
March 3, 2005

Some Heuristic Analysis of
Average Behavior of Local Search Algorithms

Osamu Watanabe
Dept. of Math. & Comp. Sci., Tokyo Institute of Technology

http://www.is.titech.ac.jp/~watanabe/smapip/

Abstract
We propose some Heuristic Approach for analyzing average performance of local search algorithms.
As an example, we consider some satisfiability problems and invesitgate local search algorithms for
them.

Sorry!¶ ³

• No theorem
−→ Some proposal

Small observations
• No animation
• No color

µ ´

1

1. Motivation: Experiments =⇒ ? =⇒ Rigorous Analyses

Facts
• Some problems, though they are believed hard in the worst case, are solvable “efficiently” on

average by relatively simple algorithms.
• Most of the positive results are given by computer experiments.

Why Analysis? Computer experiments are not enough!?

• More efficient than running the algorithm for many times.
• For better understanding of the feature/principle of the algorithm, which may leads us to im-

provements/applications to other problems.

But rigorous analysis is difficult!!

¶ ³
What shall we do!?

µ ´

Our Strategy¶ ³

ANALYSYS ⇐=

1. bra bra bra
2. are kore
3. nan ya kan ya
⇑

need experiments on some step
µ ´

Remarks.
• There are some strong mathematical techniques developed in different fields of mathematical

sciences, e.g., statistical physics, which have been also applied for analyzing average case perfor-
mance of such algorithms.
⇒ But these approaches are not perfect:

e.g., analysis for n →∞ or t →∞ may not be sufficient.
• Some rigorous analyses have been reported also in computer science.
⇒ But there are still some limitations:

e.g., applicable to a certain class of algorithms.

2

2. Our Approach for Analyzing Local Search Algorithms

Motivation:
• Many contraint satisfaction problems can be solved to some extent by local search algorithms on

average.
• Local search algorithm is not unique! There are many variations.

Our Approach [Watanabe-etal, SAGA’03]:
0. Modify an algorithm to a randomized one.
1. Define a relatively simple Markov process that simulates (reasonably well) the execution of

the algorithm.
2. Approximate average states of this process by a relatively simple formula.

Remarks.
0. ⇐ This may lose some efficiency, but it reduces dependency to paricular inputs.
1. ⇐ This may be hard to justify.
2. ⇐ We have some justification for this approximation.

3. First Example

Problem: 3-⊕-SAT (Parity SAT)

Closest Solution Search for 3-⊕-SAT

Input: (1) 3-⊕-SAT formula F over variables x1, ..., xn.
(2) Assignment a.

Output: A sat. assignment that is closest to a.

3-⊕-SAT formula = a conjunction of parity clauses
F = (¬x3 + x7 + x2) ∧ (x1 + ¬x12 + ¬x61) ∧ · · ·

Average Case Senario: Random Positive (3, 6)-⊕-SAT Formulas
(1) Every variable appears 6 times in F ; hence, # of clauses = 2n.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.
(3) An initial assignment a is chosen uniformly at random from those with Hamming distance pn

from 0; that is, a has pn 1’s.

Remarks.
• Essentially the same as the Decoding Problem for Linear Codes.
• A solution search for ⊕-SAT is poly. time computable.

x3 + x7 + x2 = 1, x1 + x12 + x61 = 0, ...

• The closest solution search is NP-hard.
... But a is regarded as a hint !?

3

Algorithm: Local Search Algorithm; Greedy (or Steepest Decending Method?)

Local Search Algorithm for (3, 6)-⊕-SAT

program GreedyPSAT(F , a);
x1, ..., xn ← a;
repeat the following MAXT steps[

if F is satisfied with ~x then output the current assignment and halt;
flip the value of xi with the highest(∗) penalty;

program end.
(*) If there are several, choose one in some determinisitic way.

penalty of xj = # of unsatisfied clauses containing xj .

Remarks.
• Each xj appears 6 times. Thus, 0 ≤ Penalty of xj ≤ 6.
• Fix MAXT = 2pn, where Ham(a,0) = pn. Use n = 6000.

¶ ³
This works quite well !!

µ ´

0

0.2

0.4

0.6

0.8

1

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

"psat6G.2PN" using 1:2

Fig 1. The success prob. vs. p

Recall p is the parameter for the init. Ham. distance Ham(a,0) = pn.

By using larger bounds, the success threshold gets increased; but not so much, and seems to have
some limit.

0

0.2

0.4

0.6

0.8

1

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

"psat6G.2PN" using 1:2
"psat6G.10K" using 1:2
"psat6G.20K" using 1:2

Fig 2. The success prob. vs. p

MAXT = 2pn(≈ 3600), 10000, and 20000

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

"psat6G.20K" using 1:3

Fig 3. average steps vs. p

4

For Understanding the Success Threshold

How does the Ham. distance change on average?

