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平成16年度 第１回 全体会議

日時 平成 16年 10月 13日 (水)

会場 東北大学 工学部 電気情報・物理工学科 講義棟 1階 103号室

プログラム

12:00 – 13:40 幹事会
13:50 – 14:00 代表者挨拶
14:00 – 14:50 Approximation Algorithms for the Minmax Subtree Cover

永持 仁 教授 (京都大学 大学院 情報学研究科)
15:00 – 15:50 位相情報を用いた画像マッチングとその応用

— ピクセルとピクセルの間をみる技術 —
青木 孝文 教授 (東北大学 大学院 情報科学研究科)

16:15 – 17:30 全体会議
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Approximation Algorithms Approximation Algorithms 

for for 

the the MinmaxMinmax SubtreeSubtree Cover Cover 

Hiroshi NagamochiHiroshi Nagamochi

Kyoto UniversityKyoto University

S: 

r: 

p: 

( )

MinmaxMinmax SubtreeSubtree Cover Problem (MSC)Cover Problem (MSC)
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Fast and Sensitive Homology Search

Ming Li∗

School of Computer Science, University of Waterloo

(Canada Research Chair in Bioinformatics, Professor)

&

Computer Science Department, City University of Hong Kong

(Visiting Professor)

Homology search, finding similar parts between two sequences, is the most popular task

in bioinformatics. A large fraction of the world’s supercomputing time is consumed by

homology search. We introduce the fundamental ideas and a mathematical theory of

optimized spaced seeds. Based on such ideas, our software PatternHunter is significantly

faster than current homology search tools such as BLAST, at higher sensitivity, or Smith-

Waterman dynamic programming, at its full sensitivity. In just 3 years after their dis-

covery, the optimal spaced seeds are directly benefiting thousands of researchers in the

world, daily.

∗Joint work with Bin Ma and John Tromp.
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Dynamic graph algorithms with applications

Mikkel Thorup

AT&T

First we review amortized fully-dynamic polylogarithmic time algorithms for connectivity,

MST, 2-edge- and biconnecitivity. Second we discuss how they yield improved static

algorithms: connectivity in constructing a tree from homeomorphic subtrees and 2-edge

connectivity for finding unique matchings in graphs.

Finally, on the more practical side, we will discuss how output senstive algorithms

for dynamic shortest paths have been applied successfully in local search algorithms for

improving routing on the internet, roughly doubling the capacity.
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Approximation Algorithms

for Stochastic Combinatorial Optimization

R. Ravi

Carnegie Mellon University

Two-stage stochastic programming with recourse is an attempt to model data uncertainty.

Data for the current time (e.g. current costs, demands) are known, whereas the uncertain

future is characterized by a given probability distribution. After a set of decisions are made

in a first stage, the actual future is revealed (according to the probability distribution).

The first-stage solution can then be augmented in a second recourse stage to obtain a

feasible solution for the realized scenario. The goal is to minimize the sum of first-stage

costs plus the expected costs in the second stage.

We consider several classical combinatorial optimization problems in this framework,

and provide tight (up to small constants) approximation algorithms for them. In the

talk, we will focus on a canonical problem in network design (Steiner trees). We consider

different ways to model future uncertainty and present approximation algorithms based

on boosted sampling and rounding an LP relaxation.

This talk describes recent work with Anupam Gupta, Martin Pal and Amitabh Sinha.
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More approximation algorithms

for stochastic programming problems

David B. Shmoys

Cornell University

Abstract

Stochastic optimization problems attempt to model uncertainty in the data by assuming

that (part of) the input is specified in terms of a probability distribution, rather than

by deterministic data given in advance; they have been studied since the 50’s, and have

become an important paradigm in a wide range of application areas, including transporta-

tion models, logistics, financial instruments, and network design. Particular attention has

been paid to 2-stage models with recourse: first, given only distributional information

about (some of) the data one commits on initial actions, and then once the actual data

is realized (according to the distribution), further (recourse) actions can be taken. These

problems pose significant computational obstacles, both from a practical perspective, as

well as from the point of view of complexity theory.

There have been a number of recent results in that give approximation algorithms, that

is, algorithms that are guaranteed to find solutions with provably near-optimal expected

costs. However, these results are limited either in terms of the types of distributions

that can be modeled, or in terms of the cost structure. We show that in a ”black box”

model for specifying the distribution, an arbitrary cost structure can be handled, and give

the first constant-factor approximation algorithms for this setting. This is based on first

designing a fully polynomial approximation scheme for solving the exponentially large (in

both the constraints and variables) linear programming relaxation. We will discuss both

these specific results, as well as to lay out a number of directions in which performance

guarantees for stochastic programming problems might still be obtained.

This research is joint work with Chaitanya Swamy.

4
– 343 –



5
– 344 –



New Horizons in Machine Learning

Avrim Blum∗

Carnegie Mellon University

In this talk I will survey some of the current challenges and “hot topics” in the field of

machine learning. I will then focus more specifically on one topic, kernel methods, that

has become quite popular in machine learning, especially in conjunction with the notion

of margins. Kernel functions allow one to implicitly map data into a high-dimensional

space and perform certain operations there without paying a high price computationally.

Furthermore, if the data has a large-margin separator in that space, then one can avoid

paying a high price in terms of sample size as well. For example, this is the key idea

underlying Support Vector Machines. I will discuss how techniques of random projection

and dimensionality-reduction studied in the theory community can be used to provide

insight into the behavior of kernels and what it is they really provide. In particular, I

will show how given a kernel as a black-box function, we can use various forms of random

projection to extract an explicit small feature space that captures much of the power of

the given kernel.

∗Portions of this talk are joint work with Nina Balcan and Santosh Vempala.

6
– 345 –



Rigorous Analysis of Heuristics for NP-hard

Problems

Uriel Feige

Weizmann Institute, Israel

uriel.feige@weizmann.ac.il

Abstract

The known NP-hardness results imply that for many combinatorial
optimization problems there are no efficient algorithms that find an op-
timal solution, or even a near optimal solution, on every instance. A
heuristic for an NP-hard problem is a polynomial time algorithm that
produces optimal or near optimal solutions on some input instances,
but may fail on others. The study of heuristics involves both an al-
gorithmic issue (the design of the heuristic algorithm) and a concep-
tual challenge, namely, how does one evaluate the quality of a heuris-
tic. Current methods for evaluating heuristics include experimental
evidence, hand waving arguments, and rigorous analysis of the per-
formance of the heuristic on some wide (in a sense that depends on
the context) classes of inputs. This talk is concerned with the lat-
ter method. On the conceptual side, several frameworks that have
been used in order to model the classes of inputs of interest (includ-
ing random models, semi-random models, smoothed analysis) will be
discussed. On the algorithmic side, several algorithmic techniques and
principles of analysis that are often useful in these frameworks will be
presented.

1 Introduction

Given a computational problem, it is desirable to have algorithms that pro-
duce optimal results, are efficient (polynomial time), and work on every

input instance. For many combinatorial problems, this goal is too ambi-
tious, as shown by the theory of NP-completeness. Hence one should set
goals that are more modest. Approaches that are tried and have firm theo-
retical foundations include approximation algorithms (relax the optimality
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requirement) and fixed parameter tractability (refine the efficiency require-
ment). We shall discuss a different approach, that of heuristics, that relaxes
the universality requirement. Here we define a heuristic to be a polynomial
time algorithm that produces optimal results on typical inputs. The notion
of a typical input is rather fuzzy, and a major conceptual challenge of the
study of heuristics is to give this notion a rigorous meaning.

Some of the research goals of the study of heuristics are the following:

• Explain the apparent success of known heuristics.

• Come up with good heuristic ideas.

• Match heuristics to problems.

• Investigate fundamental limitations of the heuristic methodology.

If we wish to perform a mathematically rigorous study of heuristics, we
may want to ask our selves how does one prove that a certain heuristic is
good, and likewise, how does one prove that a certain heuristic is bad.

Here we use the following approach. One should first provide a rigorous
definition of what the concept of typical input means. Given such a definition
(for example, suppose that in some context, a typical graph can be assumed
to be a planar graph), one is no longer dealing with the fuzzy notion of
heuristics, but with the familiar notion of worst case analysis of algorithms.
It will often be the case that we shall model a typical input as an input
chosen at random from some well defined distribution. We remark that
also in this case (of average case analysis), we will typically be performing
worst case analysis. The reason for this is that usually analysis of algorithm
in random models breaks down into two parts. One first establishes that
random inputs are likely to have a certain property P (e.g., random graphs
are likely to have very strong expansion properties), and then one shows an
algorithm that work on every input that has property P .

2 Some theoretical frameworks

We sketch some theoretical frameworks that have been suggested in order
to model typical inputs.
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2.1 Random inputs

A good example is the Gn,p model of random graphs.
An interesting algorithmic result [7] in this model is that there is a

polynomial time algorithm that with high probability finds Hamiltonian a
cycle in a random graph, even when p is so small such that the minimum
degree in the graph is 2. (When the minimum degree is below 2, then
certainly the graph does not have a Hamiltonian cycle.)

On the other hand, there are other NP-hard problems (such as max-
clique) for which no polynomial time algorithm is known to produce optimal
results on a random graph.

2.2 Planted solution models

When the random model seems too difficult, it may be useful to consider a
planted solution model. For example, one can plant a clique of large size k
in a random graph, and ask how large k can be so that a polynomial time
algorithm can detect it. It is known that k = Ω(

√

n) suffices [2].

2.3 Semi-random models, monotone adversaries

Given a specific random model (or planted solution model), there is danger
that algorithms designed for the model will suffer from ”over-fitting”, and
would not work under a slightly different model. To add robustness to
algorithms, one may consider semi-random models, first suggested by Blum
and Spencer [6].

Here is an example of what the author considers to be over-fitting. When
k �

√

n log n, the vertices of a planted k-clique almost surely are those of
highest degree in an otherwise random graph. An algorithm may select the
k highest degree vertices and check if they form a clique.

A specific version of semi-random models is that of the monotone adver-

sary [10]. For example, in the planted clique model, the monotone adversary
is allowed to remove arbitrarily many non-clique edges. The degree based
algorithm no longer works. Still, more sophisticated algorithms based on
semidefinite programming do work, up to k = Ω(

√

n) [11].

2.4 Smoothed analysis

This model was advocated by Spielman and Teng [18]. The idea is to take an
arbitrary input, but then to make a random perturbation to the input. This
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may capture well situations where in a typical numerical input, the low order
bits are random. Such a model was used in order to offer an explanation for
the practical success of the simplex algorithm [18]. For NP-hard problems,
it was shown that problems that have fully polynomial time approximation
schemes are typically solved in polynomial time on smoothed instances [3].

2.5 Stable inputs

In some applications (such as clustering), the interesting inputs are those
that are stable in the sense that a small perturbation in the input does not
change the combinatorial solution. Bilu and Linial [5] define the notion
of stable inputs, and present algorithms that solve NP-hard cut problems
whenever the input instance is (highly) stable.

2.6 A comparison

In smoothed analysis, one first picks an arbitrary (worst case) instance. This
instance defines a certain region in instance-space (all input instances that
can be derived by small perturbations from the original instance). Then, a
random input is chosen in this region.

In the monotone adversary model, first an instance is chosen at random,
which then defines a region (all instances reachable from the original instance
by monotone changes). Thereafter, an arbitrary (worst case) input is chosen
in this region.

Hence in a sense, the difference between smoothed analysis and monotone
adversary is mainly in the order of quantifiers (forall followed by random
versus random followed by forall). In this respect, the monotone adversary
model is more difficult.

For stable inputs, the regions in instance-space are determined by the
combinatorial solution, rather than by the instance representation. A worst
case region is picked, and within it, a worst case input, provided that it is
far from the boundary of the region.

3 Algorithmic techniques

Common techniques for designing heuristics in some of the models presented
above include detecting statistical irregularities induced by an optimal solu-
tion, the use of approximation algorithms, and ”hill climbing” once a near
optimal solution is found, using the fact that in many of these models near
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optimal solutions are necessarily of small Hamming distance from the opti-
mal solution.

3.1 Random 3SAT

We will use the well known problem of 3SAT to demonstrate some of the
past rigorous work on analysis of heuristics. We shall consider a random
3CNF input formula f with n variables and m clauses, with m � n. The
expected number of satisfying assignments for f is (1−1/23)m ·2n, implying
that when m � n the formula is unlikely to be satisfiable.

We shall consider two tasks. One is to search for a satisfying assignment
when the formula happens to be satisfiable. The other is to prove non-
satisfiability for non-satisfiable formulas (refutation). We remark that for
worst case analysis, refutation and search are strongly related (when a search
procedure stops without finding a satisfying assignment, this serves as a
refutation). For heuristics, we shall see that search and refutation may
require very different algorithms.

3.2 Searching for a solution

There are algorithms that appear to very quickly find satisfying assignments
in random formulas [8], and it would be very interesting to support this
empirical finding by rigorous analysis. We are not able to do so at the
moment. Here we present some results that can be proved rigorously.

When m � n log n, then if the formula happens to be satisfiable, the
satisfying assignment is likely to be unique. It then can be shown that
the distribution on random satisfiable formulas can be approximated by the
following distribution in the planted solution model.

Pick at random an assignment a to the variables. Choose clauses at
random, discarding clauses not satisfied by a, until m clauses are reached.
When m � n log n, it is likely that a is the unique satisfying assignment.

The planted solution a induces some easily detectable statistical prop-
erties. For every variable x, in every clause C that contained x and was
discarded, the polarity of x in C disagreed with its polarity in a. Set x
according to the polarity that agrees with the majority of the occurrences
of x in f . When m � n log n, it is likely that this algorithm recovers a.

We now consider the more difficult case of m = d · n for some large
constant d. In this case the distribution generated by the planted model
is no longer known to be statistically close to that of random satisfiable
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formulas. The reason is that the planted model favors formulas with many
satisfying assignments. We shall present an algorithm that works in the
planted model. It is not known whether this algorithm also extends to the
model of random satisfiable formulas.

Given the formula f , start with an initial assignment a(0) that is simply
the majority vote assignment (breaking ties arbitrarily). A linear fraction of
the variables (exponentially small in d) are likely to be set in disagreement
with a, and a linear fraction of clauses are likely not to be satisfied by a(0).
We now move to a satisfying assignment by a ”hill climbing” procedure.
The procedure described here is taken from [13], and its analysis is based
on [1, 14]. The procedure itself is a considerable simplification of the proce-
dures described in [1, 14]. This simplification was achieved by following the
methodology of considering semi-random inputs (a monotone adversary is
allowed to add arbitrary clauses in which all three literals are set in agree-
ment with a), which forces one to make algorithms more robust, and often
helps clean away aspects of the algorithm that rely on too detailed statistical
properties of the input distribution.

The hill climbing algorithm works it iterations. In each iteration, a local
search is performed in order to improve the current assignment. Let a(j)
denote the assignment at iteration j, and let T (j) be the set of clauses
satisfied by a(j).

Pick an arbitrary clause C not satisfied by a(j). Find the assignment
closest (in Hamming distance) to a(j) that satisfies the sub-formula T (j)∪C.
Increment j and repeat.

The algorithm obviously finds a satisfying assignment. The only question
is how fast.

To analyse the complexity of a single iteration, we let h(j) denote the
Hamming distance between a(j) and a(j +1). Since a(j +1) can be reached
from a(j) by iteratively flipping variables in currently arbitrary unsatisfied
clauses in T (j) ∪ C, it follows that the time per iteration is at most 3 ·

2h−1nO(1), which is polynomial when h = O(log n).
The main technical lemma is that with high probability, in all iterations,

h < O(log n). Hence the algorithm works in polynomial time. The proof of
this lemma shows that with high probability, f has a core with properties
as defined below, and that the algorithm works on every formula that has
such a core.

A variable x for which a(0) = a is a core variable if flipping it makes at
least one clause in T (0) not satisfied, and every assignment in which x is
flipped that satisfies T (0) requires flipping a linear number of other variables.
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Probabilistic analysis shows that removing the core variables and simplifying
the random formula f , it is likely to decompose into small sub-formulas of
size O(log n), on disjoint sets of (non-core) variables.

In any formula (and initial assignment a(0)) that has such a core one
has the following property. An iteration can be completed by O(log n) flips
of non-core variables. Moreover, as long as h = O(log n), no core variable
will accidently be flipped, and hence the above property is maintained in all
iterations.

3.3 Refutation

If a formula is not satisfiable, the heuristic presented above takes exponential
time to detect this. Hence we need a different heuristic for refutation.

A general approach for refutation may use approximation algorithms.
When m � n, every assignment satisfies roughly 7m/n clauses of a ran-
dom formula. An algorithm for approximating max-3SAT within a ratio
better than 7/8 would refute most dense 3SAT formulas. Unfortunately,
approximating max-3SAT (in the worst case) beyond 7/8 is NP-hard [16].

Turning the above algorithm around, we may ask what are the conse-
quences of the hypothesis that there is no polynomial time algorithm for
refuting dense random 3CNF formulas. This would imply that one cannot
approximate max-3SAT within a ratio better than 7/8, which is a known
(but very difficult) NP-hardness result. Many other hardness of approxima-
tion results would follow [9], some of which are currently not known to have
NP-hardness analogues. The above hypothesis (regardless of its correctness)
seems to be a good rule of thumb for conjecturing hardness of approxima-
tion results. Many of its predictions (with weaker constants) can be proved
assuming that NP does not have sub-exponential algorithms [17].

So how does one refute random 3CNF formulas? When m > n2 one can
do the following. There are roughly 3n clauses containing the variable x1.
It suffices to refute the sub-formula f1 containing these clauses. Substitute
x1 = 0 and simplify f1 to a 2SAT formula. This is a random formula with
roughly 3n/2 clauses, and hence is unlikely to be satisfiable. 2SAT can be
decided in polynomial time. Repeating the above argument with x1 = 1
refutes f1.

As m gets smaller, refutation gets harder. The best algorithms known
for refuting random 3SAT [12] require m > cn3/2 (where experimentation
shows that one can take c = 2.5). These algorithms are based on pair-wise
statistical irregularities and eigenvalue computations. This approach was
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initiated in [15] for 4SAT. We sketch this approach.
Consider a random 4SAT formula f with m � n2 clauses. In a satisfying

assignment a, at least half the variables are negative. (A complimentary
argument handles the case that at least half of the variables are positive in
a.) Let S be the set of variables negative in a. observe that there cannot be
a positive clause in f whose four variables are in S. Construct a graph G
on N =

(n
2

)

vertices, in which every pair of variables is a vertex, and every
positive clause (xi ∨ xj ∨ xk ∨ xl) contributes an edge ([xixj], [xkxl]). If f is
satisfiable then S induces an independent set of size N/4. Hence to refute
f it suffices to show that G has no independent set of size N/4. But when
f is random, the graph G is random, and the condition m � n2 implies
that G has a large linear number of edges. Such graphs do not have large
independent sets. Moreover, this can be certified efficiently by eigenvalue
techniques (or by semidefinite programming, using the theta function of
Lovasz).

In combination with some additional ideas, the above approach extends
to refuting random 3SAT formulas with m > cn3/2 clauses for large enough
c [12]. It is not know how to refute random 3SAT formulas with less than n3/2

clauses. In particular, it is known that when m is much smaller than n3/2,
resolution would take exponential time [4], and that certain semidefinite
programming approaches (reducing 3SAT to independent set on a graph
with 7m vertices, and computing the theta function of the resulting graph)
would not work.

4 Summary

We presented some rigorous models in which one can study heuristics. We
presented some algorithmic results in these models (the presentation was
biased towards algorithms that the author is more familiar with). There are
also hardness results for some of these models, showing that under certain
settings of the parameters of the model, no heuristic will work. This is
beyond the scope of this presentation, but see [10] for example.

Two points that we wish to make is that in principle, it is possible to
study heuristics in a mathematically rigorous way, and that once this is
done, the design of heuristics may require quite sophisticated algorithmic
ideas and supporting mathematical analysis. But perhaps the main point is
that the rigorous study of heuristics is still a young and wide open research
area.
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Data Stream Algorithms in Computational Geometry

Timothy M. Chan∗

University of Waterloo

The data stream model has received considerable attention in recent years, due to its

ability to cope with massive data sets. The model is simple: an algorithm makes one (or

a small number of) pass(es) over the input and is allowed to store only a limited amount

of information at any moment in time.

In this talk, we discuss some recent results about streaming algorithms in computa-

tional geometry. A number of basic geometric problems are considered, and a few different

types of streaming algorithms are explored. For example:

- we describe a one-pass algorithm that can compute approximate extents (or convex

hulls) in fixed dimensions, using only a constant amount of space;

- we describe a sliding-window algorithm to maintain an approximation to the diam-

eter of a low-dimensional point set, using O(log R) space, where R is a bound on

the distance ratio;

- we show that if a constant number of passes is allowed, then certain geometric prob-

lems, such as low-dimensional linear programming, can actually be solved exactly,

using O(nδ) space, for any fixed δ > 0.

∗Some parts of the talk are joint work with B. Sadjad and with E. Y. Chen.
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Steps into Computational Algebraic Topology

Herbert Edelsbrunner
Arts and Sciences Professor of Computer Science and Mathematics

Duke University

A nested sequence of progressively larger topological spaces implies a sequence of homol-
ogy groups connected by maps induced by the inclusions of the corresponding spaces. For
each pair of groups, we call the image of the earlier in the later group a persistent homology
group. Given a function on a topological space, the sublevel sets form such a nested sequence
of spaces. The corresponding persistent homology groups can be encoded using a finite mul-
tiset in the extended plane. We call this multiset the persistence diagram of the function.
Assuming a triangulation of the space and a piecewise linear function, we have an algorithm
that computes the persistence diagram in worst-case time cubic in the size of the triangula-
tion. However, its observed running time is vastly better so that even triangulations with a few
million simplices can be processed in a matter of seconds. We have proved that for two contin-
uous functions on a common space, the Fréchet bottleneck distance between the two diagrams
is bounded from above by the maximum norm of the difference function.

We justify the introduction of the above concepts and the design and implementation of
their algorithms by three applications:

(i) the estimation of the homology of a shape from a finite point sample;

(ii) the establishment of a new bound on the difference between the total mean curvatures of
two topologically equivalent surfaces;

(iii) the development of a coarse docking algorithm for proteins based on the detection of
shape features on a continuum of scale levels.
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Efficient Algorithms for the Longest Path Problem

Ryuhei Uehara

JAIST

The longest path problem is to find a longest path in a given graph. While the graph

classes in which the Hamiltonian path problem can be solved efficiently are widely inves-

tigated, few graph classes are known to be solved efficiently for the longest path problem.

We show some efficient algorithms for the longest path problems for some graph classes.

The complexity of the longest path problem for interval graphs, convex graphs, and bi-

convex graphs is remained open.
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Improved Approximation Algorithms for Metric Max TSP

Zhi-Zhong Chen ∗ Takayuki Nagoya †

Abstract

We present two O(n3)-time approximation algorithms for the metric case of the maximum

traveling salesman problem, where n is the number of vertices in the input (undirected or

directed) graph. One of them is for directed graphs and its approximation ratio is 27

35
. The

other is for undirected graphs and its approximation ratio is 7

8
− o(1). Both algorithms improve

on the previous bests.

1 Introduction

The maximum traveling salesman problem (MaxTSP) is to compute a maximum-weight Hamil-

tonian circuit (called a tour) in a given complete edge-weighted (undirected or directed) graph.

Usually, MaxTSP is divided into the symmetric and the asymmetric cases. In the symmetric case,

the input graph is undirected; we denote this case by SymMaxTSP. In the asymmetric case, the

input graph is directed; we denote this case by AsymMaxTSP. Note that SymMaxTSP can be

trivially reduced to AsymMaxTSP.

A natural constraint one can put on AsymMaxTSP and SymMaxTSP is the triangle inequality

which requires that for every set of three vertices u1, u2, and u3 in the input graph G, w(u1, u2) ≤
w(u1, u3) + w(u3, u2), where w(ui, uj) is the weight of the edge from ui to uj in G. If we put this

constraint on AsymMaxTSP, we obtain a problem called metric AsymMaxTSP. Similary, if we

put this constraint on SymMaxTSP, we obtain a problem called metric SymMaxTSP.

Both metric SymMaxTSP and metric AsymMaxTSP are Max-SNP-hard [1] and there have

been a number of approximation algorithms known for them [7, 4, 5]. In 1985, Kostochka and

Serdyukov [7] gave an O(n3)-time approximation algorithm for metric SymMaxTSP that achieves

an approximation ratio of 5
6 . Their algorithm is very simple and elegant. Tempted by improving

the ratio 5
6 , Hassin and Rubinstein [4] gave a randomized O(n3)-time approximation algorithm for

metric SymMaxTSP whose expected approximation ratio is 7
8 − o(1). This randomized algorithm

was recently (partially) derandomized by Chen et al. [3]; their result is a (deterministic) O(n3)-

time approximation algorithm for metric SymMaxTSP whose approximation ratio is 17
20 − o(1). In

this paper, we completely derandomize the randomized algorithm, i.e., we obtain a (deterministic)

O(n3)-time approximation algorithm for metric SymMaxTSP whose approximation ratio is 7
8−o(1).

