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Metric Labeling: The Problem

e |Nnput:

— Undirected graph G with edge weights w(u, v).
— A set L of k labels equipped with a metric d.
— Cost functionc¢: V(G) x L — R.

e Goal: Anassignment f : V(G) — L (or a labeling of V(&)).

e Objective Function: minimize
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Combinatorial Optimization: Related Problems

e Multiway Cut:

— Set of terminals t4, .. ., t;.
— Find minimum cut separating the terminals.
— Special case of ML: uniform metric and no assignment cost.

e (0-Extension:

— Same as multiway cut except that metric is arbitrary:
penalty of cut edge depends on terminals that endpoints belong to.
— Special case of ML.

e Quadratic Assignment: dropping the bijective property in QA yields
metric labeling.



Motivation

Clean and general abstraction of classification problems [Kleinberg
and Tardos, 1999].

Links to Markov random fields and their applications.
Specific applications to image processing and analysis.

Generalization of well known optimization problems.



Do assignment costs matter?

The (0, c0)-Extension Problem :
c(u,i) € {0,00} forallu € V(G),1 <i < k.

e Approximation preserving reduction from metric labeling with
arbitrary assignment costs to (0, co)-extension.

e Reduction preserves label set, but changes graph (in a simple way).

Theorem. [ Chuzhoy 2001 ] Ifthereisa f(n, k)-approximation algorithm
for (0, co)-extension, then thereis a f(n+nk, k)-approximation algorithm
for general metric labeling.



Relaxation: Embedding in a Simplex

[Chekuri, Khanna, N., Zosin, 2001]

e Foreachv e V: v +— (x(v,1),x(v,2),...2(v,k)), where

Vertex v Is mapped into a probability distribution over the label set.



e Distance between u and v defined by Earthmover Metric -
solution to a transportation problem between (u,1),...(u,k) and
(v,1),..., (v, k) with respect to label metric d.

dEMU’U Zd’&] U,?:,U,j)

z(u, 1, v, j) - flow on edge ((u, ), (v, 7))




Linear Program: Computing the Embedding

e Result: Embedding in a simplex where distances are defined by an
earthmover metric (and not ¢;).

e Objective Function: Minimize

j{:cizgi)-;x u, 1) + j{: V) j{: d(i,7) - x(u,i,v,j)
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Constraints
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Uniform Metric

e Foranyi # j, d(i,j) = 1.
e What does the earthmover solution look like? for edge (u, v):

x(u,i,v,1) = min{x(u,1), x(v,1)}

e Thus,
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Uniform Metric: Rounding Algorithm

Rounding an LP solution. [Kleinberg and Tardos, 1999].

ldea: Random choices should be correlated.

Algorithm: repeat until all vertices are labeled.

1. pick ¢ at random from {1,2,.... k}.
2. pick 6 at random from the interval |0, 1].

3. label an unlabeled vertex « with ¢ iff 6 < x(u,1).
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Uniform Metric: Integrality Gap

Observation: Probability of assigning : to « is exactly = (u, 7).

Lemma: Probability that « and v get different labels is at most

Recall:  dpa(u,v) > 2520 Ja(u,i) — 2(v,9)]

Theorem: For a uniform metric, integrality gap < 2.

Open Question: Can the 2-approximation be improved?
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General Metrics

Solve the simplex embedding LP.

Approximate the fractional solution to the LP by a deterministic HST

metric losing a factor of O(log k).

The integrality gap on an HST tree is O(1).

Yielding an O(log k)-approximation for general metrics [Kleinberg

and Tardos, 1999].
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Linear Metric

Rounding of LP solution:

Assume w.l.0.g. labels are integers 1,2, ..., k.

For each vertex u, define a.(u, i) Zaz u, 7).

Pick ¢ uniformly at random from [0, 1].
L(u) =iiffa(u,i — 1) < 0 < au,1).

