Metric Labeling: Upper and Lower Bounds

Seffi Naor

COMPUTER SCIENCE DEPT. TECHNION HAIFA, ISRAEL

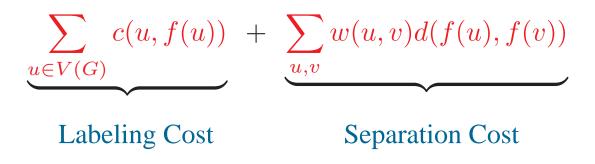
Based on Joint Work with:

CHANDRA CHEKURI, JULIA CHUZHOY, SANJEEV KHANNA, ROY SCHWARTZ, AND LEONID ZOSIN.

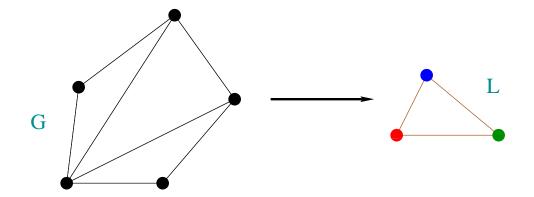
Metric Labeling: The Problem

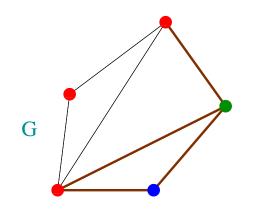
• Input:

- Undirected graph G with edge weights w(u, v).
- A set L of k labels equipped with a metric d.
- Cost function $c: V(G) \times L \to \mathcal{R}$.
- **Goal:** An assignment $f: V(G) \to L$ (or a labeling of V(G)).
- Objective Function: minimize



Example





2

Combinatorial Optimization: Related Problems

• Multiway Cut:

- Set of terminals t_1, \ldots, t_k .
- Find minimum cut separating the terminals.
- Special case of ML: uniform metric and no assignment cost.

• 0-Extension:

- Same as multiway cut except that metric is arbitrary: penalty of cut edge depends on terminals that endpoints belong to.
- Special case of ML.
- **Quadratic Assignment:** dropping the bijective property in QA yields metric labeling.

Motivation

- Clean and general abstraction of classification problems [Kleinberg and Tardos, 1999].
- Links to Markov random fields and their applications.
- Specific applications to image processing and analysis.
- Generalization of well known optimization problems.

Do assignment costs matter?

The $(0,\infty)$ -Extension Problem:

 $c(u,i) \in \{0,\infty\}$ for all $u \in V(G), 1 \le i \le k$.

- Approximation preserving reduction from metric labeling with arbitrary assignment costs to $(0, \infty)$ -extension.
- Reduction preserves label set, but changes graph (in a simple way).

Theorem. [Chuzhoy 2001] If there is a f(n, k)-approximation algorithm for $(0, \infty)$ -extension, then there is a f(n+nk, k)-approximation algorithm for general metric labeling.

Relaxation: Embedding in a Simplex

[Chekuri, Khanna, N., Zosin, 2001]

• For each $v \in V$: $v \mapsto (x(v, 1), x(v, 2), \dots x(v, k))$, where

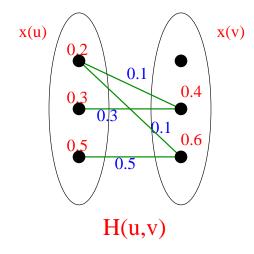
$$\sum_{i=1}^k x(v,i) = 1$$

Vertex v is mapped into a probability distribution over the label set.

• Distance between u and v defined by Earthmover Metric solution to a transportation problem between $(u, 1), \ldots, (u, k)$ and $(v, 1), \ldots, (v, k)$ with respect to label metric d.

$$d_{EM}(u,v) = \sum_{i,j} d(i,j) \cdot x(u,i,v,j)$$

 $\boldsymbol{x}(\boldsymbol{u},\boldsymbol{i},\boldsymbol{v},\boldsymbol{j})$ - flow on edge $((\boldsymbol{u},\boldsymbol{i}),(\boldsymbol{v},\boldsymbol{j}))$



Linear Program: Computing the Embedding

- Result: Embedding in a simplex where distances are defined by an earthmover metric (and not ℓ₁).
- Objective Function: Minimize

$$\underbrace{\sum_{u \in V} \sum_{i=1}^{k} c(u,i) \cdot x(u,i)}_{u \in V} + \underbrace{\sum_{(u,v) \in E} w(u,v) \sum_{1 \leq i,j \leq k} d(i,j) \cdot x(u,i,v,j)}_{1 \leq i,j \leq k}$$

labeling cost

separation cost

Constraints

$$\sum_{i=1}^{k} x(u,i) = 1 \quad \forall \ u \in V$$

$$\sum_{j=1}^{k} x(u,i,v,j) - x(u,i) = 0 \quad \forall \ u,v \in V, i \in 1,\dots,k$$

$$x(u,i,v,j) - x(v,j,u,i) = 0 \quad \forall \ u,v \in V, i,j \in 1,\dots,k$$

$$x(u,i), x(u,i,v,j) \geq 0$$

Uniform Metric

- For any $i \neq j$, d(i, j) = 1.
- What does the earthmover solution look like? for edge (u, v):