Our algorithm also has the advantage of being easy to parallelize. Our derandomization is based

∗Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports

and Culture of Japan, under Grant No. 14580390. Department of Mathematical Sciences, Tokyo Denki University,

Hatoyama, Saitama 350-0394, Japan. Email: chen@r.dendai.ac.jp.
†Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:

nagoya@r.dendai.ac.jp.
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on the idea of Chen et al. [3] and newly discovered properties of a folklore partition of the edges

of a 2n-vertex complete undirected graph into 2n − 1 perfect matchings. These properties may

be useful elsewhere. In particular, one of the properties says that if G = (V,E) is a 2n-vertex

complete undirected graph and M is a perfect matching of G, then we can partition E − M into

2n− 2 perfect matchings M1, . . . , M2n−2 among which there are at most k2 − k perfect matchings

Mi such that the graph (V,M ∪ Mi) has a cycle of length at most 2k for every natural number

k. This property is interesting because Hassin and Rubinstein [4] prove that if G and M are as

before and M ′ is a random perfect matching of G, then with probability 1 − o(1) the multigraph

(V,M ∪ M ′) has no cycle of length at most
√

n. Our result shows that instead of sampling from

the set of all perfect matchings of G, it suffices to sample from M1, . . . , M2n−2. This enables us to

completely derandomize their algorithm.

As for metric AsymMaxTSP, Kostochka and Serdyukov [7] gave an O(n3)-time approximation

algorithm that achieves an approximation ratio of 3
4 . Their result remained the best in two decades

until Kaplan et al. [5] gave a polynomial-time approximation algorithm whose approximation ratio

is 10
13 . The key in their algorithm is a polynomial-time algorithm for computing two cycle covers C1

and C2 in the input graph G such that C1 and C2 do not share a 2-cycle and the sum of their weights

is at least twice the optimal weight of a tour of G. They then observe that the multigraph formed

by the edges in 2-cycles in C1 and C2 can be split into two subtours of G. In this paper, we show that

the multigraph formed by the edges in 2-cycles in C1 and C2 together with a constant fraction of the

edges in non-2-cycles in C1 and C2 can be split into two subtours of G. This enables us to improve

Kaplan et al.’s algorithm to a polynomial-time approximation algorithm whose approximation ratio

is 27
35 .

2 Basic Definitions

Throughout this paper, a graph means a simple undirected or directed graph (i.e., it has neither

multiple edges nor self-loops), while a multigraph may have multiple edges but no self-loops.

Let G be a multigraph. We denote the vertex set of G by V (G), and denote the edge set of G

by E(G). For a subset F of E(G), G−F denotes the graph obtained from G by deleting the edges

in F . Two edges of G are adjacent if they share an endpoint.

Suppose G is undirected. The degree of a vertex v in G is the number of edges incident to v in

G. A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A cycle cover of

G is a subgraph H of G with V (H) = V (G) in which each vertex is of degree 2. A matching of G is

a (possibly empty) set of pairwise nonadjacent edges of G. A perfect matching of G is a matching

M of G such that each vertex of G is an endpoint of an edge in M .

Suppose G is directed. The indegree of a vertex v in G is the number of edges entering v in

G, and the outdegree of v in G is the number of edges leaving v in G. A cycle in G is a connected

subgraph of G in which each vertex has indegree 1 and outdegree 1. A cycle cover of G is a subgraph

H of G with V (H) = V (G) in which each vertex has indegree 1 and outdegree 1. A 2-path-coloring

of G is a partition of E(G) into two subsets E1 and E2 such that both graphs (V (G), E1) and

(V (G), E2) are collections of vertex-disjoint paths. G is 2-path-colorable if it has a 2-path-coloring.

Suppose G is undirected or directed. A path in G is either a single vertex of G or a subgraph of

G that can be transformed to a cycle by adding a single (new) edge. The length of a cycle or path

C is the number of edges in C. A k-cycle is a cycle of length k. A 3+-cycle is a cycle of length
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at least 3. A tour (also called a Hamiltonian cycle) of G is a cycle C of G with V (C) = V (G). A

subtour of G is a subgraph H of G which is a collection of vertex-disjoint paths.

A closed chain is a directed graph that can be obtained from an undirected k-cycle C with

k ≥ 3 by replacing each edge {u, v} of C with the two directed edges (u, v) and (v, u). Similarly,

an open chain is a directed graph that can be obtained from an undirected path P by replacing

each edge {u, v} of P with the two directed edges (u, v) and (v, u). An open chain is trivial if it is

a single vertex. A chain is a closed or open chain. A partial chain is a subgraph of a chain.

For a graph G and a weighting function w mapping each edge e of G to a nonnegative real

number w(e), the weight of a subset F of E(G) is w(F ) =
∑

e∈F w(e), and the weight of a subgraph

H of G is w(H) = w(E(H)).

3 New Algorithm for Metric AsymMaxTSP

Throughout this section, fix an instance (G, w) of metric AsymMaxTSP, where G is a complete

directed graph and w is a function mapping each edge e of G to a nonnegative real number w(e).

For each cycle C in G, we define its reversal to be the cycle obtained by reversing the direction of

each edge in C. Note that C is the reversal of its reversal. Moreover, C is its reversal if and only

if C is a 2-cycle.

Let OPT be the weight of a maximum-weight tour in G. Our goal is to compute a tour in

G whose weight is large compared to OPT . We first review Kaplan et al.’s algorithm and define

several notations on the way.

3.1 Kaplan et al.’s Algorithm

The key in their algorithm is the following:

Theorem 3.1 [5] We can compute two cycle covers C1, C2 in G in polynomial time that satisfy the

following two conditions:

1. C1 and C2 do not share a 2-cycle. In other words, if C is a 2-cycle in C1 (respectively, C2),

then C2 (respectively, C1) does not contain at least one edge of C.

2. w(C1) + w(C2) ≥ 2 · OPT .

Let G2 be the subgraph of G such that V (G2) = V (G) and E(G2) consists of all edges in

2-cycles in C1 and/or C2. Then, G2 is a collection of vertex-disjoint chains. For each closed chain

C in G2, we can compute two edge-disjoint tours T1 and T2 (each of which is of length at least 3),

modify C1 by substituting T1 for the 2-cycles shared by C and C1, modify C2 by substituting T2 for

the 2-cycles shared by C and C2, and further delete C from G2. After this modification of C1 and

C2, the two conditions in Theorem 3.1 still hold. So, we can assume that there is no closed chain

in G2.

For each i ∈ {1, 2}, let Wi,2 denote the total weight of 2-cycles in Ci, and let Wi,3 = w(Ci)−Wi,2.

For convenience, let W2 = 1
2(W1,2 + W2,2) and W3 = 1

2(W1,3 + W2,3). Then, by Condition 2 in

Theorem 3.1, we have W2 + W3 ≥ OPT . Moreover, using an idea in [7], Kaplan et al. observed

the following:
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Lemma 3.2 [5] We can use C1 and C2 to compute a tour T of G with w(T ) ≥ 3
4W2 + 5

6W3 in

polynomial time.

Since each nontrivial open chain has a 2-path-coloring, we can use G2 to compute a tour T ′ of

G with w(T ′) ≥ W2 in polynomial time. Combining this observation, Lemma 3.2, and the fact that

W2 + W3 ≥ OPT , the heavier one between T and T ′ is of weight at least 10
13OPT .

3.2 Details of the New Algorithm

The idea behind our new algorithm is to improve the second tour T ′ in Kaplan et al.’s algorithm

so that it has weight at least W2 + 1
9W3. The tactics is to add some edges of 3+-cycles in Ci with

Wi,3 = max{W1,3,W2,3} to G2 so that G2 remains 2-path-colorable. Without loss of generality, we

may assume that W1,3 ≥ W2,3. Then, our goal is to add some edges of 3+-cycles in C1 to G2 so

that G2 remains 2-path-colorable.

We say that an open chain P in G2 spoils an edge (u, v) of a 3+-cycle in C1 if u and v are the

two endpoints of P . Obviously, adding a spoiled edge to G2 destroys the 2-path-colorability of G2.

Fortunately, there is no 3+-cycle in C1 in which two consecutive edges are both spoiled. So, let C1,

. . . , C` be the 3+-cycles in C1; we modify each Cj (1 ≤ j ≤ `) as follows (see Figure 1):

• For every two consecutive edges (u, v) and (v, x) of Cj such that (u, v) is spoiled, replace

(u, v) by the two edges (u, x) and (x, v). (Comment: We call (u, x) a bypass edge of Cj , call

the 2-cycle between v and x a dangling 2-cycle of Cj , and call v the articulation vertex of the

dangling 2-cycle. We also say that the bypass edge (u, x) and the dangling 2-cycle between v

and x correspond to each other.)

We call the above modification of Cj the bypass operation on Cj . Note that applying the bypass

operation on Cj does not decrease the weight of Cj because of the triangle inequality. Moreover,

the edges of Cj not contained in dangling 2-cycles of Cj form a cycle. We call it the primary cycle

of Cj . Note that Cj may have neither bypass edges nor dangling 2-cycles (this happens when Cj

has no bad edges).

�����

�����

Figure 1: (1) A 3+-cycle Cj (formed by the one-way edges) in C1 and the open chains (each shown

by a two-way edge) each of which has a parallel edge in Cj . (2) The modified Cj (formed by the

one-way edges), where bypass edges are dashed and dangling 2-cycles are painted.

Let H be the union of the modified C1, . . . , C`, i.e., let H be the directed graph with V (H) =
⋃

1≤j≤` V (Cj) and E(H) =
⋃

1≤j≤` E(Cj). We next show that E(H) can be partitioned into

three subsets each of which can be added to G2 without destroying its 2-path-colorability. Before

proceeding to the details of the partitioning, we need several definitions and lemmas.
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Two edges (u1, u2) and (v1, v2) of H form a critical pair if u1 and v2 are the endpoints of some

open chain in G2 and u2 and v1 are the endpoints of another open chain in G2 (see Figure 2). Note

that adding both (u1, v1) and (u2, v2) to G2 destroys its 2-path-colorability. An edge of H is critical

if it together with another edge of H forms a critical pair. Note that for each critical edge e of H,

there is a unique edge e′ in H such that e and e′ form a critical pair. We call e′ the rival of e. An

edge of H is safe if it is not critical. A bypass edge of H is a bypass edge of a Cj with 1 ≤ j ≤ `.

Similarly, a dangling 2-cycle of H is a dangling 2-cycle of a Cj with 1 ≤ j ≤ `. A dangling edge of

H is an edge in a dangling 2-cycle of H.

u u

v v

1 2

12

Figure 2: A critical pair formed by edges (u1, u2) and (v1, v2).

Lemma 3.3 No bypass edge of H is critical.

Proof. Suppose that e = (u1, u2) is a bypass edge of a Cj with 1 ≤ j ≤ `. Then, u2 is the

articulation vertex of a dangling 2-cycle C of Cj . Let u3 be the vertex of C other than u2. Then,

there is an open chain P in G2 whose endpoints are u1 and u3. Since e leaves u1 and e′ = (u2, u3)

is the unique edge entering u3, e′ has to be the rival of e whenever e is critical. However, by the

definition of criticalness, each critical edge and its rival should not be adjacent. So, e cannot be

critical. 2

Lemma 3.4 Fix a j with 1 ≤ j ≤ `. Suppose that an edge e of Cj is a critical dangling edge of

H. Let C be the dangling 2-cycle of Cj containing e. Let e′ be the rival of e. Then, the following

statements hold:

1. e′ is also an edge of Cj.

2. If e′ is also a dangling edge of H, then the primary cycle of Cj consists of the two bypass

edges corresponding to C and C ′, where C ′ is the dangling 2-cycle of Cj containing e′.

3. If e′ is not a dangling edge of H, then e′ is the edge in the primary cycle of Cj whose head is

the tail of the bypass edge corresponding to C.

Proof. Let u1 be the articulation vertex of C, and let u2 be the other vertex of C. Then, there

is an open chain P one of whose endpoints is u2. Let u3 be the other endpoint of P . We now prove

the statemetns separately as follows.

Statement 1. Note that u3 must be a vertex of Cj (indeed, (u3, u1) is a bypass edge of Cj).

By the definition of criticalness, the rival of e is an edge incident to u3. However, every edge of H

incident to u3 is in Cj . Thus, the rival of e must be in Cj whenever e is critical.

Statement 2. Suppose that e′ is also a dangling edge of H. Then, since e′ is incident to u3 (as

observed in the proof of Statement 1) and u3 appears in the primary cycle of Cj , u3 must be the
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articulation vertex of the dangling 2-cycle C ′ containing e′. Let u4 be the vertex of C ′ other than

u3. Then, by the definition of criticalness, there is an open chain in G2 whose endpoints are u4 and

u1. Now, (u1, u3) has to be the bypass edge corresponding to C ′. Recall that (u3, u1) is the bypass

edge corresponding to C. This completes the proof of Statement 2.

Statement 3. Suppose that e′ is not a dangling edge of H. Recall that e′ is incident to u3 and

(u3, u1) is a bypass edge of Cj . By Lemma 3.3, e′ cannot be (u3, u1). So, e′ has to be the edge in

the primary cycle of Cj entering u3. 2

Lemma 3.5 Fix a j with 1 ≤ j ≤ ` such that the primary cycle C of Cj contains no bypass edge.

Let u1, . . . , uk be a cyclic ordering of the vertices in C. Then, the following hold:

1. Suppose that there is a chain P in G2 whose endpoints appear in C but not consecutively (i.e.,

its endpoints are not connected by an edge of C). Then, at least one edge of C is safe.

2. Suppose that every edge of C is critical. Then, there is a unique Cj′ with j′ ∈ {1, . . . , `}−{j}
such that (1) the primary cycle C ′ of Cj′ has exactly k vertices and (2) the vertices of C ′ have

a cyclic ordering v1, . . . , vk such that for every 1 ≤ i ≤ k, ui and vk−i+1 are the endpoints

of some chain in G2. (See Figure 4.)

Proof. We prove the two statements separately as follows.

Statement 1. By the existence of P , we can find two vertices ui and uh in C with i < h such that

(1) neither (ui, uh) nor (uh, ui) is an edge of C, (2) there is a chain in G2 whose endpoints are ui

and uh, and (3) there is no chain in G2 whose endpoints both are in the set {ui+1, ui+2, . . . , uh−1}.
Obviously, (ui, ui+1) is safe.

Statement 2. Each vertex ui of C is an endpoint of a chain Pi in G2 or else the two edges

incident to ui would be safe. Moreover, P1 6= P2, P2 6= P3, . . . , Pk−1 6= Pk, and Pk 6= P1 because

we have applied the bypass operation on Cj . Furthermore, by Statement 1, there do not exist i

and h with 1 ≤ i 6= h ≤ k with Pi = Ph. Therefore, for every i ∈ {1, . . . , k}, the endpoint of Pi

other than ui is not in C.

For each i ∈ {1, . . . , k}, let vk−i+1 be the endpoint of Pi other than ui. Obviously, for each

i ∈ {1, . . . , k − 1}, (vk−i, vk−i+1) has to be an edge of H because (ui, ui+1) is a critical edge.

Similarly, (vk, v1) has to be an edge of H because (uk, u1) is a critical edge. So, v1, . . . , vk is a

cyclic ordering of the vertices of some cycle C ′ in H. Let j′ be the integer in {1, . . . , `} such that

C ′ is a cycle in Cj′ .

It remains to show that C ′ is not a dangling 2-cycle of Cj′ . For a contradiction, assume that C ′

is a dangling 2-cycle of Cj′ . Then, by Statement 1 in Lemma 3.4, j = j′ and C has to be the primary

cycle of Cj′ . Moreover, since C ′ is a 2-cycle, C is a 2-cycle, too. But then, {u1, u2} ∩ {v1, v2} 6= ∅,
because the articulation vertex of C ′ has to be a vertex of C. This contradicts the fact that for

each i ∈ {1, . . . , k}, the endpoint of Pi other than ui is not in C (as observed above). 2

Now we are ready to describe how to partition E(H) into three subsets each of which can be

added to G2 without destroying its 2-path-colorability. We use the three colors 0, 1, and 2 to

represent the three subsets, and want to assign each edge of E(H) a color in {0, 1, 2} so that the

following conditions are satisfied:

(C1) For every critical edge e of H, e and its rival receive different colors.

6
25

– 364 –



(C2) For every dangling 2-cycle C of H, the two edges in C receive the same color.

(C3) If two adjacent edges of H receive the same color, then they form a 2-cycle of H.

To compute a coloring of the edges of H satisfying the above three conditions, we process C1,

. . . , C` in an arbitrary order. While processing Cj (1 ≤ j ≤ `), we color the edges of Cj by

distinguishing four cases as follows (where C denotes the primary cycle of Cj):

Case 1: C is a 2-cycle. Then, C contains either one or two bypass edges. In the former (re-

spectively, latter) case, we color the edges of Cj as shown in Figure 3(2) (respectively, Figure 3(1)).

Note that the colored edges satisfy Conditions (C1) through (C3) above.
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� �

�

�

�

�

�

�

�

�

���

�

�

�

Figure 3: Coloring Cj when its primary cycle is a 2-cycle.

Case 2: Every edge of C is critical. Then, by Lemma 3.3, C contains no bypass edge. Let j′ be

the integer in {1, . . . , `}−{j} such that Cj′ satisfies the two conditions (1) and (2) in Statement 2 in

Lemma 3.5. Then, by Lemma 3.4 and Statement 2 in Lemma 3.5, neither Cj nor Cj′ has a bypass

edge or a dangling 2-cycle. So, the primary cycle of Cj (respectively, Cj′) is Cj (respectively, Cj′)

itself. We color the edges of Cj and Cj′ simultaneously as follows (see Figure 4). First, we choose

one edge e of Cj , color e with 2, and color the rival of e with 0. Note that the uncolored edges

of Cj form a path Q. Starting at one end of Q, we then color the edges of Q alternatively with

colors 0 and 1. Finally, for each uncolored edge e′ of Cj′ , we color it with the color h ∈ {1, 2} such

that the rival of e′ has been colored with h−1. Note that the colored edges satisfy Conditions (C1)

through (C3) above.
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Figure 4: Coloring Cj and Cj′ when all their edges are critical.

Case 3: Neither Case 1 nor Case 2 occurs and no edge of Cj is a critical dangling edge of H.

Then, by Lemma 3.3 and Statement 1 in Lemma 3.5, C contains at least one safe edge. Let e1,

. . . , ek be the edges of C, and assume that they appear in C cyclically in this order. Without loss

of generality, we may assume that e1 is a safe edge. We color e1 with 0, and then color the edges

e2, . . . , ek in this order as follows. Suppose that we have just colored ei with a color hi ∈ {0, 1, 2}
and we want to color ei+1 next, where 1 ≤ i ≤ k − 1. If ei+1 is a critical edge and its rival has
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been colored with (hi + 1) mod 3, then we color ei+1 with (hi + 2) mod 3; otherwise, we color ei+1

with (hi +1) mod 3. If ek is colored 0 at the end, then we change the color of e1 from 0 to the color

in {1, 2} that is not the color of e2. Now, we can further color each dangling 2-cycle C ′ of Cj with

the color in {0, 1, 2} that has not been used to color the two edges of C incident to the articulation

vertex of C ′. Note that the colored edges satisfy Conditions (C1) through (C3) above.

Case 4: Neither Case 1 nor Case 2 occurs and some edge of Cj is a critical dangling edge of

H. For each dangling edge e of H with e ∈ E(Cj), we define the partner of e to be the edge e′ of

C leaving the articulation vertex u of the dangling 2-cycle containing e, and define the mate of e

to be the bypass edge e′′ of Cj entering u (see Figure 6). We say that an edge e of Cj is bad if e is

a critical dangling edge of H and its partner is the rival of another critical dangling edge of H. If

Cj has a bad edge e, then Statement 3 in Lemma 3.4 ensures that Cj is as shown in Figure 5 and

can be colored as shown there without violating Conditions (C1) through (C3) above.
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Figure 5: Cj (formed by the one-way edges) and its coloring when it has a bad edge e.
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Figure 6: The rival, the mate, and the partner of a critical dangling edge e of H together with the

opponent of the partner of e.

So, suppose that Cj has no bad edge. We need one more definition (see Figure 6). Consider

a critical dangling edge e of H with e ∈ E(Cj). Let e′ and e′′ be the partner and the rival of e,

respectively. Let e′′′ be the edge of C entering the tail of e′′. Let P be the open chain in G2 whose

endpoints are the tails of e′ and e′′. We call e′′′ the opponent of e′. Note that e′ 6= e′′′ because the

endpoints of P are the tail of e′ and the head of e′′′. Moreover, if e′ is a critical edge of H, then the

rival of e′ has to be e′′′ because e is not bad and P exists. In other words, whenever an edge of C

has both its rival and its opponent, they must be the same. Similarly, if e′′′ is a critical edge of H,

then its rival has to be e′. Obviously, neither e′ nor E′′′ can be the rival or the mate of a critical

dangling edge of H (because Cj has no bad edge).

Now, let e1, . . . , eq be the edges of C none of which is the rival or the mate of a critical dangling

edge of Cj . We may assume that e1, . . . , eq appear in C ′ cyclically in this order. Without loss of

generality, we may further assume that e1 is the partner of a critical dangling edge of H. Then,

we color e1 with 0, and further color e2, . . . , eq in this order as follows. Suppose that we have just

colored ei with a color hi ∈ {0, 1, 2} and we want to color ei+1 next, where 1 ≤ i ≤ q − 1. If ei+1 is

a critical edge of H and its rival or opponent has been colored with (hi + 1) mod 3, then we color
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ei+1 with (hi +2) mod 3; otherwise, we color ei+1 with (hi +1) mod 3. Note that the colored edges

satisfy Conditions (C1) through (C3) above, because the head of eq is not the tail of e1.

We next show how to color the rival and the mate of each critical dangling edge of Cj . For each

critical dangling edge e of Cj , since its partner e′ and the opponent of e′ have been colored, we can

color the rival of e with the color of e′ and color the mate of e with a color in {0, 1, 2} that is not

the color of e′. Note that the colored edges satisfy Conditions (C1) through (C3) above, because

e′ and its opponent have different colors.

Finally, for each dangling 2-cycle D of Cj , we color the two edges of D with the color in {0, 1, 2}
that has not been used to color an edge incident to the articulation vertex of D. Note that the

colored edges satisfy Conditions (C1) through (C3) above, because the rival of each critical dangling

edge e of H has the same color as the partner of e does. This completes the coloring of Cj (and

hence H).

We next want to show how to use the coloring to find a large-weight tour in G. For each

i ∈ {0, 1, 2}, let Ei be the edges of H with color i. Without loss of generality, we may assume

that w(E0) ≥ max{w(E1), w(E2)}. Then, w(E0) ≥ 1
3W1,3 (see the beginning of this subsection for

W1,3). Consider the undirected graph U = (V (G), F1 ∪ F2), where F1 consists of all edges {v1, v2}
such that (v1, v2) or (v2, v1) is an edge in E0, and F2 consists of all edges {v3, v4} such that v3 and

v4 are the endpoints of an open chain in G2. We further assign a weight to each edge of F1 as

follows. We first initialize the weight of each edge of F1 to be 0. For each edge (v1, v2) ∈ E0, we then

add the weight of edge (v1, v2) to the weight of edge {v1, v2}. Note that for each i ∈ {1, 2}, each

connected component of the undirected graph (V (G), Fi) is a single vertex or a single edge because

of Condition (C3) above. So, each connected component of U is a path or a cycle. Moreover, each

cycle of U contains at least three edges of F1 because of Condition (C1) above. For eacy cycle D

of U , we mark exactly one edge {v1, v2} ∈ F1 in D whose weight is the lightest among all edges

{v1, v2} ∈ F1 in D. Let E3 be the set of all edges (v1, v2) ∈ E0 such that {v1, v2} is marked.

Then, w(E3) ≤ 1
3w(E0). Consider the directed graph G′

2 obtained from G2 by adding the edges of

E0 −E3. Obviously, w(G′
2) ≥ (W1,2 + W2,2) + 1

9W1,3. Moreover, G′
2 is a collection of partial chains

and hence is 2-path-colorable. So, we can partition the edges of G′
2 into two subsets E′

1 and E′
2 such

that both graphs (V (G), E′
1) and (V (G), E′

2) are subtours of G. The heavier one among the two

subtours can be completed to a tour of G of weight at least 1
2(W1,2 + W2,2) + 1

18W1,3 ≥ W2 + 1
9W3.

Combining this with Lemma 3.2, we now have:

Theorem 3.6 There is a polynomial-time approximation algorithm for AsymMaxTSP achieving

an approximation ratio of 27
35 .

