.

• Prover i receives clause Cij and answers with an assignment to its
variables satisfying the clause.

• Prover j receives xij and answers with an assignment to it.

• Every other prover a 6= i, j receives both Cij and xij and answers
with an assignment to the variables of Cij satisfying the clause.

68

A Query

Each query has
(
k
2

)
coordinates.

Coordinate (a, b) (for a < b) of the query for prover i:

• If i = a, it contains Cab

• If i = b, it contains xab

• If a, b 6= i, it contains both Cab and xab

69

Example: Queries in a 3-Prover Protocol

(1, 2) (1, 3) (2, 3)

P1 C1,2 C1,3 C2,3, x2,3

P2 x1,2 C1,3, x1,3 C2,3

P3 C1,2, x1,2 x1,3 x2,3

70

The k-Prover System: Properties

Definition:

• Let Ai, Aj be the answers of provers i, j to their queries.

• The answers are weakly consistent if their (i, j) coordinates match.

• They are strongly consistent if all their coordinates match.

Theorem: If ϕ is a YES-instance, then there is some strategy of the
provers, such that their answers are always strongly consistent.

Theorem: If ϕ is a NO-instance, then for every pair of provers, the
probability that their answers are weakly consistent is at most (1 − ε

3).

71

The Reduction - an Overview

Given a 3SAT(5) formula ϕ on n variables, we use the k-prover system
to produce an instance of (0,∞)-extension, such that:

• If ϕ is a YES-instance, there is a solution of cost k
2|R|.

• If ϕ is a NO-instance, the cost of any solution is at least |T | ≥
(
k
2

)
ε
3|R|)

• Thus, the gap between YES and NO instances is Ω(k).

• The instance size is N = nO(k2).

⇒ Choosing k = poly(log n), no log
1
2−δ N approximation exists unless

NP ⊆ DTIME(npoly log n) (for any constant δ).

72

The Construction: Label Metric

There are two types of labels:

• Query Label ℓ(Pi, qi, Ai):

– For each prover Pi,
– For each query qi to prover Pi,
– For each possible answer Ai to qi.

• Constraint Label ℓ(r,A1, . . . , Ak):

– For each random string r,
– For each k-tuple A1, . . . , Ak of strongly consistent answers of the

provers to the queries implied by r.

73

Label Metric: Edges

Let r be a random string, q1, . . . , qk be the corresponding queries, and
let A1, . . . , Ak be a k-tuple of strongly consistent assignments. For each
i, there is an edge of length 1

2 between ℓ(r,A1, . . . , Ak) and ℓ(Pi, qi, Ai).`(r;A1; : : : ; Ak)`(P3; q3; A3)`(P1; q1; A1)`(Pk; qk; Ak) `(P2; q2; A2)
74

The Graph: Vertices

• Query Vertices: For each prover Pi, for each query qi to Pi, there is a
vertex v(Pi, qi), which can only be assigned to labels corresponding
to the same query of the same prover (i.e., ℓ(Pi, qi, A).)

Note that the assignments of all the query vertices to the labels define
a strategy of the k provers.

• Constraint Vertices: For each random string r, there is a vertex v(r),
which can be only assigned to the labels corresponding to r (i.e.,
ℓ(r,A1, . . . , Ak)).

Note that the assignment of v(r) defines the answers of the provers
when the random string is r.

75

The Graph: Edges

Let q1, . . . , qk be the queries corresponding to random string r. Then,
for each i, there is an edge between v(r) and v(Pi, qi).v(r) v(P3; q3)v(P2; q2)v(P1; q1)v(Pk; qk)

76

YES Instance

• There exists an accepting strategy of the provers.

• Queries q1, . . . , qk correspond to random string r.

• A1, . . . , Ak are the answers to the queries.v(Pk ; qk(r)) v(r)v(P1; q1(r))) `(r; f(q1(r)); : : : ; f(qk(r)))`(P2; q2(r); f(q2(r)))`(P1; q1(r); f(q1(r)))`(Pk ; qk(r); f(qk(r))) `(P3 ; q3(r); f(qr(r)))v(P3; q3(r))v(P2; q2(r))
Therefore, the solution cost is k

2|R|.

77

NO Instance

• Assignments of the query vertices define a strategy for the provers.

• Let T be the set of “inconsistent” triples (r, i, j) (i < j), s.t. for random
string r, the answers of provers i and j are not weakly consistent.

• |T | ≥
(
k
2

)
ε
3|R|. (Recall that the probability that a pair is weakly

consistent is at most (1 − ε
3)).

• We can show that the solution cost is at least |T |, yielding a gap of
Ω(k) between YES and NO instances.

• Since the construction size is N = nO(k2), choosing k = poly(log n),
no log

1
2−δ N approximation exists unless NP ⊆ DTIME(npoly log n) (for

any constant δ).

78

Open Questions

• There is still a gap between the logarithmic upper bound and the
lower bound of log1/2−δ n on the approximability of metric labeling.
Can this gap be closed?

• Can we prove better (non-constant?) lower bounds on the
approximability of 0-Extension?

• Or, can we obtain better approximation factors?

79