 $x(u, i, v, i) = \min\{x(u, i), x(v, i)\}$

• Thus,

$$d_{EM}(u,v) = \sum_{i,j} d(i,j)x(u,i,v,j) \ge \frac{1}{2} \cdot \sum_{i=1}^{k} |x(u,i) - x(v,i)|$$

Uniform Metric: Rounding Algorithm

Rounding an LP solution. [Kleinberg and Tardos, 1999].

Idea: Random choices should be correlated.

Algorithm: repeat until all vertices are labeled.

- 1. pick *i* at random from $\{1, 2, \ldots, k\}$.
- 2. pick θ at random from the interval [0, 1].
- 3. label an unlabeled vertex u with i iff $\theta \leq x(u, i)$.

Uniform Metric: Integrality Gap

Observation: Probability of assigning *i* to *u* is exactly x(u, i).

Lemma: Probability that u and v get different labels is at most

$$\sum_{i=1}^{k} |x(u,i) - x(v,i)|$$

Recall: $d_{EM}(u,v) \ge \frac{1}{2} \cdot \sum_{i=1}^{k} |x(u,i) - x(v,i)|$

Theorem: For a uniform metric, integrality gap ≤ 2 .

Open Question: Can the 2-approximation be improved?

General Metrics

- Solve the simplex embedding LP.
- Approximate the fractional solution to the LP by a deterministic HST metric losing a factor of $O(\log k)$.
- The integrality gap on an HST tree is O(1).
- Yielding an $O(\log k)$ -approximation for general metrics [Kleinberg and Tardos, 1999].

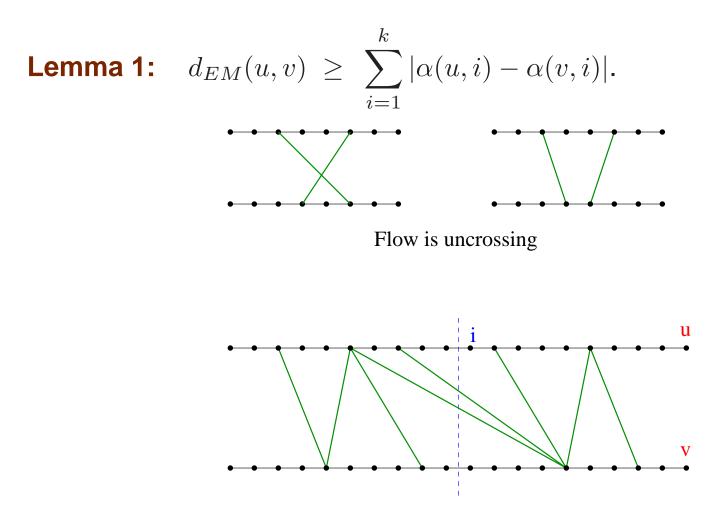
Linear Metric

Rounding of LP solution:

• Assume w.l.o.g. labels are integers $1, 2, \ldots, k$.

• For each vertex
$$u$$
, define $\alpha(u, i) = \sum_{j=1}^{i} x(u, j)$.

- Pick θ uniformly at random from [0, 1].
- $L(u) = i \text{ iff } \alpha(u, i-1) < \theta \le \alpha(u, i).$
- All vertices get a label since $\alpha(u, k) = 1$.



Flow crossing *i* is exactly $|\alpha(u, i) - \alpha(v, i)|$.

15

Analysis

Lemma 1:
$$d_{EM}(u, v) \ge \sum_{i=1}^{k} |\alpha(u, i) - \alpha(v, i)|.$$

Lemma 2:
$$\mathbf{E}[d((L(u), L(v))] = \sum_{i=1}^{k} |\alpha(u, i) - \alpha(v, i)|.$$

Theorem: The integrality gap of the LP for the line metric is 1.

Convex functions on the line

- d(i,j) = f(|i-j|) where f is convex and increasing.
- d is a metric iff f is *linear*.
- The linear programming formulation is useful for convex f.
- Integrality gap is 1 since flow is uncrossing.