4 New Algorithm for Metric SymMaxTSP

Throughout this section, fix an instance (G, w) of metric SymMaxTSP, where G is a complete

undirected graph with n vertices and w is a function mapping each edge e of G to a nonnegative

real number w(e). Because of the triangle inequality, the following fact holds (see [3] for a proof):

Fact 4.1 Suppose that P1, . . . , Pt are vertex-disjoint paths in G each containing at least one edge.

For each 1 ≤ i ≤ t, let ui and vi be the endpoints of Pi. Then, we can use some edges of G to connect

P1, . . . , Pt into a single cycle C in linear time such that w(C) ≥ ∑t
i=1 w(Pi) + 1

2

∑t
i=1 w({ui, vi}).
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Like Hassin and Rubinstein’s algorithm (H&R2-algorithm) for the problem, our algorithm com-

putes two tours T1 and T2 of G and outputs the one with the larger weight. The first two steps of

our algorithm are the same as those of H&R2-algorithm:

1. Compute a maximum-weight cycle cover C. Let C1, . . . , Cr be the cycles in G.

2. Compute a maximum-weight matching M in G.

Lemma 4.2 [3] In linear time, we can compute two disjoint subsets A1 and A2 of
⋃

1≤i≤r E(Ci)−M

satisfying the following conditions:

(a) For each j ∈ {1, 2}, each connected component of the graph (V (G),M ∪Aj) is a path of length

at least 1.

(b) For each j ∈ {1, 2} and each i ∈ {1, . . . , r}, |Aj ∩ E(Ci)| = 1.

For a technical reason, we will allow our algorithm to use only 1 random bit (so we can easily

derandomize it, although we omit the details). The third through the seventh steps of our algorithm

are as follows:

3. Compute two disjoint subsets A1 and A2 of
⋃

1≤i≤r E(Ci) − M satisfying the two conditions

in Lemma 4.2.

4. Choose A from A1 and A2 uniformly at random.

5. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the edges in

A from C; and then connect these paths into a single (Hamiltonian) cycle T1 as described in

Fact 4.1.

6. Let S = {v ∈ V (G) | the degree of v in the graph (V,M ∪ A) is 1} and F = {{u, v} ⊆
E(G) | {u, v} ⊆ S}. Let H be the complete graph (S, F ). Let ` = 1

2 |S|. (Comment: |S| is

even, because of Condition (a) in Lemma 4.2.)

7. Let M ′ be the set of all edges {u, v} ∈ F such that some connected component of the graph

(V,M ∪ A) contains both u and v. (Comment: M ′ is a perfect matching of H because of

Condition (a) in Lemma 4.2.)

Lemma 4.3 [3] Let α = w(A1 ∪A2)/w(C). For a random variable X, let E [X] denote its expected

value. Then, E [w(F )] ≥ 1
4(1 − α)(2` − 1)w(C).

The next lemma shows that there cannot exist matchings of large weight in an edge-weighted

graph where the weights satisfy the triangle inequality:

Lemma 4.4 For every perfect matching N of H, w(N) ≤ w(F )/`.

Proof. Let the edges of N be {u1, u2}, {u3, u4}, . . . , {u2`−1, u2`}.
Case 1: ` is odd. For each odd number i with 1 ≤ i ≤ `, we assign the vertices ui+2, ui+3,

. . . , u`+i of H to the edge {ui, ui+1} of N . For each even number j with 1 ≤ j ≤ `, we assign the

vertices u1, u2, . . . , uj , u`+j+2, u`+j+3, . . . , u2` of H to the edge {u`+j , u`+j+1} of N . Note that
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each edge in N is assigned exactly `− 1 vertices of H. For each edge ei = {ui, ui+1} ∈ N and each

vertex uh assigned to ei, we then assign the two edges {ui, uh} and {ui+1, uh} of H to ei. Since

w({ui, uh}) + w({ui+1, uh}) ≥ w(ei) by the triangle inequality, the total weight of edges assigned

to each edge ei ∈ N is at least (`− 1)w(ei). Obviously, no edge of N is assigned to itself or another

edge of N . Moreover, a simple but crucial observation is that no edge of H is assigned to two or

more edges of N . Thus, w(F − N) ≥ (` − 1)w(N). Hence, w(N) ≤ w(F )/`.

Case 2: ` is even. Let N1 = {{u1, u2}, {u3, u4}, . . . , {un−1, un}} and N2 = N −N1. We assume

that w(N1) ≥ w(N2); the other case is similar. For each odd number i with 1 ≤ i ≤ ` − 1, we

assign the vertices ui+2, ui+3, . . . , u`+i+1 of H to the edge {ui, ui+1} of N , and assign the vertices

u1, u2, . . . , ui−1, u`+i+2, u`+i+3, . . . , u2` of H to the edge {u`+i, u`+i+1} of N . Note that each

edge in N1 (respectively, N2) is assigned exactly ` (respectively, ` − 2) vertices of H. For each

edge ei = {ui, ui+1} ∈ N and each vertex uh assigned to ei, we then assign the two edges {ui, uh}
and {ui+1, uh} of H to ei. Since w({ui, uh}) + w({ui+1, uh}) ≥ w(ei) by the triangle inequality,

the total weight of edges assigned to each edge ei ∈ N1 (respectively, ei ∈ N2) is at least `w(ei)

(respectively, (` − 2)w(ei)). Obviously, no edge of N is assigned to itself or another edge of N .

Moreover, a simple but crucial observation is that no edge of H is assigned to two or more edges

of N . Thus, w(F − N) ≥ `w(N1) + (` − 2)w(N2) ≥ (` − 1)w(N). Hence, w(N) ≤ w(F )/`. 2

The following is our main lemma and will be proved in Section 4.1:

Lemma 4.5 We can partition F −M ′ into 2`−2 perfect matchings M1, . . . , M2`−2 of H in linear

time satisfying the following condition:

• For every natural number q, there are at most q2 − q matchings Mi with 1 ≤ i ≤ 2` − 2 such

that the graph (S, M ′ ∪ Mi) has a cycle of length at most 2q.

Now, the eighth through the thirteenth steps of our algorithm are as follows:

8. Partition F −M ′ into 2`− 2 perfect matchings M1, . . . , M2`−2 of H in linear time satisfying

the condition in Lemma 4.5.

9. Let q = d 3
√

`e. Find a matching Mi with 1 ≤ i ≤ 2`−2 satisfying the following two conditions:

(a) The graph (S, M ′ ∪ Mi) has no cycle of length at most 2q.

(b) w(Mi) ≥ w(Mj) for all matchings Mj with 1 ≤ j ≤ 2`−2 such that the graph (S, M ′∪Mj)

has no cycle of length at most 2q.

10. Construct the graph G′
i = (V (G),M ∪ A ∪ Mi). (Comment: Mi ∩ (M ∪ A) = ∅ and each

connected component of G′
i is either a path, or a cycle of length 2q + 1 or more.)

11. For each cycle D in G′
i, mark exactly one edge e ∈ Mi ∩ E(D) such that w(e) ≤ w(e′) for all

e′ ∈ Mi ∩ E(D).

12. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the marked

edges from G′
i; and then connect these paths into a single (Hamiltonian) cycle T2 as described

in Fact 4.1.

13. If w(T1) ≥ w(T2), output T1; otherwise, output T2.
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Theorem 4.6 There is an O(n3)-time approximation algorithm for metric SymMaxTSP achieving

an approximation ratio of 7
8 − O(1/ 3

√
n).

Proof. Let OPT be the maximum weight of a tour in G. It suffices to prove that max{E [w(T1)],

E [w(T2)]} ≥ (7
8 − O(1/ 3

√
n)OPT . By Fact 4.1, E [w(T1)] ≥ (1 − 1

2α + 1
4α)w(C) ≥ (1 − 1

4α)OPT .

We claim that |S| ≥ 1
3n. To see this, consider the graphs GM = (V (G),M) and GA =

(V (G),M ∪ A). Because the length of each cycle in C is at least 3, |A| ≤ 1
3n by Condition (b) in

Lemma 4.2. Moreover, since M is a matching of G, the degree of each vertex in GM is 0 or 1.

Furthermore, GA is obtained by adding the edges of A to GM . Since adding one edge of A to GM

increases the degrees of at most two vertices, there exist at least n− 2|A| ≥ 1
3n vertices of degree 0

or 1 in GA. So, by Condition (a) in Lemma 4.2, there are at least 1
3n vertices of degree 1 in GA.

This establishes that |S| ≥ 1
3n. Hence, ` ≥ 1

6n.

Now, let x be the number of matchings Mj with 1 ≤ j ≤ 2`−2 such that the graph (S, M ′∪Mi)

has a cycle of length at most 2q. Then, by Lemmas 4.4 and 4.5, the weight of the matching Mi

found in Step 9 is at least (1 − x+1
`

) · w(F ) · 1
2`−2−x

. So, w(Mi) ≥ 1
`
· (1 − `−1

2`−2−q2+q
) · w(F )

because x ≤ q2 − q. Let Ni be the set of edges of Mi marked in Step 11. Then, w(Mi − Ni) ≥
q

q+1 ·
`−q2+q−1

`(2`−2−q2+q)
·w(F ). Hence, by Lemma 4.3 and the inequality ` ≥ 1

6n, we have E [w(Mi−Ni)] ≥
1
4(1 − α)(1 − O(1/ 3

√
n)w(C).

Obviously, E [w(T2)] ≥ E [w(M ∪A)]+E [w(Mi−Ni)] ≥ (1
2 − 1

2n
)OPT + 1

2αw(C)+E [w(Mi−Ni)].

Hence, by the last inequality in the previous paragraph, E [w(T2)] ≥ (3
4 + 1

4α−O(1/ 3
√

n))OPT . Com-

bining this with the inequality E [w(T1)] ≥ (1 − 1
4α)OPT , we finally have E [max{w(T1), w(T2)}] ≥

(7
8 − O(1/ 3

√
n)OPT .

The running time of the algorithm is dominated by the O(n3) time needed for computing a

maximum-weight cycle cover and a maximum-weight matching. 2

As observed in [3], the subsets A1 and A2 in Lemma 4.2 can be computed in O(log3 n) time

using a linear number of processors. So, our algorithm for metric Max TSP is parallelizable because

maximum-weight cycle covers and maximum-weight matchings can be computed by fast parallel

algorithms [6, 8]. We omit the details here.

4.1 Partitioning into Perfect Matchings

Let the vertices of H be ∞, 0, 1, . . . , 2` − 2, and let the edges of M ′ be

{∞, 0}, {1, 2` − 2}, {2, 2` − 3}, . . . , {` − 1, `}.

Then, a folklore partitioning of F − M ′ into 2` − 2 perfect matchings M1, . . . , M2`−2 of H is as

follows:

M1 : {∞, 1}, {2, 0}, {3, 2` − 2}, . . . , {`, ` + 1}
M2 : {∞, 2}, {3, 1}, {4, 0}, . . . , {` + 1, ` + 2}

...

M2`−2 : {∞, 2` − 2}, {0, 2` − 3}, {1, 2` − 4}, . . . , {` − 2, ` − 1}.
For each integer j 6∈ {0, 1, . . . , 2` − 2}, we identify j with the vertex h of H such that h ≡

j (mod 2` − 1). Then, for each integer i ∈ {0, 1, . . . , 2` − 2}, Mi consists of edge {∞, i} and all
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edges {j,−j +2i} with j ∈ {0, 1, . . . , 2`−2}−{i}. Obviously, for each i ∈ {1, . . . , 2`−2}, the graph

Hi = (S, Mi ∪ M ′) is a collection of vertex-disjoint cycles; we call the cycle containing vertex ∞
the main cycle of Hi and denote it by Di. For two natural numbers x and y, let gcd(x, y) denote

the greatest common divisor of x and y, and let lcm(x, y) denote the least common multiple of x

and y.

Lemma 4.7 For each i ∈ {1, . . . , 2` − 2}, the length of Di is
(

2`−1
gcd(2`−1,i) + 1

)

.

Proof. Recall that for each integer i ∈ {0, 1, . . . , 2`−2}, Mi consists of edge {∞, i} and all edges

{j,−j + 2i} with j ∈ {0, 1, . . . , 2` − 2} − {i}. Fix an i ∈ {1, . . . , 2` − 2}. Let 2h be the length of

Di. Suppose that we traverse Di by starting at vertex ∞, then visiting i, and proceeding along

the cycle until reaching vertex 0. This traversal should give the following ordering of the vertices

of Di:

∞, i,−i, 3i,−3i, 5i, · · · ,−(2h − 3)i, (2h − 1)i

where (2h − 1)i ≡ 0 (mod 2` − 1) because vertex 0 is the last one in the traversal. Note that for

every odd x ∈ {1, 2, . . . , 2h − 1}, xi is a vertex of Di.

Since (2h − 1)i ≡ 0 (mod 2` − 1), (2h − 1)i is a common multiple of integers 2` − 1 and i, and

hence there exists an integer α ≥ 1 such that

(2h − 1)i = α lcm(2` − 1, i) =

(

α · 2` − 1

gcd(2` − 1, i)

)

i. (4.1)

The last equality follows from the fact that (2`−1) i = gcd(2`−1, i) lcm(2`−1, i). By Equation 4.1,

2h − 1 = α · 2`−1
gcd(2`−1,i) . Therefore, α is an odd integer because 2`−1

gcd(2`−1,i) is an integer and 2h − 1

is odd.

We claim that α = 1. For a contradiction, assume that α is an odd integer greater than 1.

Then, by Equation 4.1, (2h − 1)i − (α − 1) lcm(2` − 1, i) = lcm(2` − 1, i) and hence

2h − 1 − (α − 1) · 2` − 1

gcd(2` − 1, i)
=

lcm(2` − 1, i)

i
. (4.2)

Since α − 1 is a possitive even integer, the left side of Equation 4.2 is an odd integer less than

2h − 1. Moreover, recall that 2h − 1 = α · 2`−1
gcd(2`−1,i) . So, the left side of Equation 4.2 is a positive

odd integer less than 2h− 1. Hence, (2h− 1− (α− 1) · 2`−1
gcd(2`−1,i)) i is an integer in the subsequence

i, 3i, 5i, . . . , (2h − 3)i, and is a multiple of 2` − 1 by Equation 4.2. However, this implies that

vertex 0 of Di is in the subsequence i, 3i, 5i, . . . , (2h− 3)i, a contradiction. Thus, the claim holds.

By the claim, 2h − 1 = 2`−1
gcd(2`−1,i) and so the length of Di is 2h = 2`−1

gcd(2`−1,i) + 1. 2

Corollary 4.8 If gcd(2` − 1, i) = 1, then Di is a tour of Hi.

We next show that if Di is not a tour of Hi, then Di is the shortest cycle in Hi.

Lemma 4.9 Fix an i such that 1 ≤ i ≤ 2`− 2 and gcd(2`− 1, i) 6= 1. Then, each cycle of Hi other

than Di is of length 2(2`−1)
gcd(2`−1,i) .

13
32

– 371 –



Proof. Fix a cycle D of Hi other than Di. Let 2h be the length of D. Consider an arbitrary

vertex j of D. As in the proof of Lemma 4.7, a traversal of D started at vertex j and ended at

vertex −j produces the following ordering of the vertices of D:

j,−j + 2i, j − 2i,−j + 4i, j − 4i,−j + 6i, . . . , j − 2(h − 1)i,−j + 2hi

where −j + 2hi ≡ −j (mod 2`− 1). Note that for every even x ∈ {2, 3, . . . , 2h}, −j + xi is a vertex

of D.

Since 2hi ≡ 0 (mod 2`−1), 2hi is a common multiple of integers 2`−1 and i, hence there exists

an integer α ≥ 1 such that

2hi = α lcm(2` − 1, i) =

(

α · 2` − 1

gcd(2` − 1, i)

)

i. (4.3)

By Equation 4.3, 2h = α · 2`−1
gcd(2`−1,i) . Therefore, α is an even integer.

We claim that α = 2. For a contradiction, assume that α is an even number greater than 2.

Then, by Equation 4.3, 2hi − (α − 2)lcm(2` − 1, i) = 2 lcm(2` − 1, i) and hence

2h − (α − 2) · 2` − 1

gcd(2` − 1, i)
=

2 lcm(2` − 1, i)

i
. (4.4)

Since α− 2 is a possitive even integer, the left side of Equation 4.4 is an even integer less than 2h.

Moreover, recall that 2h = α · 2`−1
gcd(2`−1,i) . So, the left side of Equation 4.4 is a positive even integer

less than 2h. Hence, −j + (2h − (α − 2) · 2`−1
gcd(2`−1,i)) i is an integer in the subsequence −j + 2i,

−j + 4i, . . . , −j + 2(h − 1)i, and is congruent to −j modulo 2` − 1 by Equation 4.4. However,

this implies that vertex −j of Di is in the subsequence −j + 2i, −j + 4i, . . . , −j + 2(h − 1)i, a

contradiction. Thus, the claim holds.

By the claim, 2h = 2(2`−1)
gcd(2`−1,i) and so the length of Di is 2h = 2(2`−1)

gcd(2`−1,i)
. 2

Corollary 4.10 For every i ∈ {1, 2, . . . , 2` − 2}, Di is the shortest cycle in Hi.

Proof. Fix an i ∈ {1, 2, . . . , 2`− 2}. If gcd(2`− 1, i) = 1, then Di is the unique cycle (and hence

the shortest cycle) in Hi by Corollary 4.8. Otherwise, by Lemmas 4.7 and 4.9, Di is shorter than

the other cycles in Hi. 2

Now, we are ready to prove Lemma 4.5:

Proof of Lemma 4.5: Fix a natural number q. By Corollary 4.10, it suffices to show that there

are at most q2 − q integers i ∈ {1, 2, . . . , 2` − 2} such that Di is of length at most 2q.

Consider a natural number p ≤ q. For each i ∈ {1, 2, . . . , 2` − 2}, if the length of Di is exactly

2p, then by Lemma 4.7, 2`−1
gcd(2`−1,i) + 1 = 2p and so

gcd(2` − 1, i) =
2` − 1

2p − 1
.

Since each integer i satisfying the above equality has to be a multiple of 2`−1
2p−1 , there can be at most

2p − 2 such integers in {1, 2, . . . , 2` − 2}.
Hence, there can be at most

∑q
p=1(2p − 2) = q2 − q integers i ∈ {1, 2, . . . , 2` − 2} such that Hi

has a cycle of length at most 2q. 2
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Energy-Optimal Online Algorithms for Broadcasting

in Wireless Networks

Shay Kutten∗, Hirotaka Ono†, David Peleg‡,

Kunihiko Sadakane†, and Masafumi Yamashita†

We consider problems related to the design of energy-efficient online message broadcasting

protocols in ad-hoc wireless networks. Recent developments in portable wireless devices

with limited power resources have led to considerable interest in problems involving the

construction of energy-efficient multicast trees in the network. Wireless devices can control

their transmission power in order to save power consumption whenever the distance to the

intended destination of the transmission is known. The attenuation of a signal with power

Ps is Pr = Ps

d(s,t)δ , where d(s, t) is the distance between hosts s and t, and δ ≥ 1 is the

distance-power gradient [3]. A message can be successfully decoded if Pr is no less than a

constant γ. Therefore the transmission range of a host s, namely, the maximum distance

to which a message can be successfully delivered from s, is (Ps/γ)1/δ . Power control also

has a positive effect on reducing the number of transmission collisions between nearby

senders.

The problem studied here concerns a single sender which has to transmit a message

to a given collection of receivers in an online setting, namely, when the hosts do not

know each other’s locations. The goal is to specify a protocol for the sender allowing it

to directly broadcast the message to the recipients and receive acknowledgements, while

minimizing the total transmission costs. By direct broadcast we mean that the sender is

required to transmit the message itself to every recipient, namely, multi-hop delivery is

not allowed. This restriction may be relevant in situations when the battery resources of

the receivers is severely limited and it is desired to minimize their transmissions, or when

when the reliability of the hosts is uncertain and only direct messages from the source

can be trusted.

Using varying levels of transmission power is important for energy-efficient communi-

cation. As far as the authors are aware, there has been no online algorithms with provable

worst-case guarantees for energy-efficient broadcasting in ad-hoc wireless networks.

The protocols proposed in this study are based on computing or estimating the dis-

tances from the sender host to the receiver hosts in an energy-efficient way. The most

∗Information Systems Group, Faculty of Industrial Engineering and Management, Technion, Haifa,
Israel. kutten@ie.technion.ac.il

†Department of Computer Science and Communication Engineering, Kyushu University, Fukuoka,
Japan. {ono,sada,mak}@csce.kyushu-u.ac.jp

‡Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,
Rehovot, Israel. david.peleg@weizmann.ac.il
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basic case is that of a single sender and a single receiver. The generic doubling protocol

employed by the sender is based on repeatedly transmitting the messages to increasingly

larger distances, until reaching the receiver. The behavior of this protocol depends on

the choice of the sequence of distances, and the problem is to determine them so as to

minimize the overall power consumption. If a specific probability distribution may be

assumed on the hosts, the algorithm can be optimized [4]. However we assume an online

setting in which no a priori information is given about the distance from the sender to

the receiver. Therefore the worst-case scenario should be considered. This motivation

leads us to apply a competitive analysis to the algorithm (cf. [2]). We compare the power

consumption of an algorithm with that of the optimal (infeasible) offline algorithm that

knows the distance d. We show that the optimal competitive ratio for this problem is

3/2+
√

2, i.e., there exists an online algorithm for the problem with this competitive ratio,

and no online algorithm has smaller competitive ratio. The problem is somewhat similar

to the famous cow path online problem [1], but setting the parameter of the algorithm is

not obvious.

Furthermore, we study the generalization of this problem where there is more than

one receiver. This is a propoer extension of the cow path problem. For this problem we

also propose a competitive online algorithm and prove its optimality. Interestingly, the

competitive ratio of the generalized problem is the same, namely, 3/2 +
√

2.
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The World Wide Web has evolved at a surprisingly high speed both in its size and in the
variety of its contents. There are several methods for mining communities, a set of related pages
or sites, on the Web using hyperlinks. Well-known examples of such methods include Kleinberg’s
HITS [4], trawling proposed by Kumar et al. [5], and the max-flow based method proposed by
Flake et al. [3]. These methods adopt a page-oriented framework, that is, it uses a page on the
Web as a unit of information. However, not a page but a site is frequently considered as a unit
of information in the Web.

In this talk, we introduce a site-oriented framework for mining communities and our imple-
mentation of the site-oriented framework; for the implementation, we propose a new model of
sites, called directory-based sites, and establish a method of identifying directory-based sites
from data of URLs and links. We explain why our site-oriented framework is more suitable
for mining communities than the page-oriented framework, by presenting several theoretical evi-
dences and the results of computational experiments using trawling, the max-flow based method,
and our new method which enumerates maximal cliques of mutual-links.

This talk is primarily based on the contents of the references [1] and [2].
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We consider the problem of assigning edge labels to a simple connected graph satisfying

the following three conditions: (1) Each edge has two integer labels, one for each end.

(2) For each vertex v of the graph, the labels around it are distinct and between 1 and

dv where dv is the degree of v. (3) There exists a cycle visiting all the vertices which

starts from an edge with label 1 around a vertex, and each time we arrive a vertex v

from an edge with label i, we go to the edge with label i + 1 (mod vd). This problem has

applications of efficient broadcasting in networks using less memory. We first show that

for any graph, there exists an assignment of labels satisfying the above conditions. Then

we consider lower and upper bounds of the length of cycles.
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A semimagic square is an n � n matrix filled with the numbers 0 � � � � � n2 � 1 in such a way that the sum of the
numbers in each row and each column are the same. Magic squares and related classes of integer matrices have been
studied extensively.

In this talk we generalize the notion of a semimagic square by replacing the requirement that all row and column
sums be the same by the analogous requirement for all k � k contiguous square submatrices; we call such n � n
matrices zero k � k-discrepancy matrices of order

�
k � n � . Let � � k � n � be the set of all such matrices. In this talk we

show that � � k � n � is non-empty if k and n are both even, and empty if they are relatively prime. Further, we show by
an explicit construction that � � k � km ���	 /0 for any integers k � m 
 2.

It is known that it is impossible to achieve zero discrepancy when n is odd and k is 2, but it is not known how
small the discrepancy can be for such n and k. In this talk, we present a scheme for achieving a new discrepancy
bound 2n for the case. This is an improvement from the previous bound 4n.