All vertices get a label since a(u, k) = 1.
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N

Lemmal:  dpy(u,v) > Y la(u,i) — afv,i)].
=1

X

Flow is uncrossing

NN

Flow crossing i is exactly |a(u, i) —a(v,7)].
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Analysis

Lemma 1l: dga(u,v) > Z la(u, i) — a(v,i)].
Lemma 2: E[d((L(u), L(v))] = Z la(u, i) — a(v, ).
4

Theorem: The integrality gap of the LP for the line metric is 1.
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Convex functions on the line

d(z,7) = f(|t — j|) where f is convex and increasing.
d is a metric iff f is linear.
The linear programming formulation is useful for convex f.

Integrality gap is 1 since flow is uncrossing.
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Truncated Linear Metric

o d(i,j) = min{M,|i — j|}.
e Applications to image processing.
e Generalizes uniform and linear metrics and is NP-hard.

e 2+ /2 ~ 3.414-approximation by generalizing the linear algorithm.
[Chekuri, Khanna, N., Zosin, 2001]

e Open Question : Improve the approximation factor.
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Truncated Quadratic Distance

d(i,7) = min{(i — j)?, M }. Not a metric!
Useful function for vision applications.
O(+/ M )-approximation easy.

Open Questions:

— NP-hard?
— LP gap?
— O(1) approximation?
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0-Extension Problem

e INput:

— Graph G with edge weights w(u, v).
— T C V(@) - Set of k terminals.
— d - Metricon T'.

e Solution : Partitioning of the graph, s.t. each terminal is in a different
connected component.

— t(v) - terminal in connected component of v.

e Objective : minimize Z w(u,v) - d(t(u),t(v)).
(u,v)EE(G)
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0-Extension Problem: Open Questions

e |s 0-extension easier than (0, co)-extension?

e |l.e., if each non-terminal vertex can be labeled for free, does that
make the metric labeling problem easier?

log log k
metrics (improving a previous factor of O(log k) [CKRY]).

e Best approximation factor known: O( log k ) [FHRT] for general
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Balanced Metric Labeling

e Input: Metric labeling instance.

e Additional constraint:
Each label can be assigned to at most ¢ vertices.

[N., Schwartz, STOC 2005]
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Motivation

e Minimum weight k-way balanced partitioning:

— Each part contains at most 2n/k vertices.
— Minimizing weight of edge cuts.

e Special case of balanced metric labeling:

— Label is equivalent to a Part.
— L < 2n/k.
— Uniform metric.
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Motivation (contd.)

e What if each vertex can only be labeled by a subset of the labels?

— The balanced {0, co}-extension problem.

e Application: Clustering Base Transceiver Stations in GSM networks:

— Weighted graph on the BTS-s: traffic — edge weight.

— Each cluster is controlled by a Base Station Controller (= label).
— Base Station Controller have bounded capacity.

— Each BTS can only be assigned to a subset of the BSC-s.

e Graph arrangement problems:

— E.g., linear-arrangement: linear metric and capacity = 1.
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Balanced Uniform Metric Labeling - Difficulties

e Bounding the number of vertices assigned to each label?
— Not obvious in the methods developed for uncapacitated uniform
metric labeling, e.g., the Kleinberg-Tardos algorithm.
e Incorporating label assignment costs?

— Not obvious in the techniques developed for approximating graph
partitioning problems ([LR], [ENRS], and [ARV]).

— For example, there may not always exist a label that can be
assigned to all vertices in a single cluster of the partition.
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Spreading Constraints

Very useful for approximating graph partitioning problems.

Example: VS C V,Vu €51 Y d(u,v) > |S| - L.

vES

For large subsets 5, there is a radius guarantee:

4
JveS: du,v)>1——
|51

Radius guarantee = Ball growing techniques can be applied.
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The Relaxation

Embedding in a k-dimensional simplex.

Spreading constraints.

Capacity constraints:

v label; :

Closeness constraints.