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 4. Ham. distance vs. step t for some execution, p = 0.30 and p = 0.32

Technical Goal: State the following function (or its approximation) in a simple form.

errp(t) = the average Ham. distance from the solution after the tth step.

5

Our Approach

Step 0. Modify the algorithm to a randomized one.

program GreedyPSAT(F , a);
x1, ..., xn ← a;
repeat the following MAXT steps[

if F is satisfied with ~x then output the current assignment and halt;
flip the value of xi with the highest(∗) penalty;

program end.

⇓
program SoftGreedyPSAT(F , a);

x1, ..., xn ← a;
repeat the following MAXT steps

if F is satisfied with ~x then output the current assignment and halt;
choose xi randomly according to their weights(∗);
flip the value of xi;

program end.

How to Choose xj ?

Pr[xj is chosen] =
W (penalty of xj)

total weithts
,

where W is set, e.g., as follows for n = 6000,

W (0) = 0, W (1) = 1, W (2) = 100, W (3) = 10000,
W (4) = 100000, W (5) = 500000, W (6) = 2500000.

Our Approach, Cont.

Step 1. Define a simple Markov process simulating the algorithm.

Remark.
The execution of the algorithm is indeed a Markov chain with the following state space:

{ (y1, ..., yn) : yj ∈ {0, 1} } ← the set ofassignments to variables xj .

But this is too big!
⇓ state space reduction

A simple Markov process

6

*** first idea ***

Use a tuple (n+,0, ..., n+,6, n−,0, ..., n+,6) of numbers such that

n+,k = # of correctly assigned variables with penalty k.

Regard the execution of the algorithm as the change of this state by the following transition rule:

1. Choose sg ∈ {+,−} and k, 1 ≤ k ≤ 6, with prob. P (sg, k), where

P (sg, k) =
W (k) · nsg,k

6∑

`=1

W (k) · (n+,k + n−,k)

(
=

W (k) · nsg,k

total weights

)
.

2. Update the current state by

nsg,k → nsg,k − 1
nsg,6−k → n−sg,6−k + 1

3. Futher update the state for reflecting the staus change of related variables.

Remarks. nt = (n(t)
+,0, ..., n

(t)
+,6, n

(t)
−,0, ..., n

(t)
−,6)

• The total number is
6∑

`=0

n
(t)
+,` + n

(t)
−,` = n (= 6000).

• The Ham. distance is errp(t) =
6∑

`=0

n
(t)
−,`.

• An initial state n0 = (n(0)
+,0, ...) can be estimated by p.
But here we will use the values for some randomly generated instance.

Unfortunately, this state space is too simple.

1. Choose sg ∈ {+,−} and k, 1 ≤ k ≤ 6, with prob. P (sg, k).
2. Update the current state by changing nsg,k and nsg,6−k.

⇒3. Futher update the state for reflecting the staus change of related variables.

in the execution:
unsat.

+ − +(x1 + ¬x7 + x2)↑
−→

sat.
+ + +(x1 + ¬x7 + x2)

in the simulation: ? − ?(· +◦+ ·)↑ −→ ? + ?(· +◦+ ·)

We need info. for co-existing variables in each of 6 clauses.

n±,〈 i 〉 =
of variables assigned (in)correctly (+/−)
that appears in 6 clauses assigned of pattern i,

where i = 1 ∼ 56 (effective ones are ≤ 20).

(x,+, +) (x,+, +)
(x,+,−) (x,+,−)
(x,+,−) (x,−,−)
assignment pattern

Express the state of the execution by using these 112 = 2× 56 numbers.

7

Then the simulation matches the execution quite well !

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 5. Ham. distance vs. step t: simulation and execution, p = 0.30 and p = 0.32
¶ ³

Assume that this simulation is accurate enough.
µ ´

Then the analysis becomes feasible.

Our Approach, Cont.

Step 2. Approximate this random process by a simple recurrence formula.

E[nt] ≈ f t(n0).

⇓
errp(t) = E[

∑

i

n
(t)
−,〈 i 〉] ≈ Sum−(f t(n0))

def= approx-errp(t)

Then by analyzing approx-errp(t), we can observe that a gap exists when the execution reaches to a
stage where no variable with penalty ≥ 4 exist.
Remarks.
• By make a flip on a penalty k variable, the total penalty gets decreased by k − 3.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 6. (average) derivative at the beginning of stage 3

8

Is it Enough ?
Am I Happy ? No !

E[nt] ≈ f t(n0).