Our investigation is motivated by an application described below, but intuitively we seek a matrix filled with
distinct integers in an as uniform a manner as possible. The analogous geometric problem of distributing n points
uniformly in a unit square has been studied extensively in the literature [2, 3]. Usually, a family of regions is intro-
duced to evaluate the uniformity of a point distribution. If the points of an n-point set P are uniformly distributed,
for any region R in the family the number of points in R should be close to 1

n area
�
R � , where 1

n is the point density
of P in the entire square. Thus, the discrepancy of P in a region R is defined as the difference between this value
and the actual number of points of P in R. The discrepancy of the point distribution P with respect to the family of
regions is defined by the maximum such difference, over all regions. In the context of digital halftoning, a family
of axis-parallel squares (contiguous square submatrices) over a matrix is appropriate for measuring the uniformity
since human eye perception is usually modeled using weighted sum of intensity levels with Gaussian coefficients
over square regions around each pixel [1]. Thus, the matrices discussed in this paper can be used as dither matrices
in which integers are arranged in an apparently random manner to be used as variable thresholds.
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Ultimate Implementation and Analysis of the AMO Algorithm
for Pricing European-Asian Options
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We consider the pricing of European-Asian option which is a kind of path-dependent options. The

payoff of a European-Asian option is given as (A − X)+, where A is the average stock price during

the time from the purchase date to the expiration date of the option and X is the strike price. It is

known to be #P-hard in general to compute the exact price of path-dependent options on the binomial

tree model. Therefore, it is desired to design an efficient approximation algorithm with provable high

accuracy, and various pricing techniques have been developed so far.

A naive method for computing the exact price of European-Asian options, called the full-path

method, enumerates all paths in the binomial tree model. Unfortunately, the full-path method requires

exponential time since there are exponential number of paths in the binomial tree.

Aingworth, Motwani, and Oldham (AMO) (2000) proposed the first polynomial-time approxima-

tion algorithm with guaranteed worst-case error bound, which enables us to avoid the influence of

volatility to the theoretical error bound. The idea is to prune exponential number of high-payoff

paths by using mathematical formulae during the run of an aggregation algorithm based on dynamic

programming and bucketing. In each of n aggregation steps the algorithm produces the error bounded

by X/k, where k denotes the number of buckets used at each node of the binomial tree. Hence, the

error bound of the AMO algorithm is nX/k, and the algorithm runs in O(kn2) time.

The error bound is improved by Dai et al. (2002) and by Ohta et al. (2002). While the AMO

algorithm uses the same number of buckets at each node of the binomial tree, Dai et al. use different

number of buckets at each node. By adjusting the number of buckets at each node appropriately while

keeping the time complexity O(kn2), they achieved the error bound O(
√

nX/k), where k is the average

number of buckets used at each node. On the other hand, Ohta et al. use the idea of randomized

rounding in the aggregation steps of the algorithm, and achieves the error bound O(n1/4X/k).

In this talk, we further reduce the error bound by giving a randomized approximation algorithm

with an O(kn2) time complexity and an O(X/k) error bound. The error bound of our algorithm

is independent of the depth n of the binomial tree, although those of the AMO algorithm and its

previous variants are dependent on n. Our algorithm uses the ideas in Dai et al. (2002) and Ohta et

al. (2002). As in Ohta et al. (2002), we regard the aggregation steps of the algorithm as a Martingale

process with O(n2) random steps by using novel random variables. It can be shown that the expected

value of the output by our algorithm equals the exact price, and that the error in each single step

is bounded by a function of the number of buckets at a node of the binomial tree. Thus, we can

apply Azuma’s inequality to the Martingale process to obtain the error bound. If we choose k as the

number of buckets at each node, the algorithm coincides with the one by Ohta et al. To reduce the

error bound as much as possible, we adjust the number of buckets at each node and obtain the error

bound O(X/k), where k is the average number of buckets used at each node. Since the value X/k can

be seen as the “average” of the absolute error produced at each node of the binomial tree, the error

bound of our algorithm is the best possible within the framework of the AMO algorithm. We also

show the practical quality of the approximate value computed by our algorithm by some numerical

experiments.
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For indexing large external-memory (“on disk”) data, B-trees and their variants [1, 4] have been

the data structures of choice for over three decades, primarily because B-trees minimize the

number of disk-block accesses during a search. B-trees, however, are known to be empirically

suboptimal because they exploit data locality at only one level of granularity (typically disk

blocks), but not at courser or finer granularities.

Traditionally, external-memory algorithms have been analyzed in the so-called Disk Access

Machine (DAM) Model [6], an idealized two-level memory model in which all block transfers

have unit cost, the block size is B, and the main-memory size is M . The choice of B defines the

single granularity of data locality of such data structures. For example, a B-tree has a branching

factor of B, and thus performs O(logB N) memory transfers for queries and updates, which is

optimal within the DAM model. Although B is often thought of as a disk-block size, the DAM

model applies equally well to optimizing cache-misses, in which case B is taken to be the cache-

line size. The widespread use of B-trees suggests that the DAM model is used implicitly as a

simplifying approximation for writing memory-oriented code.

The cache-oblivious (CO) model [5] is a parameter-free alternative to the disk-access machine

(DAM) model. As with the DAM model, the objective is to minimize the number of data

transfers between two levels. However, unlike the DAM model, the parameters B, the block

size, and M , the main-memory size, are unknown to the coder or the algorithm. The main

idea of the CO model is that if it can be proved that some algorithm performs a nearly optimal

number of memory transfers in a two-level model with unknown parameters, then the algorithm

also performs a nearly optimal number of memory transfers on any unknown, multilevel memory

hierarchy. Thus, for example, an optimal Cache-oblivious B-trees [3] simultaneously optimizes

for both cache misses and page faults. Note, however, that CO algorithms are not self-adjusting.

Rather, they are optimized for every level of granularity throughout their execution without any

tuning.

Cache obliviousness has been considered a theoretical curiosity. The standard reasoning

is that one must loose some performance by ignoring memory parameters, though it has been
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shown that many problems can be solved with only a loss of a small constant compared to the

best cache-aware algorithm.

In this talk, we suggest the opposite. There are good reasons to believe that cache-oblivious

algorithms can outperform cache-aware algorithms. We show theoretical and experimental [2]

justification for this claim.
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Data Stream Algorithms and Applications
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In the data stream scenario, input arrives very rapidly and there is limited memory to

store the input. In the past few years, researchers in Theoretical Computer Science,

Databases, IP Networking and Computer Systems have developed new algorithms that

work within these space and time constraints. The methods rely on metric embeddings,

pseudo-random computations and sparse approximation theory. The applications include

IP network traffic analysis, mining text message streams for Homeland Security and pro-

cessing massive data sets in general.

I will present an overview of the principles, one or two key technical results and

discuss issues in building data stream systems that work at the speed of IP routers. I will

also discuss open problems. This talk is based on an updated version of the survey at

http://www.cs.rutgers.edu/~muthu/stream-1-1.ps
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On Computing all Abductive Explanations

from a Propositional Horn Theory
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Abduction is a fundamental mode of reasoning, which has applications in many areas of

AI and Computer Science. The computation of abductive explanations is an important

computational problem, which is at the core of early systems such as the ATMS and

Clause Management Systems, and is intimately related to prime implicate generation in

propositional logic. In this talk, we consider the problem of computing multiple expla-

nations, and in particular all explanations for an abductive query from a propositional

Horn theory. Our study pays particular attention to the form of the query, ranging from

a literal to a compound formula, to whether explanations are based on a set of abducible

literals, and to the representation of the Horn theory, either by a Horn CNF or model-

based in terms of its characteristic models. For all these combinations, we present either

tractability results in terms of polynomial total-time algorithms, intractability results in

terms of nonexistence of such algorithms (unless P=NP), or semi-tractability results in

terms of solvability in quasi-polynomial time, established by polynomial- time equivalence

to the problem of dualizing a monotone conjunctive normal form expression. Our results

complement previous results in the literature, and refute a longstanding conjecture by

Selman and Levesque. They elucidate the complexity of generating all abductive expla-

nations, and shed light on the related problems such as generating sets of restricted prime

implicates of a Horn theory. The algorithms for tractable cases can be readily applied

for generating a polynomial subset of explanations in polynomial time. (Joint work with

Thomas Eiter)
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How to Influence Noncooperative, Selfish Agents
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The societal value of a distribution of finite resources is frequently measured in terms of of

aggregate utility. Decisions, however, are frequently controlled by noncooperative agents

who try to maximize their own private utility. Papadimitriou coined the term “price of

anarchy” to refer to the ratio of social utility achieved by selfish agents versus the social

optimal.

In network routing games, the price of anarchy can be arbitrarily bad. We review

these results, and then describe some solutions to prevent this bad outcome. These

include charging users for network use; and managing a small portion of traffic wisely.

Some of these results carry over to more general congestion games.
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The Metric Labeling problem is an elegant and powerful mathematical model capturing

a wide range of classification problems that arise in computer vision and related fields. In

a typical classification problem, one wishes to assign labels to a set of objects to optimize

some measure of the quality of the labeling. The metric labeling problem captures a

broad range of classification problems where the quality of a labeling depends on the

pairwise relations between the underlying set of objects, as described by a weighted graph.

Additionally, a metric distance function on the labels is defined, and for each label and

each vertex, an assignment cost is given. The goal is to find a minimum-cost assignment

of the vertices to the labels. The cost of the solution consists of two parts: the assignment

costs of the vertices and the separation costs of the edges (each edge pays its weight times

the distance between the two labels to which its endpoints are assigned). Note that if the

distance function d is not a metric, then determining whether a graph can be colored by

k colors is a special case of the labeling problem.

Metric labeling has many applications as well as rich connections to some well known

problems in combinatorial optimization. It is related to the quadratic assignment problem,

an extensively studied problem in Operations Research. A special case of metric labeling

is the 0-extension problem. There are no assignment costs in this problem, however, the

graph contains a set of terminals, t1, . . . , tk, where the label of terminal ti is fixed in

advance to i, and the non-terminals are free to be assigned to any of the labels. As in the

metric labeling problem, a metric is defined on the set of labels. Clearly, the 0-extension

problem generalizes the well-studied multi-way cut problem in which the metric on the

label set is the uniform metric.

In the talk I will discuss the rich body of work in approximation algorithms, as well as

lower bounds on approximability, that has been developed in recent years for the metric

labeling problem and its variants.
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Approximate distance oracles and

spanners with sublinear error terms

Speaker: Uri Zwick ∗

Abstract

Several years ago, Thorup and Zwick obtained the following result: Let G = (V, E) be an undirected
weighted graph with |V | = n and |E| = m. Let k ≥ 1 be an integer. Then, G = (V, E) can be
preprocessed in O(kmn1/k) expected time, constructing a data structure of size O(kn1+1/k), such that
any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance
returned of stretch at most 2k − 1, i.e., it is at most 2k − 1 times the actual distance, and it is never
too small. A girth conjecture of Erdős implies that Ω(n1+1/k) space is needed in the worst case for
any stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, hence, essentially
optimal.

We now show that the techniques used to construct approximate distance oracles mentioned above for
weighted graphs, can be used to obtain very simple constructions of spanners with sublinear error terms
for unweighted graphs. These constructions extend, improve and simplify results of Elkin, Elkin and
Peleg, and Bollobás, Coppersmith and Elkin.

More specifically, we show that for any integer k > 1, any undirected and unweighted graph G = (V, E)
on n vertices has a subgraph G′ = (V, E′) with O(kn1+1/k) edges such that for any two vertices u, v ∈ V ,
if dG(u, v) = d, then dG′(u, v) = d + O(d1−1/(k−1)). (Here, dG(u, v) is the distance from u to v in G.)

We also show that there is a weighted graph G′′ = (V, E′′) with O(kn1+1/(2k+1
−1)) edges such that for

every u, v ∈ V , if dG(u, v) = d, then d ≤ dG′′(u, v) = d + O(d1−1/(k−1)). The interesting feature of these
new spanners is that the relative error decreases with the distance.

Joint work with Mikkel Thorup.

∗School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: zwick@cs.tau.ac.il.
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Connectivity and information transfer

in social networks

Richard Cole

New York University

Due in part to the growth of the Internet and the World Wide Web, the last 5-10 years has

seen the emergence of a new style of question in computer science. There are descriptive

questions; for example, what is the form of the Internet graph? There are explanatory

questions; why does it work?

This genre of questions and explanations is by no means limited to the Internet.

The widely known notion of “six degrees of separation” arose as a result of the following

experiment. People in Nebraska were asked to mail letters to recipients in Massachusetts,

by using intermediaries they knew, these intermediaries being asked to behave in the same

way. Not only did a high proportion of the letters arrive, they did so by short routes of six

or fewer edges. The question, of course, is why did this work? Kleinberg addressed this by

demonstrating a class of augmented grid graphs which exhibited analogous behavior. Not

only did his graphs have short paths between pairs of nodes, such short paths could be

found by local decisions, at least with high probability. A striking feature of his routing

algorithm is its simplicity.

In an analogous vein, one can ask what are the procedures that drive price adjust-

ment in markets for goods? This was formalized long ago by economists as the problem

of finding market equilibria. An early solution approach, called tatonnement, proposed

the natural procedure of reducing prices of goods with insufficient demand and increasing

those of goods with excess demand. Over fifty years ago, this was formalized as a dif-

ferential equation, which was shown to converge to equilibrium at least when the Gross

Substitutes property applied. Recently, polynomial time algorithms for finding approxi-

mate market equilibria have been found. While encouraging, these algorithms do not seem

to indicate why markets might tend to be equilibrium (of course, sometimes they may

not). This would appear to call for non-centralized, indeed highly distributed algorithms.

Are there such algorithms?

This talk will have more questions than answers.
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Approximation Algorithms for Network Problems

Susanne Albers
University of Freiburg

Germany

In this presentation we study various algorithmic problems that arise in large networks and design approximate
solutions to them.

Buffer management in network switches: In the first part of the talk we investigate a basic buffer management
problem. Consider a network switch with � input ports, each of which is equipped with a buffer (queue) of
limited capacity. Data packets arrive online and can be stored in the buffers if space permits; otherwise packet
loss occurs. In each time step the switch can transmit one packet from one of the buffers to the output port.
The goal is to maximize the number of transmitted packets. We settle the competitive performance of the entire
family of greedy strategies, which always serve the longest queue. We prove that greedy algorithms are not
better than 2-competitive no matter how ties are broken. We then present the first deterministic online algorithm
that is better than 2-competitive. We develop a modified greedy algorithm, called Semi-Greedy, and prove that
it achieves a competitive ratio of

� ��������� 	 
��
. Additionally we study scenarios where online algorithms are

granted additional resources in terms of extra memory or higher transmission rates.

Web caching with request reorderung: In the second part of the presentation we study web caching with
request reordering. The goal is to maintain a cache of web documents so that a sequence of requests can
be served at low cost. To improve cache hit rates, a limited reordering of requests is allowed. We present a
deterministic online algorithm that achieves an optimal competitiveness, for the most general cost model and
all cache sizes. We then investigate the offline problem, which is NP-hard in general. We develop the first
polynomial time algorithms that can manage arbitrary cache sizes. Our strategies achieve small constant factor
approximation ratios. The algorithms are based on a general technique that reduces web caching with request
reordering to a problem of computing batched service schedules.

The price of anarchy in network design: In the third part of the talk we study a network design problem in
which � selfish agents have to build a network so that the resulting graph is connected. The cost of an agent
consists of (a) its edge building cost and (b) its connection cost. An agent pays a non-negative cost of � for
each edge it builds. The connection cost is the sum of the shortest path distances to other agents. We consider
Nash equilibria for this game and analyze the price of anarchy, which is the worst-case ratio of the cost of any
equilibrium to the cost of the best equilibrium. We show that, for large ranges of � , the price of anarchy is
constant. We also prove that, in any case, the price of anarchy is bounded by 
�� ��� � � � , improving the previous
best bound of 
�� ��� . Additionally we develop structural properties of weak Nash equilibria and study the effect
of cost sharing where agent can split the cost of building edges.
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Generalized linear programming

Jǐŕı Matoušek

Charles University, Prague

Linear programming is concerned with optimizing linear functions over convex polytopes.

Attempts to analyze the running time of the simplex method, as well as other motivations,

have led to the notion of abstract objective functions on convex polytopes, which are linear

orderings of the vertices that share some simple propeties of orderings induced by generic

linear functions. Several other axiomatic frameworks generalizing linear programming

have been introduced as well. In addition to linear programming they encompass many

other important geometric optimization problems. Some of the algorithms for linear

programming can be expressed and analyzed in these frameworks.

The talk is meant as an introduction to the concepts mentioned above, and on the

more technical side, it will outline a recent result of Szabó and the speaker on bad worst-

case performance of the simplex method with a certain randomized pivot rule on cubes

with abstract objective functions.
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My Favorite Ten Complexity Theorems of the

Past Decade II

Lance Fortnow

University of Chicago

At the end of 1994 I presented my favorite ten theorems from the previous

decade [1] and using them as a platform to survey the research in many areas

of computational complexity during that time.

Ten years later I will present a new list of my favorite ten theorems

from the decade since the original list. Once again we will use the list as

a starting point to survey recent research in computational complexity. We

will cover many topics including derandomization, probabilistically checkable

proofs, coding theory, quantum computing and some algorithms results with

complexity implications.

References

[1] L. Fortnow. My favorite ten complexity theorems of the past decade. In

Proceedings of the 14th Conference on the Foundations of Software Tech-

nology and Theoretical Computer Science, volume 880 of Lecture Notes in

Computer Science, pages 256–275. Springer, Berlin, 1994. Invited lecture.

55
– 394 –



Some Heuristic Analysis of

Average Behavior of Local Search Algorithms

— Short Abstract —

Osamu Watanabe∗

Dept. of Math. and Computing Sciences, Tokyo Institute of Technology

(watanabe@is.titech.ac.jp)

It has been known that local search algorithms (even simple ones) sometimes work rea-

sonably well on average for solving NP-hard problems. Unfortunately, however, due to

the difficulty of investigating the (randomized) execution of a given algorithm on random

instances, our theoretical analysis on average behavior of such local search algorithms has

been limited. For obtaining better understanding of local search algorithms and their

average behavior, we proposed [1] the following heuristic approach: First consider some

relatively simple Markov process simulating algorithm’s execution, and then analyze this

simple Markov process.

In this talk, we consider the following variation of 3SAT problem.

3-CNF-SAT (from some nice initial assignment)

Input. A 3-CNF formula F on n variables and an initial assignment a.

Task. Find a sat. assignment for F .

Promise. F is satisfiable with some sat. assignment

whose Ham. distance from a is pn for some p > 0.

We also consider 3-⊕-SAT, which is defined in the same way except that each clause of

F consisits of the parity of three literals.

For these problems, we analyze variations of local search algorithms by our approach,

and discuss how small algorithmic changes affect their average performance.

[1] O. Watanabe, T. Sawai, and H. Takahashi, Analysis of a randomized local search

algorithm for LDPCC decoding problem, in Proc. SAGA’03, Lecture Notes in Comp. Sci.

2827,50–60, 2003.

∗Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “Statical-Mechanical

Approach to Probabilistic Information Processing” 2002-2005.
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Faster and More Sensitive 

Homology Search

I will present one simple idea 

which is directly benefiting thousands of people daily

A gigantic gold mine

The trend of genetic data growth

400 Eukaryote genome projects underway

GenBank doubles every 18 months 

Comparative genomics all-against-all search
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30 billion

in year 2005

Comparing to internet search

Internet search
Size limit: 5 billion people x homepage size
Supercomputing power used: ½ million CPU-hours/day

Query frequency: Google --- 112 million/day
Query type: exact keyword search --- easy to do

Homology search
Size limit: 5 billion people x 3 billion basepairs + 
millions of species x billion bases
10% (?) of world�s supercomputing power
Query frequency: NCBI BLAST -- 150,000/day, 
15% increase/month
Query type: approximate search --- topics today

Tremendous Cost

Bioinformatics Companies living on BLAST:
Paracel (Celera)

TimeLogic

TurboGenomics (TurboWorx)

NSF, NIH, pharmaceuticals proudly support many 
supercomputing centers for homology search

However: hardware become obsolete in 2-3 years. 
Software solution is indispensable.

Outline

What is homology search

A simple (but profound) idea

Its theory

Its practical success
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What is homology search

Given two DNA sequences, find all local 
similar regions, using �edit distance�
(match=1, mismatch=-1, gapopen=-5, gapext=-1).

Example. Input:

E. coli genome: 5 million base pairs

H. influenza genome: 1.8 million base pairs

Output: all local alignments.

Time Flies

Dynamic programming (1970-1980) 

Human vs mouse genomes: 104 CPU-years 

BLAST, FASTA heuristics (1980-1990)

Human vs mouse genomes: 19 CPU-years

BLAST paper was referenced 100000 times

PatternHunter

Human vs mouse genomes: 20 CPU-days

Outline

What is homology search

A simple (but profound) idea

Its theory

Its practical success

BLAST Algorithm & Example

Find seeded matches of 11 base pairs
Extend each match to right and left, until the 
scores drop too much, to form an alignment
Report all local alignments

Example:

AGCGATGTCACGCGCCCGTATTTCCGTA

TCGGATCTCACGCGCCCGGCTTACCGTG

|  |  |  |  |  |  |  |  |  |  | |  |    |  |  | ||  |  |

G

x

0 0 0 1  1  1  0 1 1  1  1 1  1  1  1  1 1  1 0 0 1 1 0 1  1 1  1 0

BLAST Dilemma:
If you want to speed up, have to use a 
longer seed. However, we now face a 
dilemma: 

increasing seed size speeds up, but loses 
sensitivity; 

decreasing seed size gains sensitivity, but 
loses speed.

How do we increase sensitivity & speed 
simultaneously? For 20 years, many 
tried: suffix tree, better programming ..

New Idea: Spaced Seed

Spaced Seed: nonconsecutive matches and 
optimize match positions.

Represent BLAST seed by 11111111111

Spaced seed: 111*1**1*1**11*111

1 means a required match

* means �don�t care� position

This seemingly simple change makes a huge 
difference: significantly increases hit to 
homologous region while reducing bad hits.
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Sensitivity: PH weight 11 seed vs BLAST 11 & 10

Outline

What is homology search

A simple (but profound) idea

Its theory

Its practical success

Formalize

Given i.i.d. sequence (homology region) 
with Pr(1)=p and Pr(0)=1-p for each bit:

1100111011101101011101101011111011101

Which seed is more likely to hit this region:
BLAST seed:  11111111111

Spaced seed: 111*1**1*1**11*111

111*1**1*1**11*111

Expect Less, Get More

Lemma: The expected number of hits of a 
weight W length M seed model within a 
length L region with homology level p is 

(L-M+1)pW

Proof. E(#hits) = i=1 � L-M+1 pW

Example: In a region of length 64 with p=0.7 
Pr(BLAST seed hits)=0.3
E(# of hits by BLAST seed)=1.07
Pr(optimal spaced seed hits)=0.466,  50% more
E(# of hits by spaced seed)=0.93,     14% less

Why Is Spaced Seed Better?
A wrong, but intuitive, proof: seed s, interval I, similarity p

E(#hits) = Pr(s hits) E(#hits | s hits)

Thus: 

Pr(s hits) =  Lpw / E(#hits | s hits)

For optimized spaced seed, E(#hits | s hits)

111*1**1*1**11*111         Non overlap   Prob

111*1**1*1**11*111               6            p6

111*1**1*1**11*111             6            p6

111*1**1*1**11*111           6            p6

111*1**1*1**11*111         7            p7

�..

For spaced seed: the divisor is 1+p6+p6+p6+p7+ �

For BLAST seed: the divisor is bigger: 1+ p + p2 + p3 + �

Complexity of finding the optimal 
spaced seed (Li, Ma, manuscript)

Theorem 1. Given a seed and it is NP-hard to find its 
sensitivity, even in a uniform region.

Theorem 2. The sensitivity of a given seed can be 
efficiently approximated with arbitrary accuracy, 
with high probability.

Theorem 3. Optimal seeds can be found in 
exponential time deterministically. Near optimal 
seed can be found in O(nlogn) time probabilistically.
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Computing Spaced Seeds
(Keich, Li, Ma, Tromp, Discrete Appl. Math)

Let f(i,b) be the probability that seed s hits the 
length i prefix of R that ends with b.

Thus, if s matches b, then
f(i,b) = 1,

otherwise we have the recursive relationship:
f(i,b)= (1-p)f(i-1,0b') + pf(i-1,1b')

where b' is b deleting the last bit. 
Then the probability of s hitting R is 

|b|=M Prob(b) f(L-M,b)

Prior Literature

Random or multiple spaced q-grams 
were used in the following work:

FLASH by Califano & Rigoutsos

Multiple filtration by Pevzner & Waterman

LSH of Buhler

Praparata et al

Outline

What is homology search

A simple (but profound) idea

Its theory

Its practical success

PatternHunter
(Ma, Tromp, Li: Bioinformatics, 18:3, 2002, 440-445)

PH used optimal spaced seeds, novel 
usage of data structures: red-black 
tree, queues, stacks, hashtables, new 
gapped alignment algorithm. 

Written in Java.

Used in Mouse Genome Consortium 
(Nature, Dec. 5, 2002), as well as in 
hundreds of institutions and industry.

