March 3, 2005

' Statistical-Mechanical
proach to Probabilistic
nformation Pmmsslng

Some Heuristic Analysis of
Average Behavior of Local Search Algorithms

Osamu Watanabe
Dept. of Math. & Comp. Sci., Tokyo Institute of Technology
http://www.is.titech.ac.jp/ watanabe/smapip/

Abstract
We propose some Heuristic Approach for analyzing average performance of local search algorithms.
As an example, we consider some satisfiability problems and invesitgate local search algorithms for

them.

~ Sorry! ~
e No theorem
— Some proposal
Small observations
e No animation

e No color

N J

1. Motivation: Experiments —- 7 —> Rigorous Analyses

Facts
e Some problems, though they are believed hard in the worst case, are solvable “efficiently” on
average by relatively simple algorithms.
e Most of the positive results are given by computer experiments.

Why Analysis? Computer experiments are not enough!?
e More efficient than running the algorithm for many times.
e For better understanding of the feature/principle of the algorithm, which may leads us to im-
provements/applications to other problems.

But rigorous analysis is difficult!!

C What shall we do!?)

s Our Strategy ~
1. bra bra bra
ANALYSYS — 2. are kore
3. nan ya kan ya
1)
need experiments on some step
N J

Remarks.

e There are some strong mathematical techniques developed in different fields of mathematical
sciences, e.g., statistical physics, which have been also applied for analyzing average case perfor-
mance of such algorithms.
= But these approaches are not perfect:

e.g., analysis for n — oo or t — oo may not be sufficient.

e Some rigorous analyses have been reported also in computer science.
= But there are still some limitations:

e.g., applicable to a certain class of algorithms.

2. Our Approach for Analyzing Local Search Algorithms

Motivation:
e Many contraint satisfaction problems can be solved to some extent by local search algorithms on
average.
e Local search algorithm is not unique! There are many variations.

Our Approach [Watanabe-etal, SAGA’03]:
0. Modify an algorithm to a randomized one.
1. Define a relatively simple Markov process that simulates (reasonably well) the execution of
the algorithm.
2. Approximate average states of this process by a relatively simple formula.

Remarks.
0. < This may lose some efficiency, but it reduces dependency to paricular inputs.
1. < This may be hard to justify.
2. < We have some justification for this approximation.

3. First Example

Problem: 3-®-SAT (Parity SAT)

Closest Solution Search for 3-@-SAT

Input: (1) 3-@-SAT formula F over variables x, ..., zp.
(2) Assignment a.

Output: A sat. assignment that is closest to a.

3-@-SAT formula = a conjunction of parity clauses
F = (—|.’E3—|—$7—|—$2)/\($1 —|——‘5612—|——|:L‘61)/\"'

Average Case Senario: Random Positive (3,6)-®-SAT Formulas
(1) Every variable appears 6 times in F’; hence, # of clauses = 2n.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.
(3) An initial assignment a is chosen uniformly at random from those with Hamming distance pn
from 0; that is, @ has pn 1’s.

Remarks.
e Essentially the same as the Decoding Problem for Linear Codes.
e A solution search for @-SAT is poly. time computable.

r3+r7+x2 =1, 11+ 212 +261 =0,

e The closest solution search is NP-hard.
... But a is regarded as a hint !?

Algorithm: Local Search Algorithm; Greedy (or Steepest Decending Method?)
Local Search Algorithm for (3,6)-®-SAT

program GreedyPSAT(F', a);
X1, ey Xp — @;
repeat the following MAXT steps
if I is satisfied with X then output the current assignment and halt;
flip the value of x; with the highest®) penalty:
program end.

(*) If there are several, choose one in some determinisitic way.

penalty of x; = # of unsatisfied clauses containing x;.

Remarks.
e Each x; appears 6 times. Thus, 0 < Penalty of x; < 6.
o Fix MAXT = 2pn, where Ham(a,0) = pn. Use n = 6000.

[This works quite well !!]

"psateG.2PN" using 12 ——

Fig 1. The success prob. vs. p
Recall p is the parameter for the init. Ham. distance Ham(a,0) = pn.

By using larger bounds, the success threshold gets increased; but not so much, and seems to have
some limit.