Truncated Linear Metric

- $d(i,j) = \min\{M, |i-j|\}.$
- Applications to image processing.
- Generalizes uniform and linear metrics and is NP-hard.
- $2 + \sqrt{2} \simeq 3.414$ -approximation by generalizing the linear algorithm. [Chekuri, Khanna, N., Zosin, 2001]
- **Open Question**: Improve the approximation factor.

Truncated Quadratic Distance

- $d(i, j) = \min\{(i j)^2, M\}$. Not a metric!
- Useful function for vision applications.
- $O(\sqrt{M})$ -approximation easy.
- Open Questions:
 - NP-hard?
 - LP gap?
 - O(1) approximation?

0-Extension Problem

• Input:

- Graph G with edge weights w(u, v).
- $T \subset V(G)$ Set of k terminals.
- -d Metric on T.
- **Solution**: Partitioning of the graph, s.t. each terminal is in a different connected component.
 - -t(v) terminal in connected component of v.

• **Objective**: minimize $\sum w(u,v) \cdot d(t(u),t(v)).$ $(u,v) \in E(G)$

0-Extension Problem: Open Questions

- Is 0-extension easier than $(0,\infty)$ -extension?
- I.e., if each non-terminal vertex can be labeled for free, does that make the metric labeling problem easier?
- Best approximation factor known: $O\left(\frac{\log k}{\log \log k}\right)$ [FHRT] for general metrics (improving a previous factor of $O(\log k)$ [CKR]).

Balanced Metric Labeling

- Input: Metric labeling instance.
- Additional constraint:

Each label can be assigned to at most ℓ vertices.

[N., Schwartz, STOC 2005]

Motivation

- Minimum weight *k*-way balanced partitioning:
 - Each part contains at most 2n/k vertices.
 - Minimizing weight of edge cuts.
- Special case of balanced metric labeling:
 - Label is equivalent to a Part.
 - $\ \ell \leq 2n/k.$
 - Uniform metric.

Motivation (contd.)

- What if each vertex can only be labeled by a subset of the labels?
 - The balanced $\{0,\infty\}$ -extension problem.
- Application: Clustering Base Transceiver Stations in GSM networks:
 - Weighted graph on the BTS-s: traffic \mapsto edge weight.
 - Each cluster is controlled by a Base Station Controller (= label).
 - Base Station Controller have bounded capacity.
 - Each BTS can only be assigned to a subset of the BSC-s.
- Graph arrangement problems:
 - E.g., linear-arrangement: linear metric and capacity = 1.

Balanced Uniform Metric Labeling - Difficulties

- Bounding the number of vertices assigned to each label?
 - Not obvious in the methods developed for uncapacitated uniform metric labeling, e.g., the Kleinberg-Tardos algorithm.
- Incorporating label assignment costs?
 - Not obvious in the techniques developed for approximating graph partitioning problems ([LR], [ENRS], and [ARV]).
 - For example, there may not always exist a label that can be assigned to all vertices in a single cluster of the partition.

Spreading Constraints

- Very useful for approximating graph partitioning problems.
- Example: $\forall S \subseteq V, \forall u \in S$: $\sum_{v \in S} d(u, v) \ge |S| \ell$.
- For large subsets *S*, there is a radius guarantee:

$$\exists v \in S : \ d(u,v) \ge 1 - \frac{\ell}{|S|}$$

• Radius guarantee \Rightarrow Ball growing techniques can be applied.

The Relaxation

- Embedding in a *k*-dimensional simplex.
- Spreading constraints.
- Capacity constraints:

$$\forall \text{ label } j: \qquad \sum_{v \in V} x(v, j) \le \ell$$

• Closeness constraints.

The Relaxation: Closeness Constraints

- Closeness of u and v wrt label j: $c_j(u, v) \le x(u, j), x(v, j)$.
- Variation distance: $\forall u, v$,

$$d(u,v) = 1 - \sum_{j \in L} c_j(u,v)$$

• Triangle inequality: $\forall u, v, w \in V$,

$$\sum_{j} \left| c_j(u,v) - c_j(u,w) \right| \le 1 - \sum_{j} c_j(v,w)$$

The Approximation Algorithm

- Overview: A combination of randomized metric decomposition and label assignment techniques.
- Initial Labeling: Each vertex v is assigned a root labeling, $f^*: V \to L$, satisfying:

$$\mathbb{P}\mathbf{r}[f^*(v) = j] = x(v, j) \quad , \quad \forall v \in V, \forall \text{ label } j.$$

• Iteratively: Each vertex, in its turn, is a root and labels a subset of the unlabeled vertices.

