Dynamic graph
algorithms with
applications

Mikkel Thorup
AT&T Labs—Research

Dvynamic data structures in static
problems

Standard example: priority queue in greedy al-
gorithm such as Dijkstra’s single source short-
est path algorithm.

Here we consider dynamic graph algorithms
maintaining properties and objects in a chang-

ing graph.

Dynamic graph algorithms

Updates
W W
delete (vw) }
Insert (v,w)
v

Connectivity disconnected? connected (v,w)
2-edge-connectivity bridge? 2-edge-connected (v,w)
Biconnectivity articulatiion point? biconnectied (v,w)

(CXO
Minimum spanning tree (MST)

Update MST during insertion and deletion

Applications

e Constructing tree from homeomorphic sub-
trees

e Unique perfect matching

We shall also talk about dynamic shortest paths
and their applications.

Connectivity of G = (V, E), |V| = n,
during m updates, starting E = 0.

Maintain spanning forest F

(for dynamic forest F' “everything” takes O(logn)
time)

insert((v,w)) if v and w disconnected in F,
F.=FU{(v,w)}

delete((v,w)) if (v,w) € F, seek replacement
edge from E reconnecting F \ {(v,w)}

SES

Introduce levels ¢ : E — {0, ..., [logon]}

G, = (V,{e€ E :l(e) > i})

(i) F ¢-maximal spanning forest
= F;, = FFN G; spanning forest of G;

D

(ii) Components of G; contain < n/2" vertices.

Idea: amortize over level increases

Insert((v,w)): £((v,w)) := 0.
If v and w disconnected in F, FU{(v,w)}

Delete(e): If e€ F', F := (F'\ {e}) UReplace(e)

6

Replace(e)

For i := ¢(e) downto 0 do
> Nno replacement edge on level > 1

T b

T | < [T

> level ¢ replacement connect 77 and 15
> [Th] < nj2itt
For all level i edges f € Ty: ¢(f) := i+ 1.
Consider level 7 edges (v,w), v € T1, one
by one:

If w¢ Ty, return {(v,w)}.

Else ¢((v,w)) ;= 11+ 1.

Return ()

Each statement iterated < mlogon times
A each statement supported in O(logn) time
= O(mlog?n) total time.

Decremental MST of G = (V,E), |V| = n,
|E| =m.

Maintain minimum spanning forest F

delete((v,w)) if (v,w) € F, seek lightest re-
placement from E reconnecting F\ {(v,w)}

Introduce levels ¢ : E — {0, ..., [logon]}

G, = (V,{e€ E : l(e) > i})

(i) F ¢-maximal spanning forest
= F;, = FFN G; spanning forest of G

(ii) Components of G; contain < n/2" vertices.

Initially F' minimum spanning forest
and Vee E : l(e) =0

Delete(e): ife€e F, F .= (F \ {e}) UReplace(e)

8

Replace(e)
For i := ¢(e) downto 0 do
i T

T | < [T

For all level i edges f € T1: £(f) .= i+ 1.
Consider level 7 edges (v, w), v € T1, one
by one, in order of increasing weight:
If w¢ Ty, return {(v,w)}.
Else /((v,w)) :=1+4+ 1.
Return 0

— fully-dynamic polylogarimic MST using gen-
eral reduction of Henzinger and King (ICALP'97).

2-edge-connectivity of G = (V, E), |V| = n,
during m updates, starting with E = 0.

Maintain spanning forest F

\

(v,w) € E covers path v---w from v to w in F

Lem x and y 2-edge connected <— x---y
covered.

10

Introduce levels ¢ : E\ F — {0O,..., [logon]}

Gi=(V,FU{ee E:{(e) >i})

(i) 2-edge connected components of G; con-
tain < n/2' vertices.

For each f € F' maintain highest level of cover-
ing edge, denoted c(f). If f bridge, c¢(f) = —1.

Connected(x,y): Ve€e xz---y:c(e) > 0.

Insert((v,w))
If v and w disconnected in F,
FuU{(v,w)}.
c((v,w)) ;= —1.
Else
(((v,w)) :=0
call Covert((v,w))

Cover((v,w))
For all fev---w with c¢(f) < £((v,w)),
c(f) = (v,w).

11

Delete(e)

if e € F,
swap e in F with covering edge f on
highest level
(c(f), £(e)) == (L([f),c(e))
e.=1f

Recover(e)

Cover only called O(mlogn) times, each at
polylogarithmic cost using data structures for
dynamic forests.

12

Applications

13

Constructing tree from homeomorphic subtrees

Reduction to decremental connectivity by Hen-
zinger, King, and Warnow (SODA’'96)

Small trees represented as triples ((a,b),c) € T
with a,b,c € A.

Obs If ((a,b),c) € T, a and b must descend
from same child of root.

Make child for each component of G = (A, {(a,b) :
((a,b),c) €T})

This resolves all triples ((a,b),c) with ¢ discon-
nected from b (and a) in G.

Grandchildren found by removing edge (a,b)
for each resolved triple ((a,b),c).

14

Unique perfect matchings

Reduction to decremental 2-edge connectivity
by Gabow, Kaplan, and Tarjan (STOC'99)

Lem (Kotzig 1959) A unique perfect matching
has a bridge.

Constructing unique perfect matching, if any

M :=1(

While component C of G has bridge (v, w)
If components of C\ {(v,w)} both have
odd number of vertices,

M = M U {(v,w)}.
Delete all edges incident to v and w
from G.
Elseif components of C \ {(v,w)} both
have even number of vertices,
Delete (v, w) from G.
Else G has no perfect matching. EXIT.
If G empty, return M:
Else G has no perfect matching.

15

...another application

Thm (Petersen 1891) Every bridgeless 3-
regular graph has a perfect matching.

Biedl, Bose, Demaine, and Lubiw (SODA’'99)
have used dynamic 2-edge connectivity to con-
struct such a perfect matching in O(n) time,
improving over the bound the O(n3/2) obtained
using the general time bound for matching when
m = O(n).

16

Shortest paths: some techniques

Ramalingam and Reps suggested lazy Dijkstra
for single source shortest paths.

e Running time proportional to # edges in-
cident to vertices changing distance from

source.
e \Works great in practice.

Recent break-through by Demetrescu and Ital-
lano on all pairs-shortest path:

e Each vertex update supported in O(n?) time.
e \Works even better in practice.

e Current best has update time
O(n?(logn + 10g?(m/n)) and works for ar-
bitrary weights [Thorup].

17

Internet traffic engineering
Demand of 1 for (s,t) and (u,v)

General routing: max load 2/3
Swt
U@V

Shortest path routing: max load 1 or 3/4

s 1 t
1 1
1 1 1
1 1
1
u Vv
s > t
10 10
1

18

Optimizing shortest path routing with
dynamic shortest paths [Fortz Thorup]

Finding weights minimizing max utilization
(load/capacity) within factor 3/2 is NP-hard.

Cisco default: link weight inverse of capacity.
Local search heuristics

Iteratively change a weight that reduces max-
utilization.

When inner loop tries a weight change, new
shortest path routes are found and evaluated.

Ramalingam and Reps gave speed-up by factor
15 with 100 nodes and 300 edges.

Gained 50% over Cisco default on AT&T IP
backbone.

Got within few percent of optimal general rout-
ing.
19

Concluding remarks

Talked about dynamic graph algorithms and
their applications in solving static problems

Similar to priority queues in greedy algorithms

Challenge: dynamic reachability between fixed
s and t for sparse graphs
— better augmenting paths max-flow algorithms.

20

