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Abstract
We propose some Heuristic Approach for analyzing average performance of local search algorithms.
As an example, we consider some satisfiability problems and invesitgate local search algorithms for
them.
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1. Motivation: Experiments =⇒ ? =⇒ Rigorous Analyses

Facts
• Some problems, though they are believed hard in the worst case, are solvable “efficiently” on

average by relatively simple algorithms.
• Most of the positive results are given by computer experiments.

Why Analysis? Computer experiments are not enough!?

• More efficient than running the algorithm for many times.
• For better understanding of the feature/principle of the algorithm, which may leads us to im-

provements/applications to other problems.

But rigorous analysis is difficult!!

¶ ³
What shall we do!?

µ ´

Our Strategy¶ ³

ANALYSYS ⇐=





1. bra bra bra
2. are kore
3. nan ya kan ya
⇑

need experiments on some step
µ ´

Remarks.
• There are some strong mathematical techniques developed in different fields of mathematical

sciences, e.g., statistical physics, which have been also applied for analyzing average case perfor-
mance of such algorithms.
⇒ But these approaches are not perfect:

e.g., analysis for n →∞ or t →∞ may not be sufficient.
• Some rigorous analyses have been reported also in computer science.
⇒ But there are still some limitations:

e.g., applicable to a certain class of algorithms.
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2. Our Approach for Analyzing Local Search Algorithms

Motivation:
• Many contraint satisfaction problems can be solved to some extent by local search algorithms on

average.
• Local search algorithm is not unique! There are many variations.

Our Approach [Watanabe-etal, SAGA’03]:
0. Modify an algorithm to a randomized one.
1. Define a relatively simple Markov process that simulates (reasonably well) the execution of

the algorithm.
2. Approximate average states of this process by a relatively simple formula.

Remarks.
0. ⇐ This may lose some efficiency, but it reduces dependency to paricular inputs.
1. ⇐ This may be hard to justify.
2. ⇐ We have some justification for this approximation.

3. First Example

Problem: 3-⊕-SAT (Parity SAT)

Closest Solution Search for 3-⊕-SAT

Input: (1) 3-⊕-SAT formula F over variables x1, ..., xn.
(2) Assignment a.

Output: A sat. assignment that is closest to a.

3-⊕-SAT formula = a conjunction of parity clauses
F = (¬x3 + x7 + x2) ∧ (x1 + ¬x12 + ¬x61) ∧ · · ·

Average Case Senario: Random Positive (3, 6)-⊕-SAT Formulas
(1) Every variable appears 6 times in F ; hence, # of clauses = 2n.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.
(3) An initial assignment a is chosen uniformly at random from those with Hamming distance pn

from 0; that is, a has pn 1’s.

Remarks.
• Essentially the same as the Decoding Problem for Linear Codes.
• A solution search for ⊕-SAT is poly. time computable.

x3 + x7 + x2 = 1, x1 + x12 + x61 = 0, ...

• The closest solution search is NP-hard.
... But a is regarded as a hint !?
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Algorithm: Local Search Algorithm; Greedy (or Steepest Decending Method?)

Local Search Algorithm for (3, 6)-⊕-SAT

program GreedyPSAT(F , a);
x1, ..., xn ← a;
repeat the following MAXT steps[

if F is satisfied with ~x then output the current assignment and halt;
flip the value of xi with the highest(∗) penalty;

program end.
(*) If there are several, choose one in some determinisitic way.

penalty of xj = # of unsatisfied clauses containing xj .

Remarks.
• Each xj appears 6 times. Thus, 0 ≤ Penalty of xj ≤ 6.
• Fix MAXT = 2pn, where Ham(a,0) = pn. Use n = 6000.

¶ ³
This works quite well !!

µ ´
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Fig 1. The success prob. vs. p

Recall p is the parameter for the init. Ham. distance Ham(a,0) = pn.