Radius and Label Tests

- Current root: Vertex u.
- Radius test:
 - Choose radius R from the distribution:

$$f_R(r) = \left(\frac{n}{n-1}\right) \cdot \frac{1+\varepsilon}{\varepsilon} \cdot \ln n \cdot n^{-r \cdot \frac{1+\varepsilon}{\varepsilon}}, \ r \in \left[0, \frac{\varepsilon}{1+\varepsilon}\right]$$

- Define a ball of radius R, with respect to metric d, around root vertex u:

 $\{x \mid d(u, x) \le R\}$

Radius and Label Tests (contd.)

• Label Test:

- Choose uniformly in random $\alpha \in [0, x(u, f^*(u))]$.
- Define vertices close to the root u with respect to root label $f^*(u)$:

$$\left\{ x \mid c_{f^*(u)}(u, x) \ge \alpha \right\}$$

• Labeling: All unlabeled vertices that pass both radius and label tests receive label $f^*(u)$.

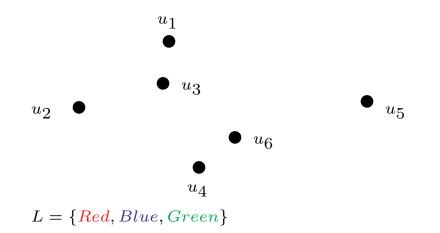
Approximation Algorithm: Summary

- For each $u \in V$, iteratively:
 - Apply radius and label test.
- Output labeling.

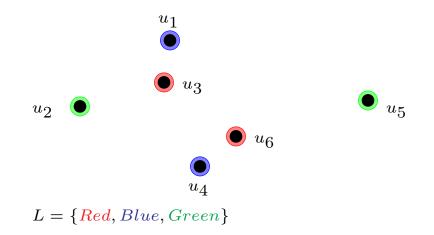
Theorem: Upon termination, all vertices are labeled.

Proof: Each vertex passes the radius and label tests when it becomes the root vertex.