1

20000

"psal6G.2PN" using 1:2 ——
“psat6G.10K" using 1:2 -------
“psat6G.20K" using 1:2 -

"psal6G.20K" using 1:3)

18000 |-
o8 16000 -

14000 -
06
12000 1
10000
04
8000 [
6000 |

02+

4000

2000 T L L L L L
0.35 0.28 0.29 03 0.31 0.32 0.33 0.34 0.35

Fig 2. The success prob. vs. p Fig 3. average steps vs. p
MAXT = 2pn(~ 3600), 10000, and 20000

For Understanding the Success Threshold

How does the Ham. distance change on average?

2000

1800 N E
1600 | e N

.....................

1400 B |
=N, - |
1000 :
800 |- |
600 |

400 A

200 - A

0

L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000

Fig 4. Ham. distance vs. step t for some execution, p = 0.30 and p = 0.32

Technical Goal: State the following function (or its approximation) in a simple form.

errp(t) = the average Ham. distance from the solution after the ¢th step.

Our Approach

Step 0. Modify the algorithm to a randomized one.

program GreedyPSAT(F, a);
X1, ey Xp — @;
repeat the following MAXT steps
if I is satisfied with X then output the current assignment and halt;
flip the value of x; with the highest*) penalty;
program end.

4

program SoftGreedyPSAT(F, a);
X1, ey Xp — @;
repeat the following MAXT steps
if I is satisfied with X then output the current assignment and halt;
choose x; randomly according to their weights®*);
flip the value of x;;
program end.

How to Choose x; ?

W (penalty of x;)

Pr{x; is chosen] = total weithts

where W is set, e.g., as follows for n = 6000,

W(1) =1, W(2) =100, W(3)= 10000,

W(0) =0,
100000, W (5) = 500000, W (6) = 2500000.

W(4) =

Our Approach, Cont.
Step 1. Define a simple Markov process simulating the algorithm.

Remark.
The execution of the algorithm is indeed a Markov chain with the following state space:

{ Wi, wn) = y;€{0,1} 1« gkslgigsﬁgnoefnts to variables x;.

But this is too big!
| state space reduction
A simple Markov process

*** first idea ***

Use a tuple (n4 0, ..., "4 6,7— 0, ..., N4 6) of numbers such that
n4r = # of correctly assigned variables with penalty k.

Regard the execution of the algorithm as the change of this state by the following transition rule:

1. Choose sg € {+,—} and k, 1 < k < 6, with prob. P(sg, k), where

W(k‘) * Mg,k)
total weights /

P(sg, k) = W (k) - Nsgk < _

Z W(k) - (ngp +n_p)
=1

2. Update the current state by

Nsgk - MNsgk — 1
Nsg6—k — N—s9,6-k +1

3. Futher update the state for reflecting the staus change of related variables.

Remarks. n; = (ngo, ...,nSf?G,n(_t?O, ...,n(_t)ﬁ)

)

6
e The total number is Z ngg + n(_t?e =n (= 6000).
=0

6
. . t
e The Ham. distance is err,(t) = Z ng?e.
£=0
e An initial state ng = (n$7)0, ...) can be estimated by p.
But here we will use the values for some randomly generated instance.

Unfortunately, this state space is too simple.

1. Choose sg € {+,—} and k, 1 < k < 6, with prob. P(sg, k).
2. Update the current state by changing ny,x and neg 6.
=3. Futher update the state for reflecting the staus change of related variables.

unsat. sat.
in the execution: (# + ﬁi{ +) — (& + %7 + 1)

in the simulation: (@ 47? "F?E]) — (E +0 "’?E])

We need info. for co-existing variables in each of 6 clauses.

of variables assigned (in)correctly (+/—) (z,+,4) (z,+,+)

n . =
(1) that appears in 6 clauses assigned of pattern 4, (@, +,-) (z,+)
(.%', +, _) (l’,) _)
where i = 1 ~ 56 (effective ones are < 20). assignment pattern

Express the state of the execution by using these 112 = 2 x 56 numbers.

Then the simulation matches the execution quite well !