By using larger bounds, the success threshold gets increased; but not so much, and seems to have
some limit.
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MAXT = 2pn(≈ 3600), 10000, and 20000
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For Understanding the Success Threshold

How does the Ham. distance change on average?
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Fig 4. Ham. distance vs. step t for some execution, p = 0.30 and p = 0.32

Technical Goal: State the following function (or its approximation) in a simple form.

errp(t) = the average Ham. distance from the solution after the tth step.
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Our Approach

Step 0. Modify the algorithm to a randomized one.

program GreedyPSAT(F , a);
x1, ..., xn ← a;
repeat the following MAXT steps[

if F is satisfied with ~x then output the current assignment and halt;
flip the value of xi with the highest(∗) penalty;

program end.

⇓
program SoftGreedyPSAT(F , a);

x1, ..., xn ← a;
repeat the following MAXT steps


if F is satisfied with ~x then output the current assignment and halt;
choose xi randomly according to their weights(∗);
flip the value of xi;

program end.

How to Choose xj ?

Pr[ xj is chosen ] =
W (penalty of xj)

total weithts
,

where W is set, e.g., as follows for n = 6000,

W (0) = 0, W (1) = 1, W (2) = 100, W (3) = 10000,
W (4) = 100000, W (5) = 500000, W (6) = 2500000.

Our Approach, Cont.

Step 1. Define a simple Markov process simulating the algorithm.

Remark.
The execution of the algorithm is indeed a Markov chain with the following state space:

{ (y1, ..., yn) : yj ∈ {0, 1} } ← the set ofassignments to variables xj .

But this is too big!
⇓ state space reduction

A simple Markov process
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*** first idea ***

Use a tuple (n+,0, ..., n+,6, n−,0, ..., n+,6) of numbers such that

n+,k = # of correctly assigned variables with penalty k.

Regard the execution of the algorithm as the change of this state by the following transition rule:

1. Choose sg ∈ {+,−} and k, 1 ≤ k ≤ 6, with prob. P (sg, k), where

P (sg, k) =
W (k) · nsg,k

6∑

`=1

W (k) · (n+,k + n−,k)

(
=

W (k) · nsg,k

total weights

)
.

2. Update the current state by

nsg,k → nsg,k − 1
nsg,6−k → n−sg,6−k + 1

3. Futher update the state for reflecting the staus change of related variables.

Remarks. nt = (n(t)
+,0, ..., n

(t)
+,6, n

(t)
−,0, ..., n

(t)
−,6)

• The total number is
6∑

`=0

n
(t)
+,` + n

(t)
−,` = n (= 6000).

• The Ham. distance is errp(t) =
6∑

`=0

n
(t)
−,`.

• An initial state n0 = (n(0)
+,0, ...) can be estimated by p.
But here we will use the values for some randomly generated instance.

Unfortunately, this state space is too simple.

1. Choose sg ∈ {+,−} and k, 1 ≤ k ≤ 6, with prob. P (sg, k).
2. Update the current state by changing nsg,k and nsg,6−k.

⇒3. Futher update the state for reflecting the staus change of related variables.

in the execution:
unsat.

+ − +(x1 + ¬x7 + x2)↑
−→

sat.
+ + +(x1 + ¬x7 + x2)

in the simulation: ? − ?( · +◦+ · )↑ −→ ? + ?( · +◦+ · )

We need info. for co-existing variables in each of 6 clauses.

n±,〈 i 〉 =
# of variables assigned (in)correctly (+/−)
that appears in 6 clauses assigned of pattern i,

where i = 1 ∼ 56 (effective ones are ≤ 20).

(x,+, +) (x,+, +)
(x,+,−) (x,+,−)
(x,+,−) (x,−,−)
assignment pattern

Express the state of the execution by using these 112 = 2× 56 numbers.
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Then the simulation matches the execution quite well !
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Fig 5. Ham. distance vs. step t: simulation and execution, p = 0.30 and p = 0.32
¶ ³

Assume that this simulation is accurate enough.
µ ´

Then the analysis becomes feasible.