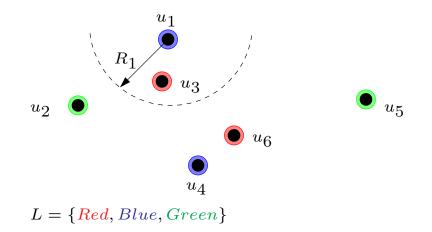
The Approximation Algorithm - Example

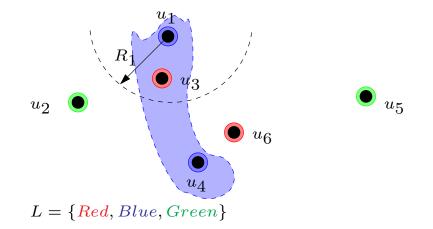


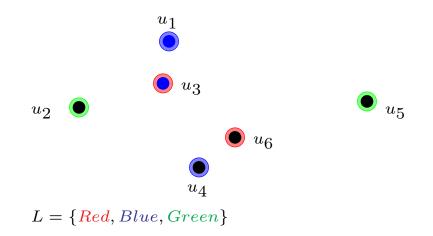
The Approximation Algorithm - Example

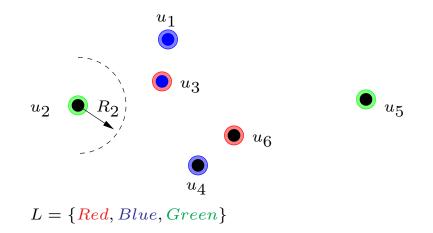


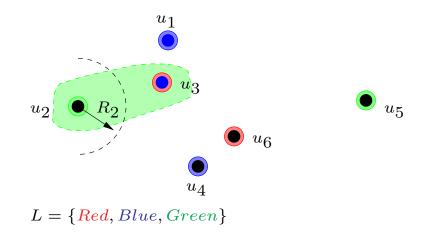
The Approximation Algorithm - Example

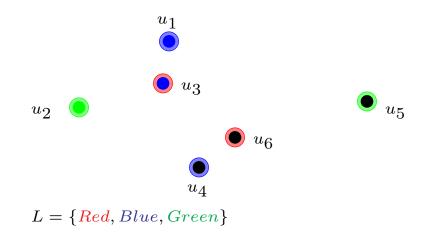


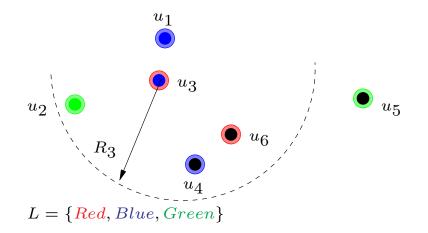


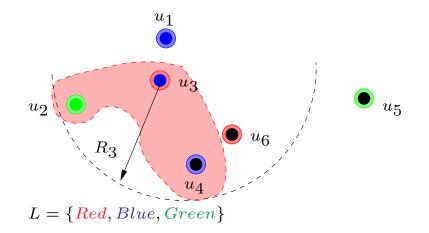


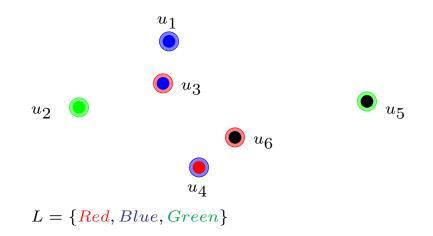


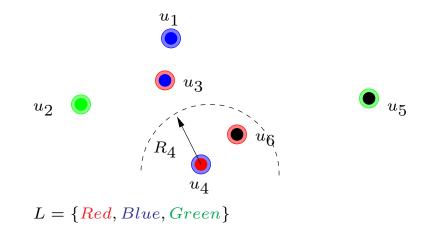


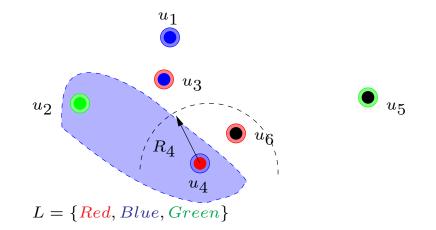


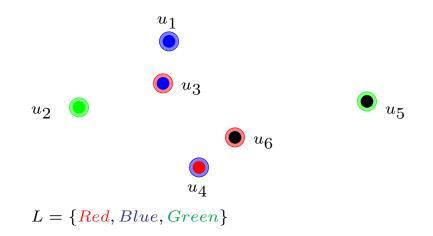


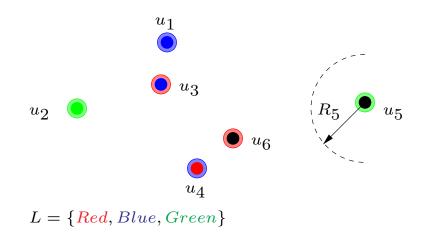


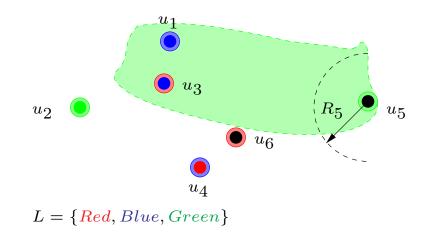


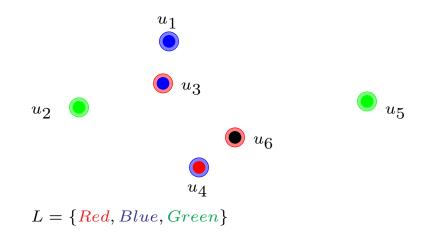


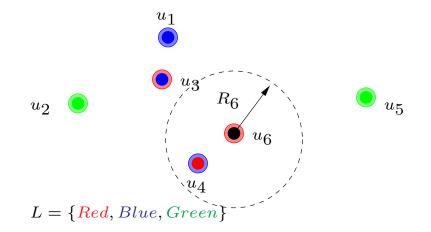


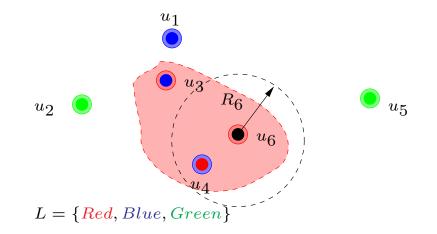


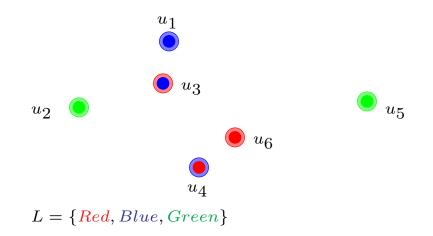


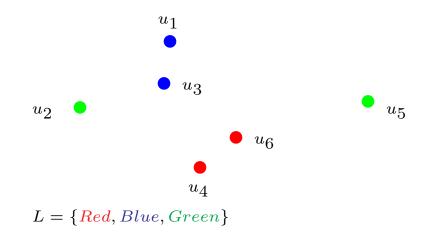












Analysis

• Difficulty:

- Capacity: Easy to bound the number of vertices assigned to a label with independent random labels.
- Vertex separation costs: If the labels chosen for the vertices are dependent [KT], cost of vertex separation is bounded.

Analysis (contd.)