Comparison with BLAST
On Pentium III 700MH, 1GB

BLAST    PatternHunter

E.coli vs H.inf 716s 14s/68M
Arabidopsis 2 vs 4                       -- 498s/280M
Human 21 vs 22                          -- 5250s/417M
Human(3G) vs Mouse(x3=9G)*  19 years    20 days

All with filter off and identical parameters

16M reads of Mouse genome against Human genome for MIT 
Whitehead. Best BLAST program takes 19 years at the same 
sensitivity

Quality Comparison:
x-axis: alignment rank
y-axis: alignment score
both axes in logarithmic scale

A. thaliana chr 2 vs 4
E. Coli  vs H. influenza
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Genome Alignment by PatternHunter (4 seconds) PattternHunter II: 
-- Smith-Waterman Sensitivity, BLAST Speed
(Li, Ma, Kisman, Tromp, J. Bioinfo Comput. Biol. 2004)

The biggest problem for BLAST was low sensitivity 
(and low speed). Massive parallel machines are built 
to do S-W exhaustive dynamic programming.

Spaced seeds give PH a unique opportunity of using 
several optimal seeds to achieve optimal sensitivity, 
this was not possible by BLAST technology.

We have designed PH II, with multiple optimal seeds. 

PH II approaches Smith-Waterman sensitivity, and 
3000 times faster.

Experiment: 29715 mouse EST, 4407 human EST.

Sensitivity Comparison with Smith-Waterman (at 100%)
The thick dashed curve is the sensitivity of BLAST, seed weight 11.  
From low to high, the solid curves are the sensitivity of PH II using 
1, 2, 4, 8 weight 11 coding region seeds, and the thin dashed curves 
are the sensitivity 1, 2, 4, 8 weight 11 general purpose seeds, respectively

Speed Comparison with Smith-Waterman

Smith-Waterman (SSearch): 20 CPU-
days.

PatternHunter II with 4 seeds: 475 
CPU-seconds. 3638 times faster than 
Smith-Waterman dynamic programming 
at the same sensitivity.
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Translated PatternHunter

Has all the functionalities of

Blastp

tBlastx � with gapped alignments

tBlastn, Blastx � with gapped alignments

More sensitive and faster � new 
algorithm replacing 6-frame translation

Alignment comparison: tBLASTx vs tPH
tPH:         253 seconds
tBLASTx:   807 seconds
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Old field, new trend

Research trend
Over 30 papers on spaced seeds have appeared 
since our original paper, in 2 years.
Many more have used PH in their work.
Most modern alignment programs (including 
BLAST) have now adopted spaced seeds
Spaced seeds are serving thousands of users/day

PatternHunter direct users
Pharmaceutical/biotech firms.
Mouse Genome Consortium, Nature, Dec. 5, 2002.
Hundreds of academic institutions.

Running PH
Available at: www.BioinformaticsSolutions.com

Java �Xmx512m �jar ph.jar �i query.fna �j subject.fna �o out.txt

-Xmx512m --- for large files
-j missing: query.fna self-comparison
-db: multiple sequence input, 0,1,2,3 (no, query, subject, both)
-W: seed weight
-G: open gap penalty (default 5)
-E: gap extension (default 1)
-q: mismatch penalty (default 1)
-r: reward for match (default 1)
-model: specify model in binary
-H: hits before extension
-P: show progress
-multi 4: use 4 seeds

Conclusion

Best ideas are simple ones. I hope I have 
presented one such idea today.

Open questions: 

Polynomial time probabilistic algorithm for 
finding (near) optimal seed, multiple seeds.

Tighter bounds on why spaced seeds are 
better.

Applications to other areas.
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Conclusion � continued 

Another simple idea applied to data mining: from 
irreversibly computing 1 bit requires 1kT energy 
(von Neumann, Landauer), we derived shared information 
d(x,y) between x,y, to classify

Species & genomes, Li et al, in Bioinformatics, 2001
Chain letters, Bennett, Li, Ma, Scientific American, 2003
Languages, Benedeto,Caglioti,Loreto, Phy. Rev. Let.�02
Music, Cilibrasi, Vitanyi, de Wolf, New Scientist, 2003
Time series/anomaly detection, Keogh, Lonardi, 
Ratanamahatana, KDD�04. They compared d(x,y) with 
51 methods/measures from SIGKDD, SIGMOD, ICDM, 
ICDE, SSDB, VLDB, PKDD, PAKDD and concluded our 
method the simplest & best --- Keogh tutorial ICDM�04.

PH 2-hit sensitivity vs BLAST 11, 12 1-hit

Natura enim simplex est,

et rerum causis superfluis non luxuriat.

I. Newton
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OutlineOutline

Motivation: The cable company problemMotivation: The cable company problem

Model and literature reviewModel and literature review

Solution to the cable company problemSolution to the cable company problem

General covering problemGeneral covering problem

Scenario dependent cost modelScenario dependent cost model
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The cable company problemThe cable company problem

Cable company plans Cable company plans 
to enter a new areato enter a new area

Currently, low Currently, low 
populationpopulation

Wants to install cable Wants to install cable 
infrastructure in infrastructure in 
anticipation of future anticipation of future 
demanddemand
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The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

Where should cable Where should cable 
company install company install 
cables?cables?
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Future demand Future demand 
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company install company install 
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KenanKenan--Flagler, 1/26/04Flagler, 1/26/04 Boosted SamplingBoosted Sampling 66

The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

Where should cable Where should cable 
company install company install 
cables?cables?
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The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

Where should cable Where should cable 
company install company install 
cables?cables?
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The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

ForecastsForecasts of possible of possible 
future demands existfuture demands exist

Where should cable Where should cable 
company install company install 
cables?cables?
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The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

ForecastsForecasts of possible of possible 
future demands existfuture demands exist

Where should cable Where should cable 
company install company install 
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The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

ForecastsForecasts of possible of possible 
future demands existfuture demands exist

Where should cable Where should cable 
company install company install 
cables?cables?
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The cable company problemThe cable company problem

Future demand Future demand 
unknown, yet cable unknown, yet cable 
company needs to company needs to 
build nowbuild now

Forecasts Forecasts of possible of possible 
future demands existfuture demands exist

Where should cable Where should cable 
company install company install 
cables?cables?
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The cable company problemThe cable company problem

cable company wants cable company wants 
to use demand to use demand 
forecasts, toforecasts, to

MinimizeMinimize

TodayToday��s install. costss install. costs

+ Expected future costs+ Expected future costs
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OutlineOutline

Motivation: The cable company problemMotivation: The cable company problem

Model and literature reviewModel and literature review

Solution to the cable company problemSolution to the cable company problem

General covering problemGeneral covering problem

Scenario dependent cost model Scenario dependent cost model 
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Stochastic optimizationStochastic optimization

Classical optimization assumed Classical optimization assumed 
deterministic inputsdeterministic inputs
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Stochastic optimizationStochastic optimization

Classical optimization assumed Classical optimization assumed 
deterministic inputsdeterministic inputs

Need for modeling Need for modeling data uncertaintydata uncertainty
quickly realized [quickly realized [DantzigDantzig ��55, Beale 55, Beale ��61]61]
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Stochastic optimizationStochastic optimization

Classical optimization assumes Classical optimization assumes 
deterministic inputsdeterministic inputs

Need for modeling data uncertainty Need for modeling data uncertainty 
quickly realized [quickly realized [DantzigDantzig ��55, Beale 55, Beale ��61]61]

[[BirgeBirge, , LouveauxLouveaux ��97, Klein 97, Klein HaneveldHaneveld, van , van 
derder VlerkVlerk ��99]99]
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ModelModel

TwoTwo--stage stochastic opt. with recoursestage stochastic opt. with recourse
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ModelModel

TwoTwo--stagestage stochastic opt. with recoursestochastic opt. with recourse

Two stages of decision making, with Two stages of decision making, with 
limited information in first stagelimited information in first stage
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ModelModel

TwoTwo--stage stage stochastic opt.stochastic opt. with recoursewith recourse

Two stages of decision makingTwo stages of decision making

Probability distribution governing secondProbability distribution governing second--
stage data and costs given in 1st stagestage data and costs given in 1st stage
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ModelModel

TwoTwo--stage stochastic opt. with stage stochastic opt. with recourserecourse

Two stages of decision makingTwo stages of decision making

Probability dist. governing data and costsProbability dist. governing data and costs

Solution can always be made feasible in Solution can always be made feasible in 
second stagesecond stage
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Mathematical modelMathematical model

: probability space of 2: probability space of 2ndnd stage datastage data
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Mathematical modelMathematical model

: probability space of 2: probability space of 2ndnd stage datastage data

Extensive form: Enumerate over all Extensive form: Enumerate over all 
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Scenario modelsScenario models

Enumerating over all Enumerating over all may lead to may lead to 
very large problem sizevery large problem size

Enumeration (or even approximation) Enumeration (or even approximation) may may 
not be possiblenot be possible for continuous domainsfor continuous domains
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New model: Sampling AccessNew model: Sampling Access

��Black boxBlack box�� available which generates a available which generates a 
sample sample of 2of 2ndnd stage data with stage data with samesame
distributiondistribution as actual 2as actual 2ndnd stagestage

Bare minimum requirement on model of Bare minimum requirement on model of 
stochastic processstochastic process
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Computational complexityComputational complexity

Stochastic optimization problems solved Stochastic optimization problems solved 
using Mixed Integer Program formulationsusing Mixed Integer Program formulations

Solution times prohibitiveSolution times prohibitive

NPNP--hardnesshardness inherentinherent toto problemproblem, not , not 
formulation: E.g., 2formulation: E.g., 2--stage stochastic stage stochastic 
versions of MST, Shortest paths are NPversions of MST, Shortest paths are NP--
hard.hard.
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Our goalOur goal

Approximation algorithm using sampling Approximation algorithm using sampling 
accessaccess

cable company problem cable company problem 

General model General model �� extensions to other problemsextensions to other problems
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Our goalOur goal

Approximation algorithm using sampling Approximation algorithm using sampling 
accessaccess

cable company problem cable company problem 

(General model (General model �� extensions to other extensions to other 
problems)problems)

ConsequencesConsequences

Provable guarantees on solution qualityProvable guarantees on solution quality

Minimal requirements of stochastic processMinimal requirements of stochastic process
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Previous workPrevious work
Scheduling with stochastic dataScheduling with stochastic data

Substantial work on exact algorithms [Substantial work on exact algorithms [PinedoPinedo ��95]95]

Some recent approximation algorithms [Some recent approximation algorithms [GoelGoel, , 
IndykIndyk ��99; 99; MMööhringhring, Schulz, , Schulz, UetzUetz ��99]99]

Approximation algorithms for stochastic modelsApproximation algorithms for stochastic models
Resource provisioning with polynomial scenarios [Dye, Resource provisioning with polynomial scenarios [Dye, 
StougieStougie, , TomasgardTomasgard NavNav. Res. . Res. QtrlyQtrly ��03]03]

��MaybecastMaybecast�� Steiner tree: Steiner tree: OO(log(log nn) approximation ) approximation 
when terminals activate independently [when terminals activate independently [ImmorlicaImmorlica, , 
KargerKarger, , MinkoffMinkoff, , MirrokniMirrokni ��04] 04] 
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Our workOur work

Approximation algorithms for twoApproximation algorithms for two--stage stochastic stage stochastic 
combinatorial optimizationcombinatorial optimization

Polynomial Scenarios model, several problems using LP rounding, Polynomial Scenarios model, several problems using LP rounding, 
incl. Vertex Cover, Facility Location, Shortest paths [R., incl. Vertex Cover, Facility Location, Shortest paths [R., SinhaSinha, , 
July July ��03, appeared IPCO 03, appeared IPCO ��04]04]
BlackBlack--box model: Boosted sampling algorithm for  covering box model: Boosted sampling algorithm for  covering 
problems with problems with subadditivitysubadditivity �� general approximation algorithm general approximation algorithm 
[Gupta, Pal, R., [Gupta, Pal, R., SinhaSinha STOC STOC ��04]04]
Steiner trees and network design problems: Polynomial Steiner trees and network design problems: Polynomial 
scenarios model, Combination of LP rounding and Primalscenarios model, Combination of LP rounding and Primal--Dual Dual 
[Gupta, R., [Gupta, R., SinhaSinha FOCS FOCS ��04]04]
Stochastic Stochastic MSTsMSTs under scenario model and Blackunder scenario model and Black--box model with box model with 
polynomiallypolynomially bounded cost inflations [bounded cost inflations [DhamdhereDhamdhere, R., Singh, To , R., Singh, To 
appear, IPCO appear, IPCO ��05]05]
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Related workRelated work

Approximation algorithms for Stochastic Combinatorial Approximation algorithms for Stochastic Combinatorial 
ProblemsProblems

Vertex cover and Steiner trees in restricted models studied by Vertex cover and Steiner trees in restricted models studied by 
[[ImmorlicaImmorlica, , KargerKarger, , MinkoffMinkoff, , MirrokniMirrokni SODA SODA ��04]04]

Rounding for stochastic Set Cover, FPRAS for #P hard Stochastic Rounding for stochastic Set Cover, FPRAS for #P hard Stochastic 
Set Cover LPs  [Set Cover LPs  [ShmoysShmoys, , SwamySwamy FOCS FOCS ��04]04]

MultiMulti--stage stochastic Steiner trees [stage stochastic Steiner trees [HayrapetyanHayrapetyan, , SwamySwamy, , 
TardosTardos SODA SODA ��05]05]

MultiMulti--stage Stochastic Set Cover [stage Stochastic Set Cover [ShmoysShmoys, , SwamySwamy, , 
manuscript manuscript ��04]04]

MultiMulti--stage black box model stage black box model �� Extension of Boosted sampling Extension of Boosted sampling 
with rejection [Gupta, Pal, R., with rejection [Gupta, Pal, R., SinhaSinha manuscript manuscript ��05]05]
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OutlineOutline

Motivation: The cable company problemMotivation: The cable company problem

Model and literature reviewModel and literature review

Solution to the cable company problemSolution to the cable company problem

General covering problemGeneral covering problem

Scenario dependent cost model Scenario dependent cost model 
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The cable company problemThe cable company problem

Cable company wants Cable company wants 
to install cables to to install cables to 
serve future demandserve future demand
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The cable company problemThe cable company problem

Cable company wants Cable company wants 
to install cables to to install cables to 
serve future demandserve future demand

Future demand Future demand 
stochastic, cables get stochastic, cables get 
expensive next yearexpensive next year

What cables to install What cables to install 
this year?this year?
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Steiner Tree Steiner Tree -- BackgroundBackground

Graph Graph G=(G=(V,E,cV,E,c))
Terminals Terminals SS, root , root rr SS

Steiner tree: Min cost Steiner tree: Min cost 
tree spanning tree spanning SS

NPNP--hard, MST is a 2hard, MST is a 2--
approx, Current best  approx, Current best  
1.551.55--approx (Robins, approx (Robins, 
ZelikovskyZelikovsky ��99)99)

PrimalPrimal--dual 2dual 2--approxapprox
((AgrawalAgrawal, Klein, R. , Klein, R. ��91; 91; 
GoemansGoemans, Williamson , Williamson ��92)92)
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Stochastic Min. Steiner TreeStochastic Min. Steiner Tree

Given a Given a metric space metric space 
of pointsof points, distances , distances ccee

Points: Points: possible possible 
locationslocations of future of future 
demanddemand

WlogWlog, simplifying , simplifying 
assumption: no 1assumption: no 1stst

stage demandstage demand
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Stochastic Min. Steiner TreeStochastic Min. Steiner Tree

Given a metric space Given a metric space 
of points, distances of points, distances ccee

11stst stagestage: buy edges : buy edges 
at costs at costs ccee
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Stochastic Min. Steiner TreeStochastic Min. Steiner Tree

Given a metric space Given a metric space 
of points, distances of points, distances ccee

11stst stage: buy edges stage: buy edges 
at costs at costs ccee

22ndnd stagestage: Some : Some 
clients clients ��realizedrealized��, buy , buy 
edges at cost edges at cost ..ccee to to 
serve them (serve them ( > 1> 1))
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Stochastic Min. Steiner TreeStochastic Min. Steiner Tree

Given a metric space Given a metric space 
of points, distances of points, distances ccee

11stst stage: buy edges stage: buy edges 
at costs at costs ccee

22ndnd stagestage: Some : Some 
clients clients ��realizedrealized��, buy , buy 
edges at cost edges at cost ..ccee to to 
serve them (serve them ( > 1> 1))
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Stochastic Min. Steiner TreeStochastic Min. Steiner Tree

Given a metric space Given a metric space 
of points, distances of points, distances ccee

11stst stage: buy edges stage: buy edges 
at costs at costs ccee

22ndnd stage: Some stage: Some 
clients clients ��realizedrealized��, buy , buy 
edges at cost edges at cost ..ccee to to 
serve them (serve them ( > 1> 1))

Minimize exp. costMinimize exp. cost
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Algorithm BoostedAlgorithm Boosted--SampleSample

Sample Sample from the distribution of clientsfrom the distribution of clients
times (sampled set times (sampled set SS))
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Algorithm BoostedAlgorithm Boosted--SampleSample

Sample from the distribution of clients Sample from the distribution of clients 
times (sampled set times (sampled set SS))

Build Build minimum spanning tree minimum spanning tree TT00 on on SS
Recall: Minimum spanning tree is a 2Recall: Minimum spanning tree is a 2--
approximation to Minimum Steiner treeapproximation to Minimum Steiner tree
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Algorithm BoostedAlgorithm Boosted--SampleSample

Sample from the distribution of clients Sample from the distribution of clients 
times (sampled set times (sampled set SS))

Build minimum spanning tree Build minimum spanning tree TT00 on on SS

22ndnd stage: actual client set realized (stage: actual client set realized (RR))

-- Extend Extend TT00 to span to span RR
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Algorithm BoostedAlgorithm Boosted--SampleSample

Sample from the distribution of clients Sample from the distribution of clients 
times (sampled set times (sampled set SS))

Build minimum spanning tree Build minimum spanning tree TT00 on on SS

22ndnd stage: actual client set realized (stage: actual client set realized (RR))

-- Extend Extend TT00 to span to span RR

Theorem: 4Theorem: 4--approximation!approximation!
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

SampleSample times from times from 
client distributionclient distribution
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

Sample Sample times from times from 
client distributionclient distribution
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

SampleSample times from times from 
client distributionclient distribution
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

Sample Sample times from times from 
client distributionclient distribution
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

Sample Sample times from times from 
client distributionclient distribution

Build MSTBuild MST TT00 on on SS
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

Sample Sample times from times from 
client distributionclient distribution

Build MST Build MST TT00 on on SS

When When actual scenarioactual scenario
((RR) is realized ) is realized ��
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Algorithm: IllustrationAlgorithm: Illustration

Input, with Input, with =3=3

Sample Sample times from times from 
client distributionclient distribution

Build MST Build MST TT00 on on SS

When actual scenario When actual scenario 
((RR) is realized ) is realized ��

ExtendExtend TT00 to span to span RR
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Analysis of 1Analysis of 1stst stage coststage cost

Let Let 
X

XX TcpTcOPT )()(
**

0
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Analysis of 1Analysis of 1stst stage coststage cost

Let Let 

ClaimClaim::
X

XX TcpTcOPT )()(
**

0

OPTTcE .2)]([
0
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Analysis of 1Analysis of 1stst stage coststage cost

Let Let 

Claim:Claim:

Our Our samplessamples: : S={SS={S11, , 
SS22, , ��, S, S }}

X

XX TcpTcOPT )()(
**

0

)}(...)()({2)(
***

0
1

SS TcTcTcSMST

OPTTcE .2)]([
0
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Analysis of 1Analysis of 1stst stage coststage cost

Let Let 

Claim:Claim:

Our Our samples: samples: S={SS={S11, S, S22, , ��, S, S }}

X

XX TcpTcOPT )()(
**

0

OPTTcE .2)]([
0

)}(...)()({2)(
***

0
1

SS TcTcTcSMST

)]}([...)]([)({2)]([
***

0
1

SS TcETcETcSMSTE
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Analysis of 1Analysis of 1stst stage coststage cost

Let Let 

Claim:Claim:

Our Our samples: samples: S={SS={S11, , 
SS22, , ��, S, S }}

X

XX TcpTcOPT )()(
**

0

)}(...)()({2)(
***

0
1

SS TcTcTcSMST

)]}([...)]([)({2)]([
***

0
1

SS TcETcETcSMSTE

)]}([)({2
**

0 XX TcETc

OPTTcE .2)]([
0
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Analysis of 2Analysis of 2ndnd stage coststage cost

Intuition:Intuition:

11stst stage: stage: samples at cost samples at cost ccee

22ndnd stage: stage: 11 sample at cost sample at cost ..ccee

KenanKenan--Flagler, 1/26/04Flagler, 1/26/04 Boosted SamplingBoosted Sampling 5858

Analysis of 2Analysis of 2ndnd stage coststage cost

Intuition:Intuition:

11stst stage: stage: samples at cost samples at cost ccee

22ndnd stage: stage: 11 sample at cost sample at cost ..ccee

In expectation,In expectation,

22ndnd stage cost stage cost 11stst stage coststage cost
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Analysis of 2Analysis of 2ndnd stage coststage cost

Intuition:Intuition:

11stst stage: stage: samples at cost samples at cost ccee

22ndnd stage: stage: 11 sample at cost sample at cost ..ccee

In expectation,In expectation,

22ndnd stage cost stage cost 11stst stage coststage cost

But weBut we��ve ve already bounded 1already bounded 1stst stage cost!stage cost!
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Proof using an Proof using an auxiliary auxiliary 
structurestructure
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Let Let TTRSRS be anbe an MST MST on on R U SR U S
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Let Let TTRSRS be an MST on be an MST on R U SR U S

Associate each node Associate each node v v TTRSRS

with its with its parent edgeparent edge pt(vpt(v)); ; 
c(Tc(TRSRS)=)=c(pt(Rc(pt(R)) + )) + c(pt(Sc(pt(S))))
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Let Let TTRSRS be an MST on be an MST on R U SR U S

Associate each node Associate each node v v TTRSRS

with its parent edge with its parent edge pt(vpt(v); ); 
c(Tc(TRSRS)=)=c(pt(Rc(pt(R)) + )) + c(pt(Sc(pt(S))))

c(Tc(TRR) ) c(pt(Rc(pt(R)))), since , since TTRR

was the was the cheapest possible cheapest possible 
way to connectway to connect R  R  to to TT00
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Let Let TTRSRS be an MST on be an MST on R U SR U S

Associate each node Associate each node v v TTRSRS

with its parent edge with its parent edge pt(vpt(v); ); 
c(Tc(TRSRS)=)=c(pt(Rc(pt(R)) + )) + c(pt(Sc(pt(S))))

c(Tc(TRR) ) c(pt(Rc(pt(R))))

E[c(pt(RE[c(pt(R))] ))] E[c(pt(SE[c(pt(S))]/))]/ ,,

since since RR is is 11 sample and sample and SS
is is samples from samples from same same 
processprocess
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Let Let TTRSRS be an MST on be an MST on R U SR U S

Associate each node Associate each node v v TTRSRS
with its parent edge with its parent edge pt(vpt(v); ); 
c(Tc(TRSRS)=)=c(pt(Rc(pt(R)) + )) + c(pt(Sc(pt(S))))

c(Tc(TRR) ) c(pt(Rc(pt(R))))

E[c(pt(RE[c(pt(R))] ))] E[c(pt(SE[c(pt(S))]/))]/

c(pt(Sc(pt(S)) )) c(Tc(T00)),,

since since pt(Spt(S) U ) U pt(Rpt(R) ) is a is a 
MST MST while adding while adding pt(Rpt(R)) to to 
TT00 spans spans R U S R U S 
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Analysis of 2Analysis of 2ndnd stage coststage cost

Claim: Claim: E[E[ c(Tc(TRR)] )] E[c(TE[c(T00)])]

Let Let TTRSRS be an MST on be an MST on R U SR U S

Associate each node Associate each node v v TTRSRS
with its parent edge with its parent edge pt(vpt(v); ); 
c(Tc(TRSRS)=)=c(pt(Rc(pt(R)) + )) + c(pt(Sc(pt(S))))

c(Tc(TRR) ) c(pt(Rc(pt(R))))

E[c(pt(RE[c(pt(R))] ))] E[c(pt(SE[c(pt(S))]/))]/

c(pt(Sc(pt(S)) )) c(Tc(T00))

Chain inequalities and claim Chain inequalities and claim 
followsfollows
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RecapRecap

Algorithm for Stochastic Steiner Tree:Algorithm for Stochastic Steiner Tree:

11stst stage: stage: SampleSample times, build MSTtimes, build MST

22ndnd stage: stage: Extend Extend MST to realized clientsMST to realized clients
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RecapRecap

Algorithm for Stochastic Steiner Tree:Algorithm for Stochastic Steiner Tree:

11stst stage: Sample stage: Sample times, build MSTtimes, build MST

22ndnd stage: Extend MST to realized clientsstage: Extend MST to realized clients

TheoremTheorem: Algorithm BOOST: Algorithm BOOST--ANDAND--SAMPLE SAMPLE 
is a 4is a 4--approximation to Stochastic Steiner approximation to Stochastic Steiner 
TreeTree
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RecapRecap

Algorithm for Stochastic MST:Algorithm for Stochastic MST:

11stst stage: Sample stage: Sample times, build MSTtimes, build MST

22ndnd stage: Extend MST to realized clientsstage: Extend MST to realized clients

Theorem: Algorithm BOOSTTheorem: Algorithm BOOST--ANDAND--SAMPLE is a 4SAMPLE is a 4--
approximation to Stochastic Steiner Treeapproximation to Stochastic Steiner Tree

Shortcomings: Shortcomings: 

Specific problem, in a specific modelSpecific problem, in a specific model

Cannot adapt to scenario model with nonCannot adapt to scenario model with non--correlated correlated 
cost changes across scenarioscost changes across scenarios
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Coping with shortcomingsCoping with shortcomings

Specific problem, in a specific modelSpecific problem, in a specific model
Boosted Sampling works for more general covering problems Boosted Sampling works for more general covering problems 
with with subadditivitysubadditivity -- Solves Facility location, vertex coverSolves Facility location, vertex cover

Skip general model (details in STOC 04 paper)Skip general model (details in STOC 04 paper)

Cannot adapt to scenario model with scenarioCannot adapt to scenario model with scenario--
dependent cost inflationsdependent cost inflations

A combination of LPA combination of LP--rounding and primalrounding and primal--dual methods solves dual methods solves 
the scenario model with scenariothe scenario model with scenario--dependent cost inflations; Also dependent cost inflations; Also 
handles riskhandles risk--bounds on more general network design.bounds on more general network design.