2000

T
P
1800 n\'*w‘.h
N RS
1600 |- o, e
S SN
e
1400 e NN
1200 R \\\
o,
1000
800
600
400
200
0 I I I I I - I
0 500 1000 1500 2000 2500 3000 3500 4000

Fig 5. Ham. distance vs. step ¢: simulation and execution, p = 0.30 and p = 0.32

[Assume that this simulation is accurate enough.]

Then the analysis becomes feasible.
Our Approach, Cont.

Step 2. Approximate this random process by a simple recurrence formula.
E[n:] ~ f'(no).
U
erry(t) = E[Yn®] ~ Sum_(f(no)) % approw-erry (1)
i
Then by analyzing approx-erry(t), we can observe that a gap exists when the execution reaches to a
stage where no variable with penalty > 4 exist.

Remarks.
e By make a flip on a penalty k£ variable, the total penalty gets decreased by k — 3.

2000 T T T T T T T

1600

1400 L \\,\ - \"*—;‘ e B
oo | .,-\:'- e ‘ 4
1000 | oo
800 -]
600 | \, |
400 | \ e 4

200 . 4

N\

1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Fig 6. (average) derivative at the beginning of stage 3

Is it Enough ?

The function f is “relatively” simple. But.
Currently, f is expressed as a program with several hundred lines!

Am I Happy ?

f is a formula on 40 variables :-(

Jasaxrssannnsrran/
/% Caliculation #/
JOT——

/% initialize var.s s/
for(pen = 0; pen <= Joz; pent+) vaunO[pen] = 0;
or <= 13
for(el = 0; el <= J
for(e2 = 0; e2 <= Jaz;
ventmp = ven[er] [e1] [e2
vealer] [e1] [e2] = vcnO[zr] [e1][e2];

vendiff [er] [e1] [e2] =

if(er == 0) pen = el;
else { pen - Jsz - el;
Taan0lpes] - vhumOlpen) + voatap:

erraom = erraum + ventap; }

for(er = 0; er (- res)
for(ep = 0; e)
cen[er] [ep] = ccno[n] Lepl;
for(pen = 0; pen <= Jaz; pen++) vnum[pen] = voum0 [pen]

7+ output 3/
prints ("voun

= 0; pen <= Juz; pant+) priutf ("id *, vauwdlpesl);
printt (" erramm

/% get the largest penalty +/

printf ("fpen = %d\n", fpen);
[+ chsages by flippisg +/
check =
errmuninc = errmundec = 0.0;
for(fer = 0; fer <= 1; fer+)
for(fel = 0; fel <= Jozi felt+) {
if(fer == 0) pen = fel
pen = Jsz - fel;

else
i (fpen == pen)
for(fe2 = 0; fe2 <= Jsz fel; fa2++) {
diff = v:nmx] [fel] [fe2] / voum[fpen]:

) errnuminc = errnumine + diff;

1) errauadec = errnumdec + diff;
endiff [fer] [fel] [fe2] -

vendif [fer] [fe1] [fe2]
vendie [1otor] [£e1] (za2] = vendife(i-for] [foi] [f=2] . d)ff

check = check + diff;

check Yf\a", check);
errnumdec = %f, errnumdiff = %f\n",

printe ("
Printt (rerrmumine = 42,
errmumine, errnumdec, errnuminc - errnumdec);

/+ changes at related variables */
check =
for(fer = 0 fer <= 1; fer+s)
for(fel - 0; fel <= Jaz; fel++) {
if (fer == 0) pen = fel;
else pen = Jsz - fel;

12 (fpen == pem) {
for(fe2 = 0; fe2 <= Jaz —fel; faQH) {
: e of error var.s »/
1i

delta = 1- i
“lphe - venltor] [reil [£e2] / vaunlepen

/% for fep = 2 case */

for(k_p = 0; k_p < fe2; k_p++) {
/% two ex = 1 cases #/

for(i = 0; i <= 1; i++) {

el <= Jsz; el++)
@2 <= Jsz - el; e2+) {

for(e2 = 0;
selecnter][eg] 1= 0.0
alpha » (float)el » ven[er] [e] [e2] / cenler]lepl;