Our Approach, Cont.

Step 2. Approximate this random process by a simple recurrence formula.

E[nt ] ≈ f t(n0).

⇓
errp(t) = E[

∑

i

n
(t)
−,〈 i 〉 ] ≈ Sum−(f t(n0))

def= approx-errp(t)

Then by analyzing approx-errp(t), we can observe that a gap exists when the execution reaches to a
stage where no variable with penalty ≥ 4 exist.
Remarks.
• By make a flip on a penalty k variable, the total penalty gets decreased by k − 3.
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Fig 6. (average) derivative at the beginning of stage 3
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Is it Enough ?
Am I Happy ? No !

E[nt ] ≈ f t(n0).

The function f is “relatively” simple. But...
Currently, f is expressed as a program with several hundred lines!

f is a formula on 40 variables :-(
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4. Second Example

Problem: 3-SAT (CNF SAT)

Input: 3-CNF formula F over variables x1, ..., xn.
Output: A sat. assignment.

Average Case Senario: Random Positive (3, d)-SAT Formulas
(1) Every variable appears d times in F ; hence, # of clauses = dn/3.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.

Algorithm: Local Search Algorithm; Random Walk (often called WALKSAT)

Local Search Algorithm for (3, d)-SAT

program RandomWalkSAT(F );
x1, ..., xn ← randomly chosen a in {0, 1}n;
repeat the following MAXT steps


if F is satisfied with ~x then output the current assignment and halt;
choose one unsat. clause and select one of the three variables in it;
make a flip on the selected variable;

program end.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cf.

program GreedySAT(F );
x1, ..., xn ← randomly chosen a in {0, 1}n;
repeat the following MAXT steps


if F is satisfied with ~x then output the current assignment and halt;
choose one variable with the highest penalty;
make a flip on the selected variable;

program end.
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¶ ³
Why not Greedy ?

µ ´
Easy Answer:

Because it does not work.
Usually trapped by a local minimum.

No Problem !!

program SoftGreedySAT(F );
x1, ..., xn ← random a;
repeat the following MAXT steps


if F is satisfied with ~x then output the current assignment and halt;
choose xi randomly according to their weights;
flip the value of xi;

program end.

In fact, e.g., for (3, 6)-SAT and n = 6000,

RandomWalkSAT ↔ W [0] = 0, W [1] = 1, ..., W [6] = 6.
SoftGreedySAT ↔ W [0] = 0, W [1] = 1, W [2] = 20, ..., W [6] = 205.

Second Answer:
Not so much difference.
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Fig 7. n0 = # of penalty 0 var.s
SoftGreedy vs. RandomWalk

Remark.
Penalty 0 variables are those appearing only in sat. clauses.
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For Understanding the Behavior
=⇒ Simulation by a Simple Markov Process

A similar but slightly different set of parameters is used.
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Fig 8. n0 = # of penalty 0 var.s
Simulation vs. SoftGreedy

What does make this difference ?
Maybe the correlation between flipped variables.

⇓ then
What if a flip is restricted only once ?
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¶ ³
It works !!

µ ´
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Fig 8. n0 = # of penalty 0 var.s
Simulation, SoftGreedy (flip once), SoftGreedy, and RandomWalk

Remarks.
• Usually a solution cannot be obtaind under the flip-once restriction. But an assignment, after

running out all unflipped variables (with penalty > 0), gets close enough to some solution.
• We cannot always hope this nice property. This algorithmic trick works for d ≤ 8.
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Fig 9. (3, 8)-SAT
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Fig 10. (3, 9)-SAT
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5. Concluding Remarks

1. An Heuristic Analysis (Real exec. → Simple process)
⇒ Some reasoning for the success threshold
⇒ An improvement of the algorithm

2. Some Observations (On Local Search Algorithms)
(1) Greedy is fast, but it needs to get a solution (or something very close to it) before running

out high penalty variables.
(2) There seems some other reasoning for RandomWalk.
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