Skip scenario model (details in FOCS 04 paper)Skip scenario model (details in FOCS 04 paper)

Skip bothSkip both
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OutlineOutline

Motivation: The cable company problemMotivation: The cable company problem

Model and literature reviewModel and literature review

Solution to the cable company problemSolution to the cable company problem

General covering problemGeneral covering problem

Scenario dependent cost model Scenario dependent cost model 
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General ModelGeneral Model

U U : universe of potential clients (e.g., : universe of potential clients (e.g., 
terminals)terminals)

X X : elements which provide service, with : elements which provide service, with 
element costs element costs ccxx (e.g., edges)(e.g., edges)

Given Given S S UU, set of feasible , set of feasible solsol��nsns is is 
Sols(Sols(SS ) ) 22XX

Deterministic problem: Given Deterministic problem: Given SS, find , find 
minimum cost minimum cost FF Sols(Sols(SS ))
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Model: detailsModel: details

Element costs are Element costs are ccxx in first stage and in first stage and ..ccxx

in second stagein second stage

In second stage, client set In second stage, client set SS UU is is 
realized with probability realized with probability p(Sp(S))

Objective: Compute Objective: Compute FF0 0 and and FFS S to minimizeto minimize

c(Fc(F00) + E[) + E[ c(Fc(FSS)])]

where where FF00 FFSS Sols(Sols(SS ) for all ) for all SS
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Sampling access modelSampling access model

Second stage: Client set Second stage: Client set S S appears with appears with 
probability probability p(Sp(S))

We only require sampling access:We only require sampling access:

Oracle, when queried, gives us a sample Oracle, when queried, gives us a sample 
scenario scenario DD

Identically distributed to actual second stageIdentically distributed to actual second stage
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Main result: PreviewMain result: Preview

Given stochastic optimization problem with cost Given stochastic optimization problem with cost 
inflation factor inflation factor ::

Generate Generate samples: samples: DD11, D, D22, , ��, D, D

Use deterministic approximation algorithm to compute Use deterministic approximation algorithm to compute 
FF00 Sols(Sols( DDii ))

When actual second stage When actual second stage S S is realized, augment by is realized, augment by 
selecting selecting FFSS

Theorem: Good approximation for stochastic Theorem: Good approximation for stochastic 
problem!problem!
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Requirement: SubRequirement: Sub--additivityadditivity

If If S S and and SS�� are legal sets of clients, then:are legal sets of clients, then:

SS SS�� is also a legal client setis also a legal client set

For any For any FF Sols(Sols(SS ) and ) and FF�� Sols(Sols(SS�� ), we ), we 
also have also have F F FF�� Sols(Sols(SS SS�� ) ) 
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Requirement: ApproximationRequirement: Approximation

There is an There is an --approximation algorithm for approximation algorithm for 
deterministic problemdeterministic problem

Given any Given any SS UU, can find , can find FF Sols(Sols(SS ) in ) in 
polynomial time such that:polynomial time such that:

c(Fc(F)) .min {.min {c(Fc(F��)): : FF�� Sols(Sols(SS )})}
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Crucial ingredient: Cost sharesCrucial ingredient: Cost shares

Recall Stochastic Steiner Tree:Recall Stochastic Steiner Tree:

Bounding 2Bounding 2ndnd stage cost required allocating the cost stage cost required allocating the cost 
of an MST to the client nodes, and summing up of an MST to the client nodes, and summing up 
carefully (auxiliary structure)carefully (auxiliary structure)

Cost sharing functionCost sharing function: way of distributing : way of distributing 
solution cost to clientssolution cost to clients

Originated in game theory [Young, Originated in game theory [Young, ��94], adapted 94], adapted 
to approximation algorithms [Gupta, Kumar, Pal, to approximation algorithms [Gupta, Kumar, Pal, 
RoughgardenRoughgarden FOCS FOCS ��03]03]
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Requirement: CostRequirement: Cost--sharingsharing

: : 22U U x x UU R is a R is a --strict cost sharing strict cost sharing 
function for function for --approximationapproximation A if:A if:

((S,jS,j)) > 0 only if > 0 only if jj SS

jj SS ((S,jS,j) ) c c (OPT((OPT(S S ))))

If If SS�� = = SS TT, A(, A(S S ) is an ) is an --approx. for approx. for SS, and , and 
Aug(Aug(SS,,TT ) provides a solution for augmenting ) provides a solution for augmenting 
A(A(S S ) to also serve ) to also serve TT, then, then

jj TT ((SS��,j,j) ) ((1/1/ ) ) c c ((Aug(Aug(S,TS,T ))))
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Main theorem: FormalMain theorem: Formal

Given a subGiven a sub--additive problem with additive problem with --
approximation algorithm A and approximation algorithm A and --strict cost strict cost 
sharing function, the following is an (sharing function, the following is an ( ++ ))--
approximation algorithm for stochastic variant:approximation algorithm for stochastic variant:

Generate Generate samples: samples: DD11, D, D22, , ��, D, D

First stage: Use algorithm A to compute First stage: Use algorithm A to compute FF00 as an    as an    
--approximation for approximation for DDii

Second stage: When actual set Second stage: When actual set S S is realized, use is realized, use 
algorithm Aug(algorithm Aug( DDii , , S S ) to compute ) to compute FFSS
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FirstFirst--stage coststage cost

Samples Samples DDii , , AlgoAlgo A generates A generates FF00 Sols(Sols( DDii ))

Define optimum:   Define optimum:   ZZ** = = c(Fc(F00
**) + ) + SS p(Sp(S).). ..c(Fc(FSS

**))

By subBy sub--additivityadditivity, , 

FF00
** FFD1D1

** �� FFDD
** Sols(Sols( DDii ))

Since A is Since A is --approximation,approximation,

c(Fc(F0 0 )/)/ c(Fc(F00
**) + ) + ii c(Fc(FDiDi

**))

E[E[c(Fc(F0 0 ))]/]/ c(Fc(F00
**) + ) + ii E[E[c(Fc(FSS

**))] ] 

c(Fc(F00
**) + ) + SS p(Sp(S) ) c(Fc(FSS

**)  =  Z)  =  Z**

Therefore, firstTherefore, first--stage cost E[stage cost E[c(Fc(F00))]  ]  .Z.Z**
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SecondSecond--stage coststage cost

DDii : samples,  : samples,  S S : actual 2: actual 2ndnd stage, define stage, define SS�� = = S S DDii

c(Fc(FSS) ) .. (S(S��,S),S), by cost, by cost--sharing function sharing function defndefn..

(S(S�� ,D,D11) + ) + �� + + (S(S�� ,D,D ) + ) + (S(S�� ,S)  ,S)  c c (OPT((OPT(SS�� ))))

SS�� has has +1+1 client sets, identically distributed:client sets, identically distributed:

E[E[ (S(S�� ,S),S)]   ]   E[E[cc (OPT((OPT(SS�� ))] / ))] / (( +1)+1)

c c (OPT((OPT(SS�� ))  ))  c(Fc(F00
**) + c(F) + c(FD1D1

**) + ) + �� + + c(Fc(FDD
**) + ) + c(Fc(FSS

**)),,

by subby sub--additivityadditivity

E[E[cc (OPT((OPT(SS�� ))]   ))]   c(Fc(F00
**) + () + ( +1)+1) E[E[c(Fc(Fss))]  ]  (( +1)Z+1)Z**//

E[E[ ..c(Fc(FSS))]  ]  .Z.Z**, bounding second, bounding second--stage coststage cost
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OutlineOutline

Motivation: The cable company problemMotivation: The cable company problem

Model and literature reviewModel and literature review

Solution to the cable company problemSolution to the cable company problem

General covering problemGeneral covering problem

Scenario dependent cost modelScenario dependent cost model
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Stochastic Steiner TreeStochastic Steiner Tree

First stage: First stage: GG, , rr givengiven

22ndnd stage: one of stage: one of mm
scenariosscenarios occurs:occurs:

TerminalsTerminals SSkk

ProbabilityProbability ppkk

Edge Edge cost inflationcost inflation factor factor kk
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Stochastic Steiner TreeStochastic Steiner Tree

First stage: First stage: GG, , rr givengiven

22ndnd stage: one of stage: one of mm
scenarios occurs:scenarios occurs:

Terminals Terminals SSkk

Probability Probability ppkk

Edge cost inflation factor Edge cost inflation factor kk

ObjectiveObjective: 1: 1stst stage tree stage tree 
TT00, 2, 2ndnd stage trees stage trees TTkk s.ts.t. . 
TT00 TTkk span span SSkk
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Stochastic Steiner TreeStochastic Steiner Tree

First stage: First stage: GG, , rr givengiven

22ndnd stage: one of stage: one of mm
scenarios occurs:scenarios occurs:

Terminals Terminals SSkk

Probability Probability ppkk

Edge cost inflation factor Edge cost inflation factor kk

Objective: Objective: 11stst stage tree stage tree 
TT00, 2, 2ndnd stage trees stage trees TTkk s.ts.t. . 
TT00 TTkk span span SSkk
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Stochastic Steiner TreeStochastic Steiner Tree

First stage: First stage: GG, , rr givengiven

22ndnd stage: one of stage: one of mm
scenarios occursscenarios occurs::

Terminals Terminals SSkk

Probability Probability ppkk

Edge cost inflation factor Edge cost inflation factor kk

Objective: 1Objective: 1stst stage tree stage tree 
TT00, 2, 2ndnd stage trees stage trees TTkk s.ts.t. . 
TT00 TTkk span span SSkk
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Stochastic Steiner TreeStochastic Steiner Tree

First stage: First stage: GG, , rr givengiven

22ndnd stage: one of stage: one of mm
scenarios occurs:scenarios occurs:

Terminals Terminals SSkk

Probability Probability ppkk

Edge cost inflation factor Edge cost inflation factor kk

Objective: 1Objective: 1stst stage tree stage tree 
TT00, , 22ndnd stage trees stage trees TTkk s.ts.t. . 
TT00 TTkk span span SSkk
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Stochastic Steiner TreeStochastic Steiner Tree

First stage: First stage: GG, , rr givengiven

22ndnd stage: one of stage: one of mm
scenarios occurs:scenarios occurs:

Terminals Terminals SSkk

Probability Probability ppkk

Edge cost inflation factor Edge cost inflation factor kk

Objective: 1Objective: 1stst stage tree stage tree 
TT00, 2, 2ndnd stage trees stage trees TTkk s.ts.t. . 
TT00 TTkk span span SSkk

Minimize Minimize c(Tc(T00)+E[c(T)+E[c(T��)])]

Skip AlgorithmSkip Algorithm
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Tree solutionsTree solutions

Example with 4 scenarios Example with 4 scenarios 
and and =2=2
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Tree solutionsTree solutions

Example with 4 scenarios Example with 4 scenarios 
and and =2=2

Optimal solution may Optimal solution may 
have have lots of componentslots of components!!
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Tree solutionsTree solutions

Example with 4 scenarios Example with 4 scenarios 
and and =2=2

Optimal solution may Optimal solution may 
have lots of components!have lots of components!

LemmaLemma: There exists a : There exists a 
solution where solution where 11stst stage stage 
is a treeis a tree and overall cost and overall cost 
is no more than 3 times is no more than 3 times 
the optimal costthe optimal cost

Restrict to tree solutionsRestrict to tree solutions
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IP formulationIP formulation

Tree solutionTree solution: From any (2: From any (2ndnd--stage) stage) 
terminal, path to root consists of exactly terminal, path to root consists of exactly 
two parts: strictly 2two parts: strictly 2ndnd--stage, followed by stage, followed by 
strictly 1strictly 1stst--stagestage

IP: IP: Install edges to support unit flowInstall edges to support unit flow along along 
such paths from each terminal to rootsuch paths from each terminal to root
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IP formulationIP formulation
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xe
k: edge e installed in scenario k;

re
k(t): flow on edge e of type k from terminal t ;

for k = 0 (1st stage) and i=1,2,�,m (2nd stage)
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IP formulationIP formulation
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Objective: minimize expected cost
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IP formulationIP formulation
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Unit out-flow from each terminal
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IP formulationIP formulation

0)(

0)()(

0))()(())()((

1))()((

)()(min

)(

0

)(

0

)(

0

)(

0

)(

0

1

0

k

e

k

e

ve

e

ve

e

ve

k

ee

ve

k

ee

te

k

ee

Ee

m

k Ee

k

ekke

xtr

trtr

trtrtrtr

trtr

xecpxec

Flow conservation at all internal nodes (v t , r )
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IP formulationIP formulation
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Flow monotonicity: enforces �First-stage must be a tree�
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IP formulationIP formulation
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Flow support: If an edge has flow, it must be accounted 
for in the objective function
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IP formulationIP formulation
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Algorithm overviewAlgorithm overview

((x,rx,r) ) Optimal solution to LPOptimal solution to LP relaxationrelaxation
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Algorithm overviewAlgorithm overview

((x,rx,r) ) Optimal solution to LP relaxationOptimal solution to LP relaxation

11stst stage solutionstage solution: : 

Obtain a new graph Obtain a new graph GG�� where where 2x2x00 forms a forms a 
fractional Steiner treefractional Steiner tree

Round using primalRound using primal--dual algorithm; this is dual algorithm; this is TT00
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Algorithm overviewAlgorithm overview

((x,rx,r) ) Optimal solution to LP relaxationOptimal solution to LP relaxation

11stst stage solution: stage solution: 

Obtain a new graph Obtain a new graph GG�� where where 2x2x00 forms a forms a 
fractional Steiner treefractional Steiner tree

Round using primalRound using primal--dual algorithm; this is dual algorithm; this is TT00

22ndnd stage solutionstage solution::

Examine remaining terminals in each scenarioExamine remaining terminals in each scenario

Use modified primalUse modified primal--dual method to obtain dual method to obtain TTkk

SkipSkip AnalysisAnalysis
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First stageFirst stage

Examine Examine fractional pathsfractional paths
for each terminalfor each terminal
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First stageFirst stage

Examine fractional paths Examine fractional paths 
for each terminalfor each terminal

Critical radiusCritical radius: Flow : Flow 
��transitionstransitions�� from 2from 2ndnd--
stage to 1stage to 1stst--stagestage
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First stageFirst stage

Examine fractional paths Examine fractional paths 
for each terminalfor each terminal

Critical radius: Flow Critical radius: Flow 
��transitionstransitions�� from 2from 2ndnd--
stage to 1stage to 1stst--stagestage

Construct Construct critical radii for critical radii for 
all terminalsall terminals
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First stageFirst stage

Critical radius: Fractional Critical radius: Fractional 
flow flow ��transitionstransitions�� from from 
22ndnd--stage to 1stage to 1stst--stagestage

Construct Construct twice the twice the 
critical radiicritical radii for all for all 
terminalsterminals
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First stageFirst stage

Critical radius: Fractional Critical radius: Fractional 
flow flow ��transitionstransitions�� from from 
22ndnd--stage to 1stage to 1stst--stagestage

Construct twice the Construct twice the c.rc.r..
for all terminalsfor all terminals

Examine in increasing Examine in increasing 
order of order of c.rc.r..

RR00 independent set independent set 
based on based on 2 2 c.r.c.r.
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First stageFirst stage

Critical radius: Fractional Critical radius: Fractional 
flow flow ��transitionstransitions�� from from 
22ndnd--stage to 1stage to 1stst--stagestage

Construct twice the Construct twice the c.rc.r..
for all terminalsfor all terminals

Examine in increasing Examine in increasing 
order of order of c.rc.r..

RR00 independent set independent set 
based on based on 2 2 c.r.c.r.

KenanKenan--Flagler, 1/26/04Flagler, 1/26/04 Boosted SamplingBoosted Sampling 110110

First stageFirst stage

Critical radius: Fractional Critical radius: Fractional 
flow flow ��transitionstransitions�� from from 
22ndnd--stage to 1stage to 1stst--stagestage

Construct twice the Construct twice the c.rc.r..
for all terminalsfor all terminals

Examine in increasing Examine in increasing 
order of order of c.rc.r..

RR00 independent set independent set 
based on based on 2 2 c.r.c.r.
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First stageFirst stage

Critical radius: Fractional Critical radius: Fractional 
flow flow ��transitionstransitions�� from from 
22ndnd--stage to 1stage to 1stst--stagestage

Construct twice the Construct twice the c.rc.r..
for all terminalsfor all terminals

Examine in increasing Examine in increasing 
order of order of c.rc.r..

RR00 independent set independent set 
based on based on 2 2 c.r.c.r.

TT00 Steiner tree on Steiner tree on RR00
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First stage analysisFirst stage analysis

Critical radius: Fractional Critical radius: Fractional 
flow flow ��transitionstransitions�� from from 
22ndnd--stage to 1stage to 1stst--stagestage

RR00 independent set independent set 
based on based on 2 2 c.r.c.r.

TT00 Steiner tree on Steiner tree on RR00

GG�� Contract Contract c.rc.r.. ballsballs
around vertices in around vertices in RR00

2x2x00 is feasibleis feasible fractional fractional 
Steiner tree for Steiner tree for RR00 in in GG��
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First stage analysisFirst stage analysis

RR00 independent set independent set 
based on based on 2 2 c.r.c.r.

TT00 Steiner tree on Steiner tree on RR00

GG�� Contract Contract c.rc.r.. balls balls 
around vertices in around vertices in RR00

2x2x00 is feasible fractional is feasible fractional 
Steiner tree for Steiner tree for RR00 in in GG��

Extension from vertex to Extension from vertex to 
c.rc.r.. charged to segment charged to segment 
from from c.rc.r.. to to 2 2 c.r.c.r.
(disjoint from others)(disjoint from others)
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 
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Second stageSecond stage

TT00 11stst stage treestage tree

Consider scenario Consider scenario kk

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 
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Second stageSecond stage

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 

If If MM hits hits TT00, add edge , add edge 
from from tt MM to to vv RR00
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Second stageSecond stage

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 

If If MM hits hits MM��, connect , connect tt MM
with with tt�� MM�� as in Steiner as in Steiner 
tree primaltree primal--dualdual
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Second stageSecond stage

Idea: Run Steiner tree Idea: Run Steiner tree 
primalprimal--dual on terminals, dual on terminals, 
stopping moat stopping moat MM when:when:

MM hits hits TT00

MM hits a stopped moathits a stopped moat

For every terminal in For every terminal in MM, , 
less than less than ½½ flow leaving flow leaving MM
is 2is 2ndnd--stage stage 

There exists There exists tt MM and and 
vv RR0 0 s.ts.t. . vv within within 4 4 c.rc.r..
of of t t ; connect ; connect t t to to vv
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Second stage analysisSecond stage analysis

PrimalPrimal--dual accounts for dual accounts for 
edges inside moatsedges inside moats
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Second stage analysisSecond stage analysis

PrimalPrimal--dual accounts for dual accounts for 
edges inside moatsedges inside moats

Connector edgesConnector edges paid by paid by 
carefully accounting:carefully accounting:

PrimalPrimal--dual bounddual bound

For every terminal For every terminal tt, there , there 
is is vv RR00 within within 4 4 c.rc.r.. of of tt
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SST: main resultSST: main result

2424--approximationapproximation for for 
Stochastic Steiner Tree Stochastic Steiner Tree 
(Improvement to 16(Improvement to 16--
approx possible)approx possible)

Method:Method: PrimalPrimal--dual dual 
overlaid on LP solutionoverlaid on LP solution

Extensions to more Extensions to more 
general network design general network design 
with routing costswith routing costs

PerPer--scenario riskscenario risk--bounds bounds 
incorporated and roundedincorporated and rounded
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Main Techniques in other resultsMain Techniques in other results

Stochastic Facility LocationStochastic Facility Location �� Rounding natural LP Rounding natural LP 
formulation using filterformulation using filter--andand--round (Linround (Lin--Vitter, Vitter, ShmoysShmoys--
TardosTardos--AardalAardal) carefully [Details in IPCO ) carefully [Details in IPCO ��04]04]

Stochastic Minimum Spanning TreeStochastic Minimum Spanning Tree �� Both scenario and Both scenario and 
blackblack--box models box models -- Randomized rounding of natural LP Randomized rounding of natural LP 
formulation gives nearly best possible formulation gives nearly best possible O(logO(log [No. of [No. of 
vertices] + log [max cost/min cost of an edge across vertices] + log [max cost/min cost of an edge across 
scenarios]) approximation result  [Details in IPCO scenarios]) approximation result  [Details in IPCO ��05]05]

MultiMulti--stage general covering problems stage general covering problems �� Boosted Boosted 
sampling with rejection based on ratio of scenariosampling with rejection based on ratio of scenario��s s 
inflation to maximum possible works [manuscript]inflation to maximum possible works [manuscript]
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SummarySummary

Natural boosted sampling algorithm works for a broad Natural boosted sampling algorithm works for a broad 
class of stochastic problems in blackclass of stochastic problems in black--box model box model 
Boosted sampling with rejection extends to multiBoosted sampling with rejection extends to multi--stage stage 
covering problems in the blackcovering problems in the black--box modelbox model
Existing techniques can be cleverly adapted for the Existing techniques can be cleverly adapted for the 
scenario model (E.g., LPscenario model (E.g., LP--rounding for Facility location, rounding for Facility location, 
primalprimal--dual for Vertex Covers, combination of both for dual for Vertex Covers, combination of both for 
Steiner trees)Steiner trees)
Randomized rounding of LP formulations works for Randomized rounding of LP formulations works for 
blackblack--box formulation of spanning treesbox formulation of spanning trees
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More approximation algorithms for 
stochastic programming programs

David B. Shmoys

Joint work with Chaitanya Swamy
Cal Tech

Stochastic Optimization
• Way of modeling uncertainty. 
• Exact data is unavailable or expensive – data is 

uncertain, specified by a probability distribution.

Want to make the best decisions given this 
uncertainty in the data.

• Dates back to 1950’s and the work of Dantzig.
• Applications in logistics, transportation models, 

financial instruments, network design, production 
planning, …

Two-Stage Recourse Model
Given : Probability distribution over inputs.
Stage I : Make some advance decisions – plan ahead 

or hedge against uncertainty.
Observe the actual input scenario.
Stage II : Take recourse. Can augment earlier 

solution paying a recourse cost.

Choose stage I decisions to minimize 
(stage I cost) + (expected stage II recourse cost). 

2-Stage Stochastic Facility Location

Distribution over clients gives 
the set of clients to serve.

client set D
facility

Stage I: Open some facilities in 
advance; pay cost fi for facility i.
Stage I cost = (i opened) fi .stage I facility

2-Stage Stochastic Facility Location

Distribution over clients gives 
the set of clients to serve.

client set D
facility

Stage I: Open some facilities in 
advance; pay cost fi for facility i.
Stage I cost = (i opened) fi .stage I facility

How is the probability distribution on clients specified?

• A  short (polynomial) list of possibile scenarios;

• Independent probabilities that each client exists;

• A black box that can be sampled.

2-Stage Stochastic Facility Location

Distribution over clients gives 
the set of clients to serve.

facility

Stage I: Open some facilities in 
advance; pay cost fi for facility i.
Stage I cost = (i opened) fi .stage I facility

Actual scenario A = {    clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay 
cost fiA to open facility i. Assign clients in A to facilities.

Stage II cost = fiA + (cost of serving clients in A).i opened in
scenario A
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2-Stage Stochastic Facility Location

Distribution over clients gives 
the set of clients to serve.

facility

Stage I: Open some facilities in 
advance; pay cost fi for facility i.
Stage I cost = (i opened) fi .stage I facility

Actual scenario A = {    clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay 
cost fiA to open facility i. Assign clients in A to facilities.