Zx(v,j) </

veV
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The Relaxation: Closeness Constraints

e Closeness of v and v wrt label j: ¢;(u,v) < z(u, ), xz(v, 7).

e Variation distance: Vu, v,

d(u,v) =1— ch(u, V)

jEL
e Triangle inequality: Yu,v,w € V,

Z ’cj(u,v) = cj(u,w)‘ <1-— ch(v,w)

J J
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The Approximation Algorithm

e Overview: A combination of randomized metric decomposition and
label assignment techniques.

e Initial Labeling: Each vertex v is assigned a root labeling,
f*:V — L, satisfying:

Pr[f*(v) =j] = x(v,5) , Vv e V,Vlabelj.

e Iteratively: Each vertex, in its turn, is a root and labels a subset of
the unlabeled vertices.
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Radius and Label Tests

e Current root: Vertex wu.

e Radius test:

— Choose radius R from the distribution:

fR(r):< ’n, )-1+8-lnn-n_r'¥, TE[O - ]

n—1 £ "14¢

— Define a ball of radius R, with respect to metric d, around root

vertex u:
{z | d(u,z) < R}
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Radius and Label Tests (contd.)

e Label Test:

— Choose uniformly in random « € [0, z(u, f*(u))].
— Define vertices close to the root « with respect to root label f*(u):

{z] cpequy(u, ) > a}

e Labeling: All unlabeled vertices that pass both radius and label tests
receive label f*(u)).
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Approximation Algorithm: Summary

e For each u € V, iteratively:

— Apply radius and label test.

e Output labeling.
Theorem: Upon termination, all vertices are labeled.

Proof: Each vertex passes the radius and label tests when it becomes
the root vertex.

32



The Approximation Algorithm - Example
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The Approximation Algorithm - Example
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The Approximation Algorithm - Example
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Analysis

e Difficulty:

— Capacity: Easy to bound the number of vertices assigned to a label
with independent random labels.

— Vertex separation costs: If the labels chosen for the vertices are
dependent [KT], cost of vertex separation is bounded.
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Analysis (contd.)

Main Ingredient: The algorithm balances the dependencies
between the labels assigned to the vertices.

— Label of a vertex depends on only a limited number of other labels:
Labels of vertices that are far from each other are independent.

— Spreading constraints: not too many vertices are close.
— Number of vertices assigned to each label is bounded via a new
iInequality of Janson for tail bounds of (partly) dependent random

variables.

— Separation cost is bounded.
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Approximation Factor

e Bicriteria approximation factor: Forany 0 < € < 1,

O ("

— min {O(ln 5 0+ 1} (1 + ¢) ¢ vertices are assigned to each label.

approximation to the solution cost.

e For / = O(1) or k = O(1), capacity is violated by a constant
multiplicative deviation.

e Compare with balanced k-way partitioning:

Either (O(logn),consd, [ENRS] or (O(y/lognlogk), cons) [ARV].
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Open Questions

e Can we improve the approximation factor?

e Can we obtain the same biciriteria factor (log n, constant known for
balanced partitioning?
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Hardness of Metric Labeling

Back to uncapacitated metric labeling [Chuzhoy, N., FOCS 2004:

There is no constant approximation for Metric Labeling unless P=NP.

No log%_‘S n-approximation exists unless NP C DTIME(nP°Y1°g™) (for

any constant 9).

Hardness is proved for (0, oo)-extension.
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Gap 3SAT(5)

Input : A 3SAT(5) formula ¢ on n variables.

e ¢ is a YES-instance if it is satisfiable.

e pisaNO-instance (with respect to some ¢) if at most a (1—¢)-fraction
of the clauses are simultaneously satisfiable.

Theorem: [ALMSS’92] There is some 0 < € < 1, such that it is NP-hard
to distinguish between YES and NO instances.
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A 2-prover Protocol for 3SAT(5) Formula ¢

e Verifier: randomly chooses clause C' and one of its variables x.

e Prover 1: receives the clause C' and answers with an assignment to
the variables of C that satisfy it.

e Prover 2: receives variable x and answers with an assignment to x.

e Verifier: checks that the two assignments match.