- Main Ingredient: The algorithm balances the dependencies between the labels assigned to the vertices.
 - Label of a vertex depends on only a limited number of other labels:
 Labels of vertices that are far from each other are independent.
 - Spreading constraints: not too many vertices are close.
 - Number of vertices assigned to each label is bounded via a new inequality of Janson for tail bounds of (partly) dependent random variables.
 - Separation cost is bounded.

Approximation Factor

- Bicriteria approximation factor: For any $0 < \varepsilon < 1$,
 - $O\left(\frac{\ln n}{\varepsilon}\right)$ -approximation to the solution cost.

-
$$\min\left\{\frac{O(\ln k)}{1-\varepsilon}, \ell+1\right\} (1+\varepsilon) \ell$$
 vertices are assigned to each label.

- For $\ell = O(1)$ or k = O(1), capacity is violated by a constant multiplicative deviation.
- Compare with balanced *k*-way partitioning:

Either $(O(\log n), \text{const})$, [ENRS] or $(O(\sqrt{\log n} \log k), \text{const})$ [ARV].

Open Questions

- Can we improve the approximation factor?
- Can we obtain the same biciriteria factor $(\log n, \text{constant})$ known for balanced partitioning?

Hardness of Metric Labeling

- Back to uncapacitated metric labeling [Chuzhoy, N., FOCS 2004]:
- There is no constant approximation for Metric Labeling unless P=NP.
- No $\log^{\frac{1}{2}-\delta} n$ -approximation exists unless NP \subseteq DTIME $(n^{\text{poly} \log n})$ (for any constant δ).
- Hardness is proved for $(0,\infty)$ -extension.

Gap 3SAT(5)

Input: A 3SAT(5) formula φ on *n* variables.

- φ is a YES-instance if it is satisfiable.
- φ is a NO-instance (with respect to some ε) if at most a $(1-\varepsilon)$ -fraction of the clauses are simultaneously satisfiable.

Theorem: [ALMSS'92] There is some $0 < \varepsilon < 1$, such that it is NP-hard to distinguish between YES and NO instances.

A 2-prover Protocol for 3SAT(5) Formula φ

- Verifier: randomly chooses clause C and one of its variables x.
- Prover 1: receives the clause *C* and answers with an assignment to the variables of *C* that satisfy it.
- Prover 2: receives variable x and answers with an assignment to x.
- Verifier: checks that the two assignments match.

Theorem:

- If φ is a YES-instance: there is a strategy of the provers such that the verifier always accepts.
- If φ is a NO-instance: for any strategy, the acceptance probability is at most $\left(1 \frac{\varepsilon}{3}\right)$.

The Raz Verifier

- Performs ℓ parallel repetitions of the 2-Prover Protocol.
- A query to prover 1 is an *l*-tuple of clauses and a query to prover 2 is an *l*-tuple of variables.
- If φ is a YES-instance: then there is a strategy of the two provers that makes the verifier always accept.
- If φ is a NO-instance: then for any strategy of the two provers the acceptance probability is at most $2^{-O(\ell)}$.

A Simple $(3 - \varepsilon)$ -Hardness

- Start from a 3SAT(5) formula φ .
- Use the Raz verifier with ℓ repetitions (ℓ is a large constant) to produce a $(0, \infty)$ -extension instance:
 - If φ is a YES-instance, then there is a solution of cost |R|.
 - If φ is a NO-instance, then the cost of any solution is at least $(3 \delta)|R|$.

A $(3 - \varepsilon)$ -Hardness: Label Set

• \forall query-answer pair (q, a) of each prover, there is a label $\ell(q, a)$.

• Given:

- random string r.
- queries q_1 , q_2 sent to the provers under r.
- a_1 and a_2 is a pair of consistent answers to q_1 and q_2 .

 \implies There is an edge of length 1 between (q_1, a_1) and (q_2, a_2) .

- Label distances are defined by shortest paths in the label graph.
- Label graph is bipartite: Part \Leftrightarrow Prover. Distances: either 1, or ≥ 3 .

A $(3 - \varepsilon)$ -Hardness: the Graph

- For each possible query q to provers 1 and 2 there is a vertex v(q) that can only be assigned to its corresponding labels $(\ell(q, a))$.
- For each random string r, let q_1 , q_2 be the queries sent to the two provers under r. There is an edge between $v(q_1)$ and $v(q_2)$.

Note that every assignment of the vertices to the labels defines a strategy for the provers and vice versa.