Stage II cost = fiA + (cost of serving clients in A).i opened in
scenario A

Want to decide which facilities to open in stage I.

Goal: Minimize Total Cost = 
(stage I cost) + EA [stage II cost for A].

We want to prove a worst-case guarantee. 
Give an algorithm that “works well” on any instance, 
and for any probability distribution.

A is an -approximation algorithm if  -
- A runs in polynomial time;
- A(I) .OPT(I) on all instances I. 

is called the approximation ratio of A.

What is new here?
• Previous “black box’’ results all assumed that,  for each

element of the solution (facility opened, edge in Steiner 
tree) the costs in the two stages are proportional:  
(stage II cost) = (stage I cost).

• Note: in this talk is the same as in previous one

• We allow independent stage I and stage II costs

• Previous results rely on structure of underlying 
stochastic LPs; we will provide algorithms to 
(approximately) solve those LPs

Our Results
• Give the first approximation algorithms for 

2-stage discrete stochastic problems
– black-box model
– no assumptions on costs.  

• Give a fully polynomial randomized approximation scheme
for a large class of 2-stage stochastic linear programs 
(contrast to Kleywegt, Shapiro, & Homem-DeMillo 01, 
Dyer, Kannan & Stougie 02, Nesterov & Vial 00)

• Give another way to “reduce” stochastic optimization 
problems to their deterministic versions.

Stochastic Set Cover (SSC)
Universe U = {e1, …, en }, subsets S1, S2, …, Sm U, set S has 
weight wS. 
Deterministic problem: Pick a minimum weight collection of 
sets that covers each element.

Stochastic version: Set of elements to be covered is given by 
a probability distribution.

– choose some sets initially paying wS for set S
– subset A U to be covered is revealed 
– can pick additional sets paying wS

A for set S. 

Minimize (w-cost of sets picked in stage I) + 
EA U [wA-cost of new sets picked for scenario A].

An LP formulation
For simplicity, consider wS

A = WS for every scenario A.
pA : probability of scenario A U.
xS : indicates if set S is picked in stage I.
yA,S : indicates if set S is picked in scenario A.

Minimize S SxS + A U pA S WSyA,S 

subject to, 

S:e S xS + S:e S yA,S 1 for each A U, e A
xS, yA,S 0 for each S, A.

Exponential number of variables and exponential number 
of constraints.
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A Rounding Theorem

Stochastic Problem: LP can be solved in polynomial time. 

Example: polynomial scenario setting

Deterministic problem:  -approximation algorithm A with
respect to the LP relaxation, A(I) .LP-OPT(I) for each I.

Example: “the greedy algorithm” for set cover is a 
log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an -approx. algorithm to get a 
2 -approximation algorithm for stochastic set cover.

Rounding the LP
Assume LP can be solved in polynomial time. 
Suppose we have an -approximation algorithm wrt. the LP 
relaxation for the deterministic problem.

Let E = {e : S:e S xS ½}.

So (2x) is a fractional set cover for the set E can “round” to get 
an integer set cover for E of cost S S ( S 2 SxS) .

is the first stage decision.

Let (x,y) : optimal solution with cost LP-OPT.

S:e S xS + S:e S yA,S 1 for each A U, e A

for every element e, either 

S:e S xS ½ OR in each scenario A : e A, S:e S yA,S ½.

Sets

Elements

Rounding (contd.)
Set in S

Element in E

Consider any scenario A. Elements in A E are covered.

For every e A¥E, it must be that S:e S yA,S ½. 
So (2yA) is a fractional set cover for A¥E can round to 
get a set cover of W-cost ( S 2WSyA,S) .

A

Using this to augment S in scenario A, expected cost

S S + 2 .
A U pA ( S WSyA,S) 2 .LP-

OPT.

A Rounding Theorem

Stochastic Problem: LP can be solved in polynomial time. 

Example: polynomial scenario setting

Deterministic problem:  -approximation algorithm A with
respect to the LP relaxation, A(I) .LP-OPT(I) for each I.

Example: “the greedy algorithm” for set cover is a 
log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an -approx. algorithm to get a 
2 -approximation algorithm for stochastic set cover.

A Rounding Technique
Assume LP can be solved in polynomial time. 
Suppose we have an -approximation algorithm w.r.t. the LP 
relaxation for the deterministic problem.

Let (x,y) : optimal solution with cost OPT.

S:e S xS + S:e S yA,S 1 for each A U, e A

for every element e, either 

S:e S xS ½ OR in each scenario A : e A, S:e S yA,S ½.

Let E = {e : S:e S xS ½}.

So (2x) is a fractional set cover for the set E can “round” to 
get an integer set cover of cost S S ( S 2 SxS) .

is the first stage decision.

A Compact Formulation
pA : probability of scenario A U.
xS : indicates if set S is picked in stage I.

Minimize h(x) = S SxS + f(x) s.t. xS 0 for each S

where, f(x) = A U pAfA(x) 

and fA(x) = min. S WSyA,S 

s.t. S:e S yA,S 1 – S:e S xS for each 
e A

yA,S 0 for each S.Equivalent to earlier LP.

Each fA(x) is convex, so f(x) and h(x) are convex functions.
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The Algorithm

1. Get a (1+ )-optimal solution (x) to compact  
convex program using the ellipsoid method. 

2. Round (x) using a log n-approx. algorithm 
for the deterministic problem to decide 
which sets to pick in stage I.

Obtain a (2log n+ )-approximation algorithm 
for the stochastic set cover problem.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

The Ellipsoid Method
Ellipsoid squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

Min c.x subject to x P.

P

The Ellipsoid Method
Min c.x subject to x P.

P

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid 
containing “unchopped” half-ellipsoid.

Ellipsoid squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

The Ellipsoid Method
Min c.x subject to x P.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid 
containing “unchopped” half-ellipsoid.

If yi P, use objective function cut
c.x c.yi to chop off polytope, half-
ellipsoid.c.x c.yi

Ellipsoid squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

P

The Ellipsoid Method
Min c.x subject to x P. Ellipsoid squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid 
containing “unchopped” half-ellipsoid.

If yi P, use objective function cut
c.x c.yi to chop off polytope, half-
ellipsoid.

P

The Ellipsoid Method
Min c.x subject to x P.

P

x1, x2, …, xk: points lying in P. c.xk is a close to optimal value.

Ellipsoid squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid 
containing “unchopped” half-ellipsoid.

If yi P, use objective function cut
c.x c.yi to chop off polytope, half-
ellipsoid.

x1

x2

xk

x*
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Ellipsoid for Convex Optimization
Min h(x) subject to x P.

P

Start with ball containing polytope P.
yi = center of current ellipsoid.

If yi is infeasible, use violated inequality.

If yi P – how to make progress?
add inequality h(x) h(yi)? Separation 
becomes difficult.

Ellipsoid for Convex Optimization
Min h(x) subject to x P.

P

Start with ball containing polytope P.
yi = center of current ellipsoid.

If yi P – how to make progress?

d n is a subgradient of h(.) at u, if for every v, h(v)-h(u) d.(v-u).

Let d = subgradient at yi.
use subgradient cut d.(x–yi) 0.

add inequality h(x) h(yi)? Separation 
becomes difficult.

Generate new min. volume ellipsoid.

If yi is infeasible, use violated inequality.

d

Ellipsoid for Convex Optimization
Min h(x) subject to x P.

P

Start with ball containing polytope P.
yi = center of current ellipsoid.

If yi P – how to make progress?

d n is a subgradient of h(.) at u, if for every v, h(v)-h(u) d.(v-u).

Let d = subgradient at yi.
use subgradient cut d.(x–yi) 0.

Generate new min. volume ellipsoid.

x1, x2, …, xk: points in P. Can show, mini=1…k h(xi) OPT+ .

x*
x1

x2

add inequality h(x) h(yi)? Separation 
becomes difficult.

If yi is infeasible, use violated inequality.

Let d' = -subgradient at yi.
use -subgradient cut d'.(x–yi) 0.

Ellipsoid for Convex Optimization
Min h(x) subject to x P.

P

x1, x2, …, xk: points in P. Can show, mini=1…k h(xi) OPT/(1- ) + .

Start with ball containing polytope P.
yi = center of current ellipsoid.

If yi P – how to make progress?
add inequality h(x) h(yi)? Separation 
becomes difficult.
subgradient is difficult to compute.

If yi is infeasible, use violated inequality.

d' n is a -subgradient of h(.) at u, if v P, h(v)-h(u) d'.(v-u) – .h(u).

d'

Subgradients and -subgradients
Vector d is a subgradient of h(.) at u, 

if for every v, h(v) - h(u) d.(v-u).

Vector d' is an -subgradient of h(.) at u, 
if for every v P, h(v) - h(u) d'.(v-u) – .h(u).

P = { x : 0 xS 1 for each set S }.

h(x) = S SxS + A U pA fA(x) = .x + A U pA fA(x)

Lemma: Let d be a subgradient at u, and d' be a vector 
such that dS – S d'S dS for each set S. Then, 
d' is an -subgradient at point u.

Getting a “nice” subgradient
h(x) = .x + A U pA fA(x)

fA(x) = min. S WSyA,S

s.t. S:e S yA,S 1 – S:e S xS

e A 
yA,S 0 S 
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Getting a “nice” subgradient
h(x) = .x + A U pA fA(x)

fA(x) = min. S WSyA,S = max. e A (1 – S:e S xS) zA,e

s.t. S:e S yA,S 1 – S:e S xS s.t. e A S zA,e WS

e A S
yA,S 0 S zA,e 0 e A

Getting a “nice” subgradient
h(x) = .x + A U pA fA(x)

fA(x) = min. S WSyA,S = max. e (1 – S:e S xS) zA,e

s.t. S:e S yA,S 1 – S:e S xS s.t. e S zA,e WS

e A S
yA,S 0 S zA,e = 0  e A , zA,e 0 e

Consider point u n. Let zA optimal dual solution for A at u.

Lemma: For any point v n, we have h(v) – h(u) d.(v-u) where  
dS = S – A U pA e S zA,e.

d is a subgradient of h(.) at point u.

Sample once from black box to get random scenario A.

Compute X with XS = S – e S zA,e.

E[XS] = dS and Var[XS] WS. 
2

Computing an -Subgradient
Given point u n. zA optimal dual solution for A at u.

Subgradient at u: dS = S – A U pA e S zA,e .

Want: d' such that dS – S d'S dS for each S.

For each S, -WS dS S. Let = maxS WS / S.

Sample O( 2/ 2.log(n/ )) times to compute d' such that

Pr[ S, dS – S d'S dS] 1-

d' is an -subgradient at u with probability 1-

Putting it all together
Min h(x) subject to x P. Can compute -subgradients.

Run ellipsoid algorithm.

Given yi = center of current ellipsoid.

Continue with smaller ellipsoid.

If yi is infeasible, use violated 
inequality as a cut.

If yi P use -subgradient cut.

P

x1
x2

xk

x*

Generate points x1, x2, …, xk in P. Return x = argmini=1…k h(xi). 

Get that h(x) OPT/(1- ) + .

Finally,
Get solution x with h(x) close to OPT.

Sample initially to detect if OPT = (1/ ) – this allows 
one to get a (1+ ).OPT guarantee.

Theorem: Compact convex program can be solved to 
within a factor of (1 + ) in polynomial time, with high 
probability. 

Gives a (2log n+ )-approximation algorithm for the 
stochastic set cover problem.

A Solvable Class of Stochastic LPs

Minimize h(x) = w.x + A U pAfA(x) 

s.t. x n, x 0, x P

where fA(x) = min. wA.yA + cA.rA

s.t. BrA jA

DrA + TyA l A – Tx

yA 
n, rA 

m, yA 0, rA 0.

Theorem: Can get a (1+ )-optimal solution for this class of 
stochastic programs in polynomial time.
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2-Stage Stochastic Facility Location

Distribution over clients gives 
the set of clients to serve.

facility

Stage I: Open some facilities in 
advance; pay cost fi for facility i.
Stage I cost = (i opened) fi .stage I facility

Actual scenario A = {    clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay 
cost fiA to open facility i. Assign clients in A to facilities.

Stage II cost = fiA + (cost of serving clients in A).i opened in
scenario A

A Convex Program
pA : probability of scenario A D.
yi : indicates if facility i is opened in stage I.
yA,i : indicates if facility i is opened in scenario A.
xA,ij : whether client j is assigned to facility i in scenario A.

Minimize h(y) = i fi yi + g(y) s.t. yi 0 for 
each i

(SUFL-P)
where, g(y) = A D pA gA(y) 

and gA(y) = min. i Fi yA,i + j,i cij xA,ij

s.t. i xA,ij 1 for each 
j A

xA,ij yi + yA,i for each i,j
xA ij ,yA i 0 for each i,j.

Moral of the Story
• Even though the Stochastic LP relaxation has an 

exponential number of variables and constraints, 
we can still obtain near-optimal solutions to 
fractional first-stage decisions

• Fractional first-stage decisions are sufficient to 
decouple the two stages near-optimally

• Many applications: multicommodity flows, vertex 
cover, facility location, …

• But we still have to solve convex program with 
many, many samples (not just )!

Sample Average Approximation
Sample Average Approximation (SAA) method:

– Sample initially N times from scenario distribution
– Solve 2-stage problem estimating pA with frequency of occurrence

of scenario A

How large should N be?

Kleywegt, Shapiro & Homem De-Mello (KSH01):
– bound N by variance of a certain quantity – need not be polynomially 

bounded even for our class of programs.

SwamyS:
– show using -subgradients that for our class, N can be poly-bounded. 

Nemirovskii & Shapiro:
– show that for SSC with non-scenario dependent costs, KSH01 gives 

polynomial bound on N for (preprocessing + SAA) algorithm.  

Sample Average Approximation
Sample Average Approximation (SAA) method:

– Sample N times from distribution
– Estimate pA by qA = frequency of occurrence of scenario A

(P)           minx P (h(x) = .x + A U pA fA(x))
(SAA-P)    minx P (h'(x) = .x + A U qA fA(x))
To show: With poly-bounded N, if x solves (SAA-P) then h(x) OPT.
Let zA optimal dual solution for scenario A at point u m.

du with  du,S = S – A U qA e S zA,e is a subgradient of h'(.) at u.

Lemma: With high probability, for “many” points u in P, 
du is a subgradient of h'(.) at u, 
du is an approximate subgradient of h(.) at u.

Establishes “closeness” of h(.) and h'(.) and suffices to prove result.
Intuition: Can run ellipsoid on both (P) and (SAA-P) using the same 
vector du at feasible point u.

Multi-stage Problems
Given : Distribution over inputs.

Stage I : Make some advance decisions
– hedge against uncertainty.

Uncertainty evolves in various stages.
Learn new information in each stage.
Can take recourse actions in each 
stage – can augment earlier solution 
paying a recourse cost.

k-stage problem 
k decision points

0.5

0.2
0.3

0.4

stage I

stage II

scenarios in stage k 
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Multi-stage Problems
Given : Distribution over inputs.

Stage I : Make some advance decisions
– hedge against uncertainty.

Uncertainty evolves in various stages.
Learn new information in each stage.
Can take recourse actions in each 
stage – can augment earlier solution 
paying a recourse cost.

k-stage problem 
k decision points

0.5

0.2 0.4

stage I

stage II

scenarios in stage k 

Choose stage I decisions to minimize 
expected total cost = 

(stage I cost) + Eall scenarios [cost of stages 2 … k]. 

0.3

Solving k-stage LPs
Consider 3-stage SSC.
How to compute an -subgradient?
Want to get d' that is component-wise close to 
subgradient d where dS = S – A pA(dual solution to TA).

Problem: To compute d (even in expectation) need to solve 
the dual of a 2-stage LP – dual has exponential size!
Fix: 

– Formulate a new compact non-linear dual of polynomial size. 
– Dual has a 2-stage primal LP embedded inside – solve this 

using earlier algorithm.

Recursively apply this idea to solve k-stage stochastic LPs.

pA

TA

This is just the beginning!

• Multi-stage problems with a variable 
number of stages

• [Dean, Goemans, Vondrak 04] Stochastic 
knapsack problem – in each stage decide 
whether to pack next item

• [Levi, Pal, Roundy, Shmoys 05] Stochastic 
inventory control problems – in each stage 
react to updated forecast of future demand

• Stochastic Dynamic Programming ???

Thank You.
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Efficient Haplotype Inference 
on Pedigrees and Applications

Tao Jiang
Dept of Computer Science

University of California � Riverside

(joint work with Jing Li, CWRU)

2

Outline

! Background

! The MRHC problem and complexity

! An exact algorithm for 0-recombinant data

! A heuristic algorithm (block-extension)

! Integer linear programming formulation and 
solution for MRHC with missing alleles

! Experimental results and application in 
disease gene association mapping

! Inference of haplotypes on population data

3

Terms

! Diploid

! Polymorphisms, marker, 
allele, and SNP

! Genotype, homozygous & 
heterozygous 

! Haplotype, paternal & 
maternal haplotypes

A G

C G

1

1

6

3

1

2

3

2

H
a
p

lo
ty

p
e

Paternal Maternal

Maker locus

Genotype

Multiallelic

Biallelic

4

Mendelian Law of Inheritance 
and Recombination

BA

Father

C D

Mother

A C A D B C DB

C1 C2 C3 C4

B
D

A
C

Father

A
C

B
D

A
D

B
C

Child:

5

PedigreePedigree

" Pedigree, nuclear 

family, founder

6

PedigreePedigree

" Pedigree, nuclear 

family, founder
Father Mother

Children

ID no.

G
e
n

o
ty

p
e
s

Founders

Nuclear 

family

Family

trioLoop

Mating node
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7

Haplotyping from Genotypes:  Haplotyping from Genotypes:  

The Problem & MethodsThe Problem & Methods

" Problem:

" Input:  genotype data (possibly with missing alleles).

" Output: haplotypes.

" Input data: 

" Data with pedigree (dependent individuals). 

" Data without pedigree info (independent individuals). 

" Statistical methods

" Find the most likely haplotypes based on genotype data.

" Adv: solid theoretical bases

" Disadv: computation intensive

" Rule-based (i.e. combinatorial) methods
" Define rules/objective functions based on some plausible assumptions 

and find haplotypes consistent with the rules or optimizing the obj. fun.

" Adv: usually simple thus very fast

" Disadv: no numerical assessment of the reliability of the results

8

Motivations
! Haplotype is more biologically meaningful than genotype since 

haplotypes are directly inherited from parents. Haplotype data is more 
informative in the studies of association between diseases and genes, 
and human history. 

! The human genome project gives us the consensus genotype sequence 
of humans, but in order to understand the genetic effects on many 
complex diseases such as cancers, diabetes, osteoporoses, genetic 
variations are more important, which is best refecledt in haplotypes. 

! Current experimental techniques collect genotype data. Computational 
methods deriving haplotypes from genotypes are highly demanded.

! The ongoing international HapMap project.

9

Motivations (cont�d)

! It is generally believed that with parents/pedigree information, we 
could get more accurate haplotype and frequency estimations than
from data without such information (i.e. population data).

! Family-based association studies have been widely used. We would 
expect more family-based gene mapping methods that assume 
accurate haplotype information.     

! Not only computation intensive, model-based statistical methods may 
use assumptions that may not hold in real datasets.

10

MRHC Problem

Find a minimum recombinant 
haplotype configuration from 
a given pedigree with 
genotype data.

Assumptions:
! Mendelian law (no mutations)

! Recombination events are rare

(1 2)
(1 2)
(1 2)

�

(1 2)
(1 2)
(2 2)

�

(1 1)
(1 2)
(2 2)

...

(1 2)
(1 2)
(1 2)

...

(1 2)
(2 2)
(2 2)

�

(1 1)
(1 2)
(2 2)

�

(1 2)
(1 2)
(1 2)

...

(1 1)
(1 2)
(2 2)

...

Input (phase unknown)

11

The MRHC Problem

! PS: parental source of the 
two alleles at the locus 

(i.e. phase)

! Haplotype configuration = 
assignment of PS values at 
each locus of every 
individual.

1|2
1|2
2|1
�

1|2
2|1
2|2
�

1|1
1|2
2|2
...

1|2
1|2
2|1
...

1|2
2|2
2|2
�

1|1
2|1
2|2
�

1|2
1|2
2|1
...

1|1
1|2
2|2
...

Output (phase known)

PS = 1 (because the allele with the smaller 
index is maternal)  

12

Previous Results

! Genotype elimination (O�Connell & Weeks�99).
! Can only find haplotype configurations requiring no 

recombinant in the pedigree, exhaustive elimination.

! Genetic algorithm (Tapadar et al.�00).
! Still time consuming, needs many iterations before 

convergence.

! MRH (Qian & Beckmann�02).
! Six step rule-based algorithm.

! Locus by locus at every step, extremely slow for biallelic (e.g.
SNP) markers.
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Thm. MRHC is NP-hard.

#Idea: Reduction from a 
variant of set cover. 

#First complexity result 
concerning the problem.

#Remains hard when there 
are only two loci.

#Remains hard when no loops 
in a pedigree.

14

An Exact Algorithm for 0-Recombinant Data 
Based on Resolution of Constraints

! Assumptions:
! Zero recombinants.

! No missing alleles, no errors.

! Idea: finding all feasible (i.e. 0-recombinant) 
haplotype configurations is equivalent to reducing the 
degree of freedom in PS assignment. 

! Steps: 
! formulate all the constraints, as linear equations over GF(2)

! solve the equations by Gaussian elimination

! enumerate all feasible haplotype configurations

15

Four Levels of Constraints

Based on Mendelian law 

(for single locus) :
! Level 1: GS (grantparental source) constraint

! Level 2: PS constraint

Based on 0-recombinant assumption 

(for a pair of loci):
! Level 3: Haplotype constraint

! Level 4: Grouping constraint

16

1 2

1 2

Level 3 and Level 4 Constraints

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1 1

1 2

1 2

1 2

3 4 5

6

1 2

1 2

1 2

1 2

1 2

1 2

4 5

6

1 2

1 2

1 2

1 2

2 1

2 1

4 5

6

1 2

2 1

1 2

2 1

1 2

2 1

4 5

6

17

Level 3 and level 4 ConstraintsLevel 3 and level 4 Constraints

Note: The variables represent PS values and the 
equations are over GF(2) (in fact, addition mod 2).

18

ConstraintConstraint--Based AlgorithmBased Algorithm

Thm.  Every solution consistent with the constraint 
equations is a feasible solution and vice versa.

We can adapt the classical Gaussian elimination algorithm 

to find all consistent solutions in O(n3m3) time. 

Previously, only an exponential time algorithm is known 

due to O�Connell and Weeks (1999). 

The algorithm is useful for solving 0-recombinant data and

may serve as a subroutine in a general haplotyping algorithm.
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Block-Extension Algorithm

Iterative, heuristic, five steps. Rules are derived

from Mendelian law, MR principle, block concept

and some greedy ideas based on the following

observations:

! Block structures are common in haplotypes.

! Double recombination events are rare.

! Common haplotype blocks shared in siblings.

! �

20

Steps in the BE algorithm

! Missing allele imputation by the Mendelian
Law of inheritance and allele frequency

! PS assignment by Mendelian Law
! Locus by locus, member by member, in a top-down scan

! Greedy assignment of PS
! Bottom-up, infer PS value from PS of adjacent loci. 

! Block-Extension
! Iteratively extend the longest block to the same region of 

other members.

! Finishing the gaps between blocks by 
enumeration.

21

Analysis of the BE Algorithm

! Advantage:

! Simple and efficient. 

! Accurate when the number of 
recombination events is small.

! Disadvantage:

! Potential errors in steps 3 and 4. Accuracy 
could decrease with the increase of the 
number of recombination events.

22

More Exact Algorithms

! Locus-based dynamic programming algorithm
! Linear time in the number of the members

! Applicable to only tree pedigrees

! Member-based dynamic programming algorithm
! Linear time in the number of the loci

! Applicable to general pedigrees with small size

! Integer linear programming (ILP) with branch-and-bound
! Combines missing data imputation and haplotype inference together.

! It also implicitly checks Mendelian consistency for pedigree genotype 
data with missing alleles, which is also an NPC problem.

! Effective for practical size problems, regardless of the pedigree 
structure

23

ILP for MRHC with Missing Data

1. Alleles are represented as binary variables. 

2. Genotype info and the Mendelian law of inheritance are enforced by 
linear constraints. 

3. The objective of minimizing the total number of recombinants is 
encoded as a linear function of the variables. 

4. Effective preprocessing of constraints by taking advantage of special 
properties in our ILP formulation to reduce the number of variables.

5. Branch-and-bound strategy to find solutions. The branch step guided 
by a partial order relationship (and some other special relationships) 
identified during the preprocessing step.

6. Non-trivial bounds are estimated to prune the search tree.

7. A maximum likelihood approach is used to select the best haplotype
configuration from multiple optimal solutions.

24

Formulation: variables
! Possible alleles (totally tj) at marker locus j: },...,{

1

j

t

j

j j
mmM !