Theorem :

e If © IS a YES-instance: there is a strategy of the provers such that the
verifier always accepts.

e If © iIs @ NO-instance: for any strategy, the acceptance probability is at
most (1 — £).

60



The Raz Verifier

Performs ¢ parallel repetitions of the 2-Prover Protocol.

A guery to prover 1 is an /-tuple of clauses and a query to prover 2
IS an /-tuple of variables.

If © Is a YES-instance: then there is a strategy of the two provers that
makes the verifier always accept.

If © is a NO-instance: then for any strategy of the two provers the
acceptance probability is at most 2-°(4),
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A Simple (3 — ¢)-Hardness

e Start from a 3SAT(5) formula .

e Use the Raz verifier with ¢ repetitions (¢ iIs a large constant) to
produce a (0, co)-extension instance:

— If ¢ is a YES-instance, then there is a solution of cost | R|.

— If p is a NO-instance, then the cost of any solution is at least (3 —
0)|R|.
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A (3 — e)-Hardness: Label Set

vV query-answer pair (¢, a) of each prover, there is a label ¢(q, a).

Given:

— random string r.
— queries q1, g2 sent to the provers under r.
— a1 and as IS a pair of consistent answers to ¢; and g¢-.

— There is an edge of length 1 between (¢1,a1) and (g2, as).
Label distances are defined by shortest paths in the label graph.

Label graph is bipartite: Part < Prover. Distances: either 1, or > 3.
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A (3 — ¢)-Hardness: the Graph

e For each possible query ¢ to provers 1 and 2 there is a vertex v(q)
that can only be assigned to its corresponding labels (¢(q, a)).

e For each random string r, let ¢, ¢» be the queries sent to the two
provers under r. There is an edge between v(q;) and v(qs).

Note that every assignment of the vertices to the labels defines a
strategy for the provers and vice versa.
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Properties

e If pis a YES-instance:

— d strategy of provers s.t. their answers are always consistent.
— Strategy defines an assignment of vertices to labels of cost |R|.

e If pis a NO-instance:

— Assignment of labels to vertices defines a strategy for the provers.
— Acceptance probability of this strategy is at most 2= °).

— Hence, almost all the edges in the graph pay (at least) 3.

— The solution cost is arbitrarily close to 3|R).
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Extending to +/log n-Hardness

Difficulty:
e Suppose queries ¢; and ¢, are sent to the two provers.

e If their answers a;,a5 are inconsistent, then there is a path of length
(precisely) 3 in the label graph between the labels ¢(q;,a;) and

E(QQJ a2)-

e This is true even if the answers are inconsistent in many coordinates.

Goal: If the answers are inconsistent in many coordinates, the length of
the path between them should also be large.
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2-prover protocol

(Raz verifier)

Plan

[ GAP 3SAT(5) J

¢

k—prover protocol

{ (0, o0)-extension J
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A New k-Prover System

For each pair of provers (i,7), 1 <i < j <k:

e The verifier chooses randomly and independently clause C;; and one
of its variables z;;.

e Prover i receives clause C;; and answers with an assignment to its
variables satisfying the clause.

e Prover j receives x;; and answers with an assignment to It.

e Every other prover a # 1, j receives both C;; and z;; and answers
with an assignment to the variables of C;; satisfying the clause.
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A Query

Each query has (}) coordinates.

Coordinate (a,b) (for a < b) of the query for prover i:

e If 7 = a, it contains (',
o If7 = b, It contains x4

e If a,b # 4, it contains both C';, and z
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Example: Queries ina 3-Prover Protocol

(1,2) (1, 3) (2,3)
P C12 Ci3 Ca3,%23
Py 21,2 C1,3,71,3 Ca 3
P3| C12,712 21,3 T2 3
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The k-Prover System: Properties

Definition:
o Let A;, A; be the answers of provers i, j to their queries.

e The answers are weakly consistent if their (¢, ) coordinates match.

e They are strongly consistent if all their coordinates match.