Properties

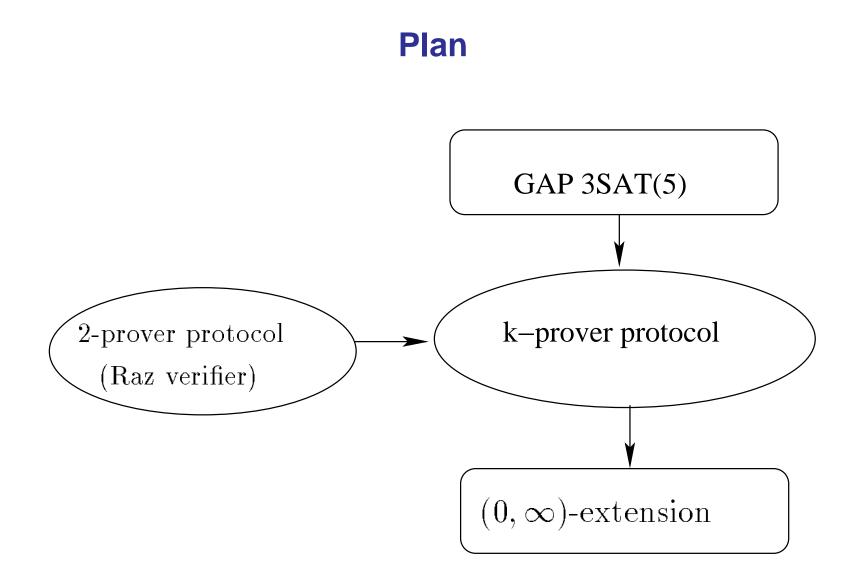
- If φ is a YES-instance:
 - \exists strategy of provers s.t. their answers are always consistent.
 - Strategy defines an assignment of vertices to labels of cost |R|.
- If φ is a NO-instance:
 - Assignment of labels to vertices defines a strategy for the provers.
 - Acceptance probability of this strategy is at most $2^{-O(\ell)}$.
 - Hence, almost all the edges in the graph pay (at least) 3.
 - The solution cost is arbitrarily close to 3|R|.

Extending to $\sqrt{\log n}$ -Hardness

Difficulty:

- Suppose queries q_1 and q_2 are sent to the two provers.
- If their answers a_1,a_2 are inconsistent, then there is a path of length (precisely) 3 in the label graph between the labels $\ell(q_1,a_1)$ and $\ell(q_2,a_2)$.
- This is true even if the answers are inconsistent in many coordinates.

Goal: If the answers are inconsistent in many coordinates, the length of the path between them should also be large.



A New *k*-Prover System

For each pair of provers (i, j), $1 \le i < j \le k$:

- The verifier chooses randomly and independently clause C_{ij} and one of its variables x_{ij} .
- Prover *i* receives clause C_{ij} and answers with an assignment to its variables satisfying the clause.
- Prover *j* receives x_{ij} and answers with an assignment to it.
- Every other prover $a \neq i, j$ receives both C_{ij} and x_{ij} and answers with an assignment to the variables of C_{ij} satisfying the clause.

A Query

Each query has $\binom{k}{2}$ coordinates.

Coordinate (a, b) (for a < b) of the query for prover *i*:

- If i = a, it contains C_{ab}
- If i = b, it contains x_{ab}
- If $a, b \neq i$, it contains both C_{ab} and x_{ab}

Example: Queries in a 3-Prover Protocol

	(1, 2)	(1, 3)	(2, 3)
P_1	$C_{1,2}$	$C_{1,3}$	$C_{2,3}, x_{2,3}$
P_2	$x_{1,2}$	$C_{1,3}, x_{1,3}$	$C_{2,3}$
P_3	$C_{1,2}, x_{1,2}$	$x_{1,3}$	$x_{2,3}$

The *k***-Prover System: Properties**

Definition:

- Let A_i , A_j be the answers of provers *i*, *j* to their queries.
- The answers are weakly consistent if their (i, j) coordinates match.
- They are strongly consistent if all their coordinates match.

Theorem: If φ is a YES-instance, then there is some strategy of the provers, such that their answers are always strongly consistent.

Theorem: If φ is a NO-instance, then for every pair of provers, the probability that their answers are weakly consistent is at most $(1 - \frac{\varepsilon}{3})$.

The Reduction - an Overview

Given a 3SAT(5) formula φ on *n* variables, we use the *k*-prover system to produce an instance of $(0, \infty)$ -extension, such that:

- If φ is a YES-instance, there is a solution of cost $\frac{k}{2}|R|$.
- If φ is a NO-instance, the cost of any solution is at least $|T| \ge {k \choose 2} \frac{\varepsilon}{3} |R|$
- Thus, the gap between YES and NO instances is $\Omega(k)$.
- The instance size is $N = n^{O(k^2)}$.

⇒ Choosing $k = \text{poly}(\log n)$, no $\log^{\frac{1}{2}-\delta} N$ approximation exists unless NP $\subseteq \text{DTIME}(n^{\text{poly}\log n})$ (for any constant δ).