The function f is “relatively” simple. But...
Currently, f is expressed as a program with several hundred lines!

f is a formula on 40 variables :-(

� � � � � � � � � � � � � � � � � �
� ��� � � � � � � � 	 �
 ��� �
� � � � � � � � � � � � � � � � � �

� �� � � 	 � � � � � ��� � � � ��� �
�
 � � � � ���� ��� � �� �� � � ��� � � � � !� � � " � # � � � $��� �
� � � � � "�� �
�
 � � � ���� �%� �� ��& ��� � � �
�
 � � � &!�� �%� &�� ��� � � �%� & � �
�
 � � � '��� ��� '� ��� � � �%� ' � � �(
� � � 	 " ���� � � � # � � $ # � & $ # � ' $ �
� � � # � � $ # � & $ # � ' $���� � � � # � � $ # � & $ # � ' $ �
� � �) � � � # � � $ # � & $ # � ' $��� � � �
� � � � ��� �� !� � ���� & �
� � � �*(�� � ���� � �+� & �,� � � � � "�� � � � � "���� � � 	 " � ��-
� � � " � # � � � $���� � � " � # � � � $���� � � 	 " � �

-
�
 � � � ���� ��� ��� ��& �%� � � �
�
 � � � ��� �%� ��� ��' ��� � � �
� � � # � � $ # � � $��� � � � # � � $ # � � $ �

�
 � � � � ���� ��� � �� �� � � ��� � � � � !� � � " # � � � $���� � � " � # � � � $ �

� �
 � 	 � � 	�� �
� � � � 	 � � . � � � "��. �
�
 � � � � ���� ��� � �� �� � � ��� � � � � !� � � � 	 � � . /)�. 0�� � � " � # � � � $ �
� � � � 	 � � . /) 1 � . 0�� � � � � " �

� ��2 � 	�	 3 ��� � � 2 � � 	�� � � � � 	 4�� �
�
 � � � � � ���� � � � � � � ��5�� � � � � � + +
� � � � � � " � # � � � � $�5� �6 � � � 7 �
� � � � 	 � � . � � � ���/) 1 � . 0 � � � � �

� �� 3 � � 2 � �!6 4 � � � � � � � 2� �
� 3 � � 7�� � � �
� � � � � " � � �!�� � � � � ") � ���� � � �
�
 � � � � ����� � � � ��� ��& � � � � � �
�
 � � � � &!�� � � � &�� ��� � � � � � & � � �(
� � � � � ��� �� �� � ��� � � & �
� � � � � � ���� � �+ � � & �
� � � � � � �� ��� � � �(
�
 � � � � '��� � � � '�� ��� � ��+ � � & � � � ' � � �(
) � � � ��� � � # � � � $ # � � & $ # � � ' $���� � � " # � � � � $ �
� � � � � ��� ��� �� � � � � " � � �!�� � � � � " � � ���) � � � �
� � � � � ��� ��& �� � � � � ") � �!�� � � � � ") � ���) � � � �
� � �) � � � # � � � $ # � � & $ # � � ' $���� � �) � � � # � � � $ # � � & $ # � � ' $�+) � � � �
� � �) � � � # & + � � � $ # � � & $ # � � ' $���� � �) � � � # & + � � � $ # � � & $ # � � ' $��) � � � �
� 3 � � 7��� 3 � � 7�) � � � �
-
-

� � � � � � � � � 	
�� � � ��� � � � � ��� � � � � �
� � � � � � � � � � � � 	
 � � ����� � ��� � � � 	
 � � ����� � ��� � � � 	
 � � � ����� � � � � �
� � � � 	
 � � � ��� � � � 	
 � � � ��� � � � 	
 � � ����� � � � 	
 � � � � �

� � � � � � ��� �!� � " � � � ��# � � � � $ " � � � �
� � � ����% & % �
� ' � � � � ����% ��� � ��(�!) �*� � � + + �
� ' � � � �)���% �*� �)�(�!, � - ��� �) + + ��.
� � � � � ��� ��% ��� � �!��� �) �
� " � � � � �!��, � -���� �) �
� � � � � � ��� ��� � � ��.
� ' � � � � /���% ��� � /�(�!, � -�� � �) �*� � / + + ��.
� � " � ���0)���/ � � � � � � � � � � � � � � ��' �!� � � ' ��# � � & � � �
� " � ����# � � 1 � � � 2 1 � �) 2 1 � � / 2 � # � 	
 1 � � � � 2 �
� � � ' ��� � ����/!� � � � � �
� ' � � � 3 ����% �*� 3 �!(�� � / �*� 3 � + + ��.
� � � 4 '�� ���0)�� � � � � � �
� ' � � ����% ����(�0) ��� + + ��.
� ���!) �
� �!��� � ��+0) �
� � � � �!� �0) ��.
� ' � � �)��0) ���)�(�!, � - ���) + + �
� ' � � � /���% ��� /�(�!, � -����) ��� / + + ��.
� � � � � � 1 � � 2 1 � � 265 ��% & % �
� � � ����� " � � � � � " ' � � � �) � # � � 1 � � 2 1 �) 2 1 � / 2 � � � � 1 � � 2 1 � � 2 �

� " � �
� � � ����% & % �

� � � � � � 1 � � 2 1 �) 2 1 � / 2���# � � � � � � 1 � � 2 1 �) 2 1 � / 2���� � � � �
� � � � � � 1 � � 2 1 �) �) 2 1 � / +) 2���# � � � � � � 1 � � 2 1 �) �) 2 1 � / +) 2�+�� � � � �
� � � ���!� � � ��+�� � � � �

7
7
� " � � � � � �!� ��/ � � .
� ' � � �)���% ���)�(��, � -��0) ���) + + �
� ' � � � /��0) ��� /�(�!, � - ��� / + + ��.
� � � � � � 1 � � 2 1 � � 285 ��% & % �
� � � �!��� " � � � � � " ' � � � � / � # � � 1 � � 2 1 �) 2 1 � / 2 � � � � 1 � � 2 1 � � 2 �

� " � �
� � � �!��% & % �

� � � � � � 1 � � 2 1 �) 2 1 � / 2���# � � � � � � 1 � � 2 1 �) 2 1 � / 2���� � � � �
� � � � � � 1 � � 2 1 �) +) 2 1 � / �) 2���# � � � � � � 1 � � 2 1 �) +) 2 1 � / �) 2�+�� � � � �
� � � ���!� � � ��+�� � � � �

7
7

7
7

• • •

9

4. Second Example

Problem: 3-SAT (CNF SAT)

Input: 3-CNF formula F over variables x1, ..., xn.
Output: A sat. assignment.

Average Case Senario: Random Positive (3, d)-SAT Formulas
(1) Every variable appears d times in F ; hence, # of clauses = dn/3.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.

Algorithm: Local Search Algorithm; Random Walk (often called WALKSAT)

Local Search Algorithm for (3, d)-SAT

program RandomWalkSAT(F);
x1, ..., xn ← randomly chosen a in {0, 1}n;
repeat the following MAXT steps

if F is satisfied with ~x then output the current assignment and halt;
choose one unsat. clause and select one of the three variables in it;
make a flip on the selected variable;

program end.

. .

Cf.

program GreedySAT(F);
x1, ..., xn ← randomly chosen a in {0, 1}n;
repeat the following MAXT steps

if F is satisfied with ~x then output the current assignment and halt;
choose one variable with the highest penalty;
make a flip on the selected variable;

program end.

10

¶ ³
Why not Greedy ?

µ ´
Easy Answer:

Because it does not work.
Usually trapped by a local minimum.

No Problem !!

program SoftGreedySAT(F);
x1, ..., xn ← random a;
repeat the following MAXT steps

if F is satisfied with ~x then output the current assignment and halt;
choose xi randomly according to their weights;
flip the value of xi;

program end.

In fact, e.g., for (3, 6)-SAT and n = 6000,

RandomWalkSAT ↔ W [0] = 0, W [1] = 1, ..., W [6] = 6.
SoftGreedySAT ↔ W [0] = 0, W [1] = 1, W [2] = 20, ..., W [6] = 205.

Second Answer:
Not so much difference.

2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 7. n0 = # of penalty 0 var.s
SoftGreedy vs. RandomWalk

Remark.
Penalty 0 variables are those appearing only in sat. clauses.

11

For Understanding the Behavior
=⇒ Simulation by a Simple Markov Process

A similar but slightly different set of parameters is used.

2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 8. n0 = # of penalty 0 var.s
Simulation vs. SoftGreedy

What does make this difference ?
Maybe the correlation between flipped variables.

⇓ then
What if a flip is restricted only once ?

12

¶ ³
It works !!

µ ´

2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 8. n0 = # of penalty 0 var.s
Simulation, SoftGreedy (flip once), SoftGreedy, and RandomWalk

Remarks.
• Usually a solution cannot be obtaind under the flip-once restriction. But an assignment, after

running out all unflipped variables (with penalty > 0), gets close enough to some solution.
• We cannot always hope this nice property. This algorithmic trick works for d ≤ 8.

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000

Fig 9. (3, 8)-SAT

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000

Fig 10. (3, 9)-SAT

13

5. Concluding Remarks

1. An Heuristic Analysis (Real exec. → Simple process)
⇒ Some reasoning for the success threshold
⇒ An improvement of the algorithm

2. Some Observations (On Local Search Algorithms)
(1) Greedy is fast, but it needs to get a solution (or something very close to it) before running

out high penalty variables.
(2) There seems some other reasoning for RandomWalk.

14