Theorem: If ¢ Is a YES-instance, then there is some strategy of the
provers, such that their answers are always strongly consistent.

Theorem: |If ¢ is a NO-instance, then for every pair of provers, the
probability that their answers are weakly consistent is at most (1 — ).
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The Reduction - an Overview

Given a 3SAT(5) formula ¢ on n variables, we use the k-prover system
to produce an instance of (0, co)-extension, such that:

e If ¢ is a YES-instance, there is a solution of cost £|R|.

o If pis a NO-instance, the cost of any solution is at least |7'| > (5)£|R|)

e Thus, the gap between YES and NO instances is (k).
e The instance size is N = nOK"),

= Choosing k£ = poly(logn), no 1og%‘5N approximation exists unless
NP C DTIME(nPoY1oe ™) (for any constant §).
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The Construction: Label Metric

There are two types of labels:

e Query Label /(P;, q;, A;):

— For each prover P,
— For each query ¢; to prover P;,
— For each possible answer A; to g;.

e Constraint Label ¢(r, Ay, ..., Ay):

— For each random string r,
— For each k-tuple A4, ..., A, of strongly consistent answers of the
provers to the queries implied by r.
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Label Metric: Edges

Let » be a random string, ¢1, ..., ¢. be the corresponding queries, and
let A,..., A, be a k-tuple of strongly consistent assignments. For each
i, there is an edge of length % between /(r, Ay, ..., Ag) and 0(P;, q;, A;).

E(P27Q27A2)
6(33;@37143)

(P, i, Ag)
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The Graph: Vertices

e Query Vertices: For each prover P;, for each query ¢; to P;, there is a
vertex v(FP;, q;), which can only be assigned to labels corresponding
to the same query of the same prover (i.e., /(F;, q;, A).)

Note that the assignments of all the query vertices to the labels define
a strategy of the k provers.

e Constraint Vertices: For each random string r, there is a vertex v(r),
which can be only assigned to the labels corresponding to » (i.e.,
O(r, Ay, ..., Ag)).

Note that the assignment of v(r) defines the answers of the provers
when the random string is r.
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The Graph: Edges

Let ¢1,...,q. be the queries corresponding to random string ». Then,
for each i, there is an edge between v(r) and v(FP;, q;).
’U(ng Q’Q)
’U(PlaQI) U(P?)vq?))

U(Pka Qk)
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YES Instance

e There exists an accepting strategy of the provers.
e Queries ¢4, ..., q: correspond to random string r.

e Ay,..., A are the answers to the queries.

v(FP2, q2(r))

v(Pr,q1(r))
v(Ps, q3(r))

v(Py, qx(r)) E(Pr,yqn(r), fqr(r)))

Therefore, the solution cost is £|R).
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NO Instance

Assignments of the query vertices define a strategy for the provers.

Let T" be the set of “inconsistent” triples (r, 4, j) (i < j), S.t. for random
string r, the answers of provers ¢ and j are not weakly consistent.

T| > (5)%|R|. (Recall that the probability that a pair is weakly
consistent is at most (1 — %)).

We can show that the solution cost is at least |T
QA(k) between YES and NO instances.

, yielding a gap of

Since the construction size is N = n®**), choosing k = poly(log n),

16 ' : ' oly log n
no log2™° N approximation exists unless NP C DTIME(nP°Y'°e™) (for
any constant 9).
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Open Questions

e There is still a gap between the logarithmic upper bound and the
lower bound of log!/27° n on the approximability of metric labeling.
Can this gap be closed?

e Can we prove better (non-constant?) Ilower bounds on the
approximability of 0-Extension?

e Or, can we obtain better approximation factors?
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