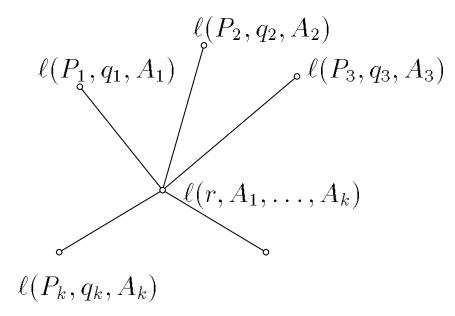
The Construction: Label Metric

There are two types of labels:

- Query Label $\ell(P_i, q_i, A_i)$:
 - For each prover P_i ,
 - For each query q_i to prover P_i ,
 - For each possible answer A_i to q_i .
- Constraint Label $\ell(r, A_1, \ldots, A_k)$:
 - For each random string r,
 - For each *k*-tuple A_1, \ldots, A_k of strongly consistent answers of the provers to the queries implied by *r*.

Label Metric: Edges

Let *r* be a random string, q_1, \ldots, q_k be the corresponding queries, and let A_1, \ldots, A_k be a *k*-tuple of strongly consistent assignments. For each *i*, there is an edge of length $\frac{1}{2}$ between $\ell(r, A_1, \ldots, A_k)$ and $\ell(P_i, q_i, A_i)$.



The Graph: Vertices

• Query Vertices: For each prover P_i , for each query q_i to P_i , there is a vertex $v(P_i, q_i)$, which can only be assigned to labels corresponding to the same query of the same prover (i.e., $\ell(P_i, q_i, A)$.)

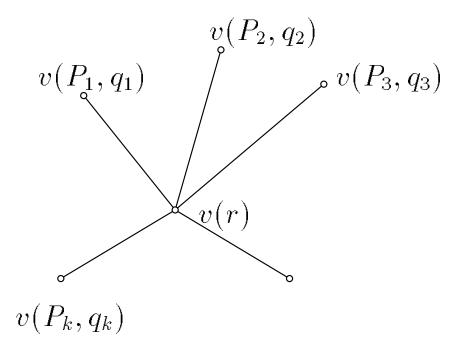
Note that the assignments of all the query vertices to the labels define a strategy of the k provers.

• Constraint Vertices: For each random string r, there is a vertex v(r), which can be only assigned to the labels corresponding to r (i.e., $\ell(r, A_1, \ldots, A_k)$).

Note that the assignment of v(r) defines the answers of the provers when the random string is r.

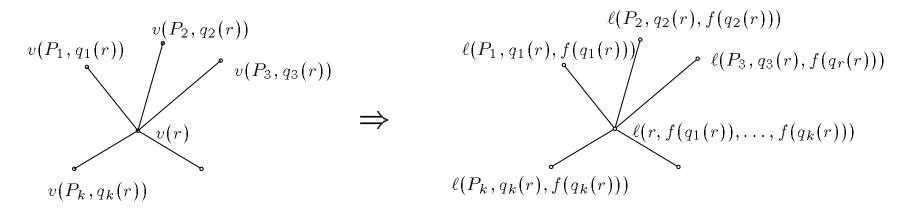
The Graph: Edges

Let q_1, \ldots, q_k be the queries corresponding to random string r. Then, for each i, there is an edge between v(r) and $v(P_i, q_i)$.



YES Instance

- There exists an accepting strategy of the provers.
- Queries q_1, \ldots, q_k correspond to random string r.
- A_1, \ldots, A_k are the answers to the queries.



Therefore, the solution cost is $\frac{k}{2}|R|$.

NO Instance

- Assignments of the query vertices define a strategy for the provers.
- Let T be the set of "inconsistent" triples (r, i, j) (i < j), s.t. for random string r, the answers of provers i and j are not weakly consistent.
- $|T| \ge {\binom{k}{2}\frac{\varepsilon}{3}|R|}$. (Recall that the probability that a pair is weakly consistent is at most $(1 \frac{\varepsilon}{3})$).
- We can show that the solution cost is at least |T|, yielding a gap of $\Omega(k)$ between YES and NO instances.
- Since the construction size is $N = n^{O(k^2)}$, choosing $k = \text{poly}(\log n)$, no $\log^{\frac{1}{2}-\delta} N$ approximation exists unless NP $\subseteq \text{DTIME}(n^{\text{poly}\log n})$ (for any constant δ).

Open Questions

- There is still a gap between the logarithmic upper bound and the lower bound of $\log^{1/2-\delta} n$ on the approximability of metric labeling. Can this gap be closed?
- Can we prove better (non-constant?) lower bounds on the approximability of 0-Extension?
- Or, can we obtain better approximation factors?