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Summary of This Talk

e option typical financial derivative
e pricing European-Asian option on binomial model
--- difficult to compute accurately
approximation
e Aingworth, Motwani & Oldham (SODAOQOQ)
time: O(kn4),  absolute error O(nX/k)
e Our Algorithm:
time: O(kn?),  absolute error O(X/Kk)

n, X: problem parameters, k: time-error tradeoff param.
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Option

e option: right to sell (or buy) %

some financial asset (e.g., stock)
at some point in the future (expiration date)
for a specified price (strike price)

e gain more benefit by investment
e hedge risk from the fluctuation of stock price
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Payoff of Option

Example: option to buy a stock of Google Inc.
at the year-end at $200

»stock price goes up to $220 at the year-end
exercise option to buy the stock at $200

sell it for $220  gain $20 payoff) G 00 3[ e

»stock price goes down to $170
do not exercise option  payoff = $0

Payoff of European Option:
(S = X)* max{S - X, 0}
stock price at expiration date, strike price
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European-Asian Option

e payoff of European-Asian option
depends on average of stock price A
during whole period

payoff: (A —X)* max{A - X, 0}

strike (S-X)*=0
price [ \
@eram (A-X)*> 0

stock price

> time

[ safe against fluctuation of stock price }
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Computation of Option Price

® price of option = discounted expected value of payoff
--- need to model the movement of stock price

® Our model: binomial model (discrete model)
B proposed by Cox, Ross & Rubinstein (1979)
B represent stock price movement
by a binomial tree
B can compute exact option price by
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n-th period

Binomial Model expiratéon date
Oth perlod 1st perlod 2nd period n
S S S, )
price goes up us
to uS U P )
with prob. p ‘
init. stockC Q\ T O
price = Ny
price goes down Q C)
to dS d
with prob. 1-p 42 )
® a path P=(S,, S;, S,, ..., S;,) from the root to
a leaf represents the movement of stock price D

® payoff of European-Asian option = (2705/' _ X}

n+1



Our Problem
/compute the expected payoff ( S s,
of European-Asian option E [ /=0 X]

on the binomial model .

" /)

payoff is dependent on the path P=(S,, S;, S,, ..., S;)
path-dependent option
payoff Is nonlinear w.r.t. the running total > ;S
need enumeration of all the paths
exponential time
computation of the price of path-dependent option
Is #P-hard
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Approximation Algorithms
for Pricing European-Asian Option

®Monte Carlo Method
based on path sampling
error bound depends on the volatility of stock price

® Other methods
based on heuristics
no theoretical error bound
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AMO Algorithm and its Variants
‘5 N

al, Huang & Lyuu

(002)

/Aingworth, I\/Iotwani\ \ 2djust # of buckets,, /Shloura & Tokuyama

& Oldham (2000) (2004) ¥
time: O(kn?) abs. err.. o(_j
abs. err.. O(nX/k) /Ohta, Sadakane, N

\DP + buck%g p (Szfggg)ra & Toliuyama \ use both ig" %s )
/ abs. err. o] X n disappearsD
[independent
of volatility \Jandomization ~ /

n depth of binomial tree, X: strike price, k: positive integer
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Exact Algorithm by DP

‘at each node of binomial tree, compute
all possible running subtotals Z S,

& their probabilities -

\_

(813, 1/8)

(625, 1/8)
100, 1 (500, 1/8)
( (250, 1/2) (417, 1/8)

(350, 1/4) (417, 1/8)

prob. 0.5 (267, 1/4) (334, 1/8)

(gu:w (167, 1/2) (278, 1/8)
prob. 0.5

_ L% ™~Qo) (241, 1/8)




AMO Algorithm (1)

e # of running subtotals can be exponential

approximate running subtotals by bucketing

running subtotal

interval & probability

400

300 (310, 0.05)

300 (205, 0.15)

(240, 0.12)

200 (285, 0.20)

200 (170, 0.10)

(150, 0.10)

100 (110, 0.10)

100 (80, 0.05)

0 (30, 0.01)

round up
running subtotals

&

sum up
probabilities

In each bucket

4

400
300

(400, 0.05)

300
200

(300, 0.47)

200
100

(200, 0.30)

100
0

(100, 0.06)
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AMO Algorithm (2)

® k: # of buckets at each node
error bound  max. value of running subtotal/k

Proposition:
running subtotal Y. S;is  (n+1)X
@ at the t-th period

» option will be exercised at the expiration date
» conditional expectation of the payoff
can be computed easily

error bound of AMO algorithm = (n+1) X/k
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Algorithm by Dai et al. (2002)

AMO algorithm use the same number k
of buckets at each node

j> set the number of buckets kij :
at the node (i j) flexibly

)

error bound ZZ—a)(/,
=0 /= O I .
probability of K11
reaching node (i , j)

® adjust # of buckets k; Koo
to minimize error bound
under the condition > k; = kn?

j> [error bound O[\/ix B
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Algorithm by Ohta et al. (2002)

AMO algorithm approximate running subtotals
In a bucket by rounding-up

. :

choose a running subtotal randomly
as approximate value

interval | "SRR
200 | (170, 0.30)

(150, 0.10)
100 | (110, 0.20)

} (200, 0.60)
(170, 0.60)
Lprr:p. 1/2 ]
(150, 0.60)
[ prob. 1/6 1

_prob. 1/3 | (110, 0.60)




Analysis of Ohta et al. (2002)

regard the behavior of randomized algorithm
Martingale
expectation of the error by random choice
of running totals at a node = 0
apply Azuma’s inequality (1967)

as stochastic process

-

errorbound O

\_

’

\

1
n*X
Kk

N

J

(with high probability)

BN

~

/

ﬁnalysis s difficult |
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Our Algorithm

@ )
® set the number of buckets k;

at node (i, ) flexibly
@ random choice of running subtotal

( . T 2
j> error bound OX\/ Z{“’(/i’/)}

L ! )

® adjust # of buckets k; X
to minimize error bound j>[error bound Q(J
under the condition > k; = kn? N\ K

\
@alysis IS quite eas@
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Open Problems

e derandomization of our algorithm with the same
error bound

e approximation of American-Asian option
e analysis of error bound compared to exact price