s

diff = 0,0;
vendif# [er] [e1] [e2] = vendiff[er] [e1] [e2] - diff;
vondiff[er] [e1-1] [e2+1] = vondiff[er][e1-1] [e2+1] + diff;
check = check + diff:

b
else /v ep = 2 %/ {
for(el = 0; el <= Jsz - 1; el++)
for(e2 = 1; e2 <= J!z e2++) {
if (ccnex] [ep] 1= 0.0)
diff = alpra * (float)e2 * vealer] [e11(e2] / cealer]ep];
else
diff = 0.0;
wvendiff [er] [ll] [e2] = vendiff[er] [el] [e2] - diff;
232 [er] [e1+1] [e2-1] = vendi#s[er] [e1+1] [e2-1] + diff;

check = check + diff;

No !

4. Second Example
Problem: 3-SAT (CNF SAT)

Input: 3-CNF formula F over variables x1, ..., Ty.
Output: A sat. assignment.

Average Case Senario: Random Positive (3,d)-SAT Formulas
(1) Every variable appears d times in F'; hence, # of clauses = dn/3.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.

Algorithm: Local Search Algorithm; Random Walk (often called WALKSAT)

Local Search Algorithm for (3, d)-SAT

program RandomWalkSAT(F');
X1, ..., X, < randomly chosen a in {0,1}";
repeat the following MAXT steps
if I is satisfied with ¥ then output the current assignment and halt;
choose one unsat. clause and select one of the three variables in it;
make a flip on the selected variable;
program end.

program GreedySAT(F);
X1, ..., X, < randomly chosen a in {0,1}";
repeat the following MAXT steps
if I is satisfied with X then output the current assignment and halt;
choose one variable with the highest penalty;
make a flip on the selected variable;
program end.

10

C Why not Greedy ?)

Because it does not work.

Easy Answer:

Usually trapped by a local minimum.

No Problem !!

program SoftGreedySAT(F);
X1, ..., Xp < random a;
repeat the following MAXT steps
if I is satisfied with X then output the current assignment and halt;
choose x; randomly according to their weights;
flip the value of x;;
program end.

In fact, e.g., for (3,6)-SAT and n = 6000,
RandomWalkSAT « WI[0] =0, W[1] =1, ..., W[6] = 6.
0, W 1

SoftGreedySAT «— W]0] =0,

Second Answer:
Not so much difference.

6000 : : : : : —

ss0f
5000 - //"l
4500 |- I/'IY
/
4000

3500

3000 |/

2500 L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000

Fig 7. ng = # of penalty 0 var.s
SoftGreedy vs. RandomWalk

Remark.
Penalty 0 variables are those appearing only in sat. clauses.

11

For Understanding the Behavior

—> Simulation by a Simple Markov Process

A similar but slightly different set of parameters is used.

6000

5500

5000

4500

4000

3500

3000

L L L L L L
500 1000 1500 2000 2500 3000 3500 4000

2500
[

Fig 8. ng = # of penalty 0 var.s
Simulation vs. SoftGreedy

What does make this difference ?

Maybe the correlation between flipped variables.

| then
What if a flip is restricted only once ?

12

C It works !!)

6000

5500

5000

4500

4000

3500

3000

2500 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Fig 8. ng = # of penalty 0 var.s
Simulation, SoftGreedy (flip once), SoftGreedy, and RandomWalk

Remarks.
e Usually a solution cannot be obtaind under the flip-once restriction. But an assignment, after
running out all unflipped variables (with penalty > 0), gets close enough to some solution.
e We cannot always hope this nice property. This algorithmic trick works for d < 8.

6000 6000

5000 5000
4000

4000

3000 - 3000 [f7

2000 |- B 2000 [

1000 q 1000

L L L L L L L L
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Fig 9. (3,8)-SAT Fig 10. (3,9)-SAT

13

5. Concluding Remarks

1. An Heuristic Analysis (Real exec. — Simple process)
= Some reasoning for the success threshold
= An improvement of the algorithm

2. Some Observations (On Local Search Algorithms)

(1) Greedy is fast, but it needs to get a solution (or something very close to it) before running
out high penalty variables.

(2) There seems some other reasoning for RandomWalk.

14