! Define 2tj (f and m) vars and 2 g vars for each paternal 
allele and maternal allele at locus j for individual i

j

i

j

ij

j

ki

j

ki ggtkmf
2,1,,,

,   )1(  , ""

! Var fk (or mk)=1 iff the allele is mk. Var g1 = 0 (or 1) iff
paternal allele is copied from father�s paternal (or 
maternal) allele. Var g2 defined similarly. 

! Define r vars:

    iff 1 

)11(  , 

1

1,1,1,

2,1,

#$!

%""
j

i

j

i

j

i

j

i

j

i

ggr

mjrr
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Formulation

 )  (

Founders-Non
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%

!

#
m

j

j

i

j

i rr
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Genotype constraints:  (0 means missing allele)
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! Objective function:
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Formulation
! Mendelian law of inheritance constraints (for a child i and 

its father f ):

1

0

1,,,

1,,,

"#%

"%%
j

i
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! Constraints for r vars:
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A Partial Order Relationship

Denote:
)
*
+

!%

!
!

0    1

1         

,
,,
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y
y

Inequalities with 2 variables:
-.
ji yy "

1

2

3

4
5

8

6
9

11

107

1

2

3�

8

9

11

10

28

Forced Variables

! Rule 1:

! Rule 2:

! Rule 3:

ncyInconsiste,
10 '/Syy
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1
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yyyyy
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Lower and Upper Bounds

! Lower bounds
! Linear relaxation.

! Sum of minimum number of recombinants in 
each nuclear family.

! Effective for data with a large number of 
recombinants.

! Upper bound
! Obtained by the Block-Extension algorithm.

! Effective for data with a small number of 
recombinants.

30

ILP

! Practical in terms of time efficiency

! Could find all possible optimal solutions

! Very effective in terms of missing allele 
imputation.
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Simulation Studies

! The algorithms have been implemented in a program 
called PedPhase in C++.

! Simulated data were generated to compare our 
algorithms, and with MRH (Qian&Beckmann�02)

! Three different pedigree structures. 

! Multiallelic and biallelic data.

! Numbers of loci: 10, 25 and 50.

! Number of recombinants: 0-4.

! 100 runs per data set.

32

Pedigree Structures

33

Accuracy Results of Algrotihm
Block-Extension

34

Efficiency Results

35

More Results on ILP

36

Real Data Analysis

! Data set (Gabriel et al.�02)
! 93 members, 12 pedigrees (each with 7-8 members);

! chromosome 3, 4 regions, each region 1-4 blocks.
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Reconstruction of Common Haplotypes
and Estimation of Their Frequencies

38

Results from ILP on the Whole 
Dataset

39

Application of Haplotype Inference in 
Gene Association Mapping

! We have developed a new haplotype association mapping 
method based on density-based clustering for case-control data.

! The method regards haplotype segments as data points in a 
high dimensional space, and defines a new pairwise haplotype 
distance measure.

! Clusters are then identified by a density-based clustering 
algorithm. 

! Z-scores based on the number of cases and controls in a cluster 
can be used as an indicator of the degree of association 
between a cluster and the disease under study.

! Results are very promising.

! But it needs haplotypes as input.

40

An Application of Haplotype Inference

! Haplotypes are inferred by computational methods that we 
mentioned earlier.

! For example: a real data set that we analyzed consists of 385 
nuclear families of size 4 (2 parents with 2 affected children).

! We do haplotype inference first using our ILP algorithm. The 
haplotypes transmitted to (affected) children are treated as 
cases and un-transmitted haplotypes as controls. The haplotype 
association method was applied then. 

41
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12345Loci

Ancestral haplotype

Extant haplotypes at the leaves

Locus mutations on edges

Inference of Haplotypes from Population 
Data: The Perfect Phylogeny Model

Each locus suffers from 
at most one mutation. 
No recombination!

42

Perfect Phylogeny Haplotype (PPH)

Given a set/poplation of genotypes S, find an explanatory 
set of haplotypes that fits a perfect phylogeny.

01c

20b

22a

21

Loci The genotype coding: 
(11): 0 homozygous
(22): 1 homozygous
(12): 2 heterozygous

A haplotype pair explains a genotype if 
the merge of the haplotypes creates the 
genotype. E.g., merging  haplotypes
001 and 100 results in genotype 202.Genotype matrix

S
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Perfect Phylogeny Haplotype (PPH)

Given a set of genotypes S, find an explanatory set of 
haplotypes that fits a perfect phylogeny.
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01c
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10b

00b

00a

11a

21
No perfect 
phylogeny 
exists for this
explanation

An Alternative Haplotype Explanation
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Efficient Solutions to the PPH Problem  
with n Individuals and m Loci

! Reduction to a graph realization problem (GPPH), 
based on Bixby-Wagner or Fushishige solution to 
graph realization (Gusfield�01).

! Reduction to graph realization, based on Tutte�s
graph realization method, in O(nm^2) time 
(Gusfield�02).

! Direct combinatorial approach in O(nm^2) time. 

Bafna et al.�03

! Eskin, Halperin and Karp�03: Specialize the Tutte
solution to the PPH problem, in O(nm^2) time.

47

Summary
! Li, J. and T. Jiang. Efficient Rule-Based Haplotyping Algorithm for 

Pedigree Data. RECOMB�03
! NP-completeness proof for general pedigrees.

! An efficient heuristic algorithm: block-extension.

! An efficient exact algorithm for 0-recombinant data.

! Doi, K., J. Li and T. Jiang. Minimum Recombinant Haplotype
Configuration on Tree Pedigrees. WABI�03

! NP-completeness proof for loopless (or tree) pedigrees.

! Two dynamic programming algorithms

! Li, J. and T. Jiang. An Exact Solution for Finding Minimum Recombinant 
Haplotype Configurations on Pedigrees with Missing Data by Integer 
Linear Programming. RECOMB�04.

! Li, J. and T. Jiang. Haplotype Association Mapping by Density-Based 
Clustering in Case-Control Studies.  RECOMB Satellite Workshop on 
Computational Methods for SNPs and Haplotypes, CMU, 2004.
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Future Work

! Incorporating mutations and errors into MRHC.

! Incorporating the likelihood of recombination 
into the objective function of ILP. 

! Haplotype inference and missing allele 
imputation without pedigree information.

! Approximation algorithms for MRHC, especially 
MRHC on tree pedigrees.

! Efficient fixed-parameter (# of recombinants) 
algorithms.

49
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New Horizons in Machine New Horizons in Machine 
LearningLearning

AvrimAvrim Blum  Blum  CMUCMU

This is mostly a survey, but portions near the end This is mostly a survey, but portions near the end 
are joint work with Nina are joint work with Nina BalcanBalcan and and SantoshSantosh

VempalaVempala

[Workshop on New Horizons in Computing, Kyoto 2005][Workshop on New Horizons in Computing, Kyoto 2005]

What is Machine Learning?What is Machine Learning?
! Design of programs that adapt from 

experience, identify patterns in data.
! Used to:

� recognize speech, faces, images
� steer a car,
� play games,
� categorize documents, info retrieval, ...

! Goals of ML theory: develop models, 
analyze algorithmic and statistical issues 
involved.

Plan for this talkPlan for this talk
! Discuss some of current challenges and 

�hot topics�.
! Focus on topic of �kernel methods�, and 

connections to random projection, 
embeddings.

! Start with a quick orientation�

The concept learning settingThe concept learning setting
! Imagine you want a computer program to 

help you decide which email messages are 
spam and which are important.

! Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.)

! Take sample S of data, labeled according to 
whether they were/weren�t spam.

! Goal of algorithm is to use data seen so far 
to produce good prediction rule (a �hypothesis�)
h(x) for future data. 

example label

The concept learning settingThe concept learning setting
E.g.,

Given data, some reasonable rules might be:
�Predict SPAM if unknown AND (money OR pills)

�Predict SPAM if money + pills � known > 0.

�...

Big questionsBig questions
(A) How to optimize?

! How might we automatically generate rules 
like this that do well on observed data?  
[Algorithm design]

(B) What to optimize?
! Our real goal is to do well on new data.
! What kind of confidence do we have that 

rules that do well on sample will do well in 
the future?
! Statistics
! Sample complexity
! SRM

for a given learning alg, how 
much data do we need...
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To be a little more formalTo be a little more formal��
PAC model setup:
! Alg is given sample S = {(x,l)} drawn from 

some distribution D over examples x, 
labeled by some target function f. 

! Alg does optimization over S to produce 
some hypothesis h ! H. [e.g., H = linear separators]

! Goal is for h to be close to f over D.
� Prx!D(h(x)!f(x)) · ".

! Allow failure with small prob # (to allow for 
chance that S is not representative).

The issue of sampleThe issue of sample--complexitycomplexity
! We want to do well on D, but all we have is S.  

� Are we in trouble?  
� How big does S have to be so that low error on 

S " low error on D?

! Luckily, simple sample-complexity bounds:
� If |S| # (1/")[log|H| + log 1/#],

[think of log|H| as the number of bits to write down h]

then whp (1-#), all h!H that agree with S have 
true error · ".

� In fact, with extra factor of O(1/"), enough so 
whp all have |true error � empirical error| · ".

The issue of sampleThe issue of sample--complexitycomplexity
! We want to do well on D, but all we have is S.  

� Are we in trouble?  
� How big does S have to be so that low error on 

S " low error on D?

! Implication:
� If we view cost of examples as comparable to 

cost of computation, then don�t have to worry 
about data cost since just ~ 1/" per bit output.

� But, in practice, costs often wildly different, so 
sample-complexity issues are crucial.

Some current hot topics in MLSome current hot topics in ML
! More precise confidence bounds, as a 

function of observable quantities.
� Replace log |H| with log(# ways of splitting S 

using functions in H).
� Bounds based on margins: how well-separated the 

data is.
� Bounds based on other observable properties of 

S and relation of S to H; other complexity 
measures�

Some current hot topics in MLSome current hot topics in ML
! More precise confidence bounds, as a 

function of observable quantities.
! Kernel methods.

� Allow to implicitly map data into higher-
dimensional space, without paying for it if 
algorithm can be �kernelized�. 

� Get back to this in a few minutes�
� Point is: if, say, data not linearly separable in 

original space, it could be in new space. 

Some current hot topics in MLSome current hot topics in ML
! More precise confidence bounds, as a 

function of observable quantities.
! Kernel methods.
! Semi-supervised learning.

� Using labeled and unlabeled data together (often 
unlabeled data is much more plentiful).

� Useful if have beliefs about not just form of 
target but also its relationship to underlying 
distribution.

� Co-training, graph-based methods, transductive 
SVM,�
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Some current hot topics in MLSome current hot topics in ML
! More precise confidence bounds, as a 

function of observable quantities.
! Kernel methods.
! Semi-supervised learning.
! Online learning / adaptive game playing.

� Classic strategies with excellent regret bounds 
(from Hannan in 1950s to weighted-majority in 80s-90s).

� New work on strategies that can efficiently 
handle large implicit choice spaces. [KV][Z]�

� Connections to game-theoretic equilibria.

Some current hot topics in MLSome current hot topics in ML
! More precise confidence bounds, as a 

function of observable quantities.
! Kernel methods.
! Semi-supervised learning.
! Online learning / adaptive game playing.

Could give full talk on any one of these.
Focus on #2, with connection to random 

projection and metric embeddings�

! One of the most natural approaches to 
learning is to try to learn a linear separator.

! But what if the data is not linearly 
separable?  Yet you still want to use the 
same algorithm.

! One idea: Kernel functions.

Kernel MethodsKernel Methods

+
++

++

+
-

-
-

-
-

+

+
+
+

+

+-

-
-

- -

! A Kernel Function K(x,y) is a function on 
pairs of examples, such that for some 
implicit function $(x) into a possibly high-
dimensional space, K(x,y) = $(x) á $(y).

! E.g., K(x,y) = (1 + x á y)m.
� If x ! Rn, then $(x) ! Rnm.
� K is easy to compute, even though you can�t even 

efficiently write down $(x).
! The point: many linear-separator algorithms 

can be kernelized � made to use K and act as 
if their input was the $(x)�s.  
� E.g., Perceptron, SVM.

Kernel MethodsKernel Methods

! Given a set of images:            , represented 
as pixels, want to distinguish men from 
women.

! But pixels not a great representation for 
image classification.

! Use a Kernel K( ,      ) = $( )á$( ),  $
is implicit, high-dimensional mapping.  
Choose K appropriate for type of data.

Typical application for KernelsTypical application for Kernels

! Use a Kernel K( ,      ) = $( )á$( ),  $
is implicit, high-dimensional mapping.

! What about # of samples needed?
� Don�t have to pay for dimensionality of $-space 

if data is separable by a large margin %.
� E.g., Perceptron, SVM need sample size only 

Õ(1/%2).

What about sampleWhat about sample--complexity?complexity?

|w&$'x)|/|$(x)| ( %,  |w|=1
+

++
++

+
-

-
-

-
-

$)space
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So, with that backgroundSo, with that background��

QuestionQuestion
! Are kernels really allowing you to magically 

use power of implicit high-dimensional $-
space without paying for it?

! What�s going on?
! Claim: [BBV] Given a kernel [as a black-box 

program K(x,y)] and access to typical inputs 
[samples from D],
� Can run K and reverse-engineer an explicit 

(small) set of features, such that if K is good 
[$ large-margin separator in $-space for f,D], 
then this is a good feature set [$ almost-as-
good separator in this explicit space].

contdcontd
! Claim: [BBV] Given a kernel [as a black-box program 

K(x,y)] & access to typical inputs [samples from D]
� Can run K and reverse-engineer an explicit (small) set of 

features, such that if K is good [$ large-margin separator 
in $-space], then this is a good feature set [$ almost-as-
good separator in this explicit space]. 

! Eg, sample z1,...,zd from D. Given x, define xi=K(x,zi).
! Implications:

� Practical: alternative to kernelizing the algorithm.
� Conceptual: View choosing a kernel like choosing a (distrib

dependent) set of features,  rather than �magic power of 
implicit high dimensional space�.  [though argument needs 
existence of $ functions]

Why is this a plausible goal in principle?Why is this a plausible goal in principle?
! JL lemma: If data separable with margin % in $-space, 

then with prob 1-#, a random linear projection down to 
space of dimension d = O((1/%2)log[1/(#")]) will have a 
linear separator of error < ".

X

+   -

+   -

$

! If vectors are r1,r2,...,rd, then can view 
coords as features xi = $(x)á ri.

! Problem: uses $. Can we do 
directly, using K as black-
box, without computing $?

+   -

+  -

3 methods (from simplest to best)3 methods (from simplest to best)
1. Draw d examples z1,...,zd from D.  Use:

F(x) = (K(x,z1), ..., K(x,zd)). [So, �xi� = K(x,zi)]

For d = (8/")[1/%2 + ln 1/#], if separable with margin % in 
$-space, then whp this will be separable with error ". 
(but this method doesn�t preserve margin).

2. Same d, but a little more complicated.  Separable with 
error " at margin %/2.

3. Combine (2) with further projection as in JL lemma.  
Get d with log dependence on 1/", rather than linear.  So, 
can set " ¿ 1/d.

All these methods need access to D, unlike JL.  Can this 
be removed?  We show NO for generic K, but may be 
possible for natural K.

Actually, the argument is Actually, the argument is 
pretty easy...pretty easy...

(though we did try a lot of 
things first that didn�t work...)
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Key factKey fact
Claim: If $ perfect  w of  margin % in *-space, then if draw 

z1,...,zd ! D for d # (8/")[1/%2 + ln 1/#], whp (1-#) exists w�
in span($(z1),...,$(zd)) of error · " at margin %/2.

Proof: Let S = examples drawn so far.  Assume |w|=1, 
|$(z)|=1 % z.

" win = proj(w,span(S)), wout = w � win.

" Say wout is large if Prz(|woutá$(z)| # %/2) # "; else small.
" If small, then done: w� = win.
" Else, next z has at least " prob of improving S.

|wout|2 & |wout|2 � (%/2)2

" Can happen at most 4/%2 times. 
�

So....So....
If draw z1,...,zd ! D for d = (8/")[1/%2 + ln 1/#], then whp

exists w� in span($(z1),...,$(zd)) of error · " at margin 
%/2.

" So, for some w� = +1$(z1) + ... + +d$(zd),
Pr(x,l) ! P [sign(w� á $(x)) ! l] · ".

" But notice that w�á$(x) = +1K(x,z1) + ... + +dK(x,zd).
" vector (+1,...+d) is an "-good separator in the feature 

space: xi = K(x,zi).

" But margin not preserved because length of target, 
examples not preserved.

What if we want to preserve margin? What if we want to preserve margin? (mapping 2)(mapping 2)

" Problem with last mapping is $(z)�s might be highly 
correlated.   So, dot-product mapping doesn�t preserve 
margin.

" Instead, given a new x, want to do an orthogonal 
projection of $(x) into that span.  (preserves dot-
product, decreases |$(x)|, so only increases margin).

# Run K(zi,zj) for all i,j=1,...,d.  Get matrix M.
# Decompose M = UTU.

# (Mapping #2) = (mapping #1)U-1.   
�

Use this to improve dimensionUse this to improve dimension
" Current mapping gives d = (8/")[1/%2 + ln 1/#].
" Johnson-Lindenstrauss gives d = O((1/%2) log 1/(#") ). 

Nice because can have d¿ 1/".   [So can set " small 
enough so that whp a sample of size O(d) is perfectly 
separable]

" Can we achieve that efficiently?
" Answer: just combine the two...

# Run Mapping #2, then do random projection down 
from that.  (using fact that mapping #2 had a margin)

# Gives us desired dimension (# features), though 
sample-complexity remains as in mapping #2.
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Lower bound (on necessity of access to D)Lower bound (on necessity of access to D)
For arbitrary black-box kernel K, can�t hope to convert 

to small feature space without access to D.
" Consider X={0,1}n, random X�' X of size 2n/2, D =

uniform over X�.
" c = arbitrary function (so learning is hopeless).
" But we have this magic kernel K(x,y) = $(x)á$(y)

# $(x) = (1,0) if x , X�.
# $(x) = (-½, (3/2) if x ! X�, c(x)=pos.
# $(x) = (-½,-(3/2) if x ! X�, c(x)=neg.

" P is separable with margin (3/2 in $-
space.

" But, without access to D, all attempts at 
running K(x,y) will give answer of 1.

-

)

-.)
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Open ProblemsOpen Problems

" For specific natural kernels, like �polynomial�
kernel  K(x,y) = (1 + xáy)m, is there an efficient 
analog to JL, without needing access to D?
# Or, can one at least reduce the sample-complexity ? 

(use fewer accesses to D)
# This would increase practicality of this approach

" Can one extend results (e.g., mapping #1:         
x / [K(x,z1), ..., K(x,zd)]) to more general 
similarity functions K?
# Not exactly clear what theorem statement would 

look like.
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1

Rigorous analysis of heuristics 

for NP-hard problems

Uriel Feige

Weizmann Institute

Microsoft Research

2

Computational problems

We would love to have algorithms that:

- Produce optimal results.

- Are efficient (polynomial time).

- Work on every input instance.

3

NP-hardness

For many combinatorial problems, the goal 

of achieving all three  properties 

simultaneously is too ambitious (NP-hard).

We should set goals that are more modest.

4

Relaxing the desired properties

Optimality: approximation algorithms. 

Efficiency: sub-exponential algorithms, fixed 

parameter tractability.

Firm theoretical foundations. Both positive 

and negative results.

5

Heuristics

Relax the universality property: need not 
work on every input.

In this talk: heuristics are required to  
produce optimal results in polynomial time, 
on typical inputs.

Conceptual problem: the notion typical is not 
well defined.

6

Some questions

Explain apparent success of known 
heuristics.

Come up with good heuristic ideas.

Match heuristics to problems.

Investigate fundamental limitations.

Prove that a certain heuristic is good.

Prove that a certain heuristic is bad.
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7

In this talk

Some theoretical frameworks for studying 

heuristics.

Some algorithmic ideas that are often used.

Heuristics is a huge subject. This talk 

presents only a narrow view, and excludes 

many important and relevant work. 

8

The importance of modeling

For a rigorous treatment of heuristics, need 

a rigorous definition for typical inputs.

Given a rigorous definition for typical inputs 

(for example, planar graphs), one is no 

longer dealing with a fuzzy notion of 

heuristics, but rather with the familiar 

notion of worst case analysis.

9

Probabilistic models

A typical input can be modeled as a random 
input chosen from some well defined 
distribution on inputs.

Again, design of heuristics often boils down 
to worst case analysis:

� Most random inputs have property P.

� Algorithm works on all inputs with property 
P.

10

Rigorous analysis

In this talk, limit ourselves to discussion 

of heuristics in well defined models. In 

these models, prove theorems.

To early to assess the relevance and 

success of the methodology.

11

Some theoretical frameworks

Random inputs.

Planted solution models.

Semi-random models, monotone adversary.

Smoothed analysis.

Stable inputs.

12

Random inputs

Typical example: random graphs, n vertices, 

m edges.

An algorithm for finding Hamiltonian cycles 

in random graphs, even when the 

minimum degree is 2 [Bollobas,Fenner,Frieze].

No algorithm known for max clique in 

random graphs.
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13

Planted solution models

Useful when random model seems too difficult.

Example: plant in a uniform random graph a 

clique of large size k. Can a polynomial time 

algorithm find the k-clique?

� Yes, when                         [Alon,Krivelevich,Sudakov].

� Unknown when                         .

)( nk

)( nok

14

Semi random model 

[Blum-Spencer]

Useful in order to overcome over-fitting of 

algorithms to the random model. Adds 

robustness to algorithms.

Example, when                                 , vertices of 

planted k-clique have highest degree. 

Algorithm may select the k highest degree 

vertices and check if they form a clique.

nnk log

15

Monotone adversary [Feige-Kilian]

Adversary may change the random input, 

but only in one direction.

Planted clique: adversary may remove 

arbitrarily many non-clique edges.

Degree based algorithm no longer works.

Semidefinite programming does work, 

when                       [Feige-Krauthgamer].)( nk

16

Smoothed analysis 

[Spielman-Teng]

Arbitrary input, random perturbation.

Typical input � low order bits are random.

Explain success of simplex algorithm [ST].

FPTAS implies easy smoothed instances 
[Beier-Voecking].

17

Smoothed versus semirandom

Smoothed analysis: 

� arbitrary instance � defines an arbitrary region.

� random input is chosen in this region.

� stronger when region is small.

Monotone adversary:

� random instance � defines a random region. 

� arbitrary input is chosen in region.

� stronger when region is large.

18

Stable inputs [Bilu-Linial]

In some applications (clustering), the 

interesting inputs are those that are stable 

in the sense that a small perturbation in 

the input does not change the 

combinatorial solution.

An algorithm for (highly) stable instances  of 

cut problems [BL].
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19

Stable versus smooth

Consider regions induced by combinatorial 

solution.

In both cases, must solve all instances that are far 

from the boundary of their region.  

For instances near the boundary:

� Smoothed analysis: solve a perturbed input. 

� Stable inputs: do nothing.

20

Running example: 3SAT

n variables, m clauses, 3 literals per clause.

Clauses chosen independently at random.

Random formula f with m >> n. 

)()(
54

_

2

_

21 3
xxxxxx

21

Probabilistic estimates

The expected number of satisfying 

assignments for f is:

When m >> n, the formula f is unlikely to be 

satisfiable.

nm
2*)2/11(

3

22

Two tasks

Search: if the formula is satisfiable, then find a 

satisfying assignment.

Refutation: if formula is not satisfiable, then find a 

certificate for nonsatisfiability.

23

Simple case

When  m >> n log n, then if formula is 

satisfiable, the satisfying assignment is 

likely to be unique.

Then distribution on random satisfiable

formulas can be approximated by planted 

solution distribution. 

24

Planted solution model

First pick at random an assignment a to the 

variables.

Then choose at random clauses, discarding 

clauses not satisfied by a, until m clauses 

are reached.

When m>>n log n, a is likely to be a unique 

satisfying assignment.
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Statistical properties

For every variable x, in every clause C that 

contained x and was discarded, the 

polarity of x in C disagreed with its polarity 

in a.

Set x according to the polarity that agrees 

with the majority of its occurrences in f.

When m >> n log n, it is likely that this 

algorithm exactly recovers a.

26

Sparser formulas

m = d*n for some large constant d.

Distribution generated by planted model no 

longer known to be statistically close to 

that of random satisfiable formulas. Favors 

formulas with many satisfying 

assignments.

We present algorithm only for planted 

model.

27

Majority vote

Majority vote assignment a(0).

For most variables, a(0) = a, and a(0)

satisfies most clauses.

Still, linear fraction of variables disagree with 

a, and a linear fraction of clauses are not 

satisfied.

This fraction is exponentially small in d.

28

Hill climbing

Moving towards satisfying assignment.

Alon-Kahale (for 3-coloring).

Flaxman (for planted 3SAT).

Feige-Vilenchik (for semirandom 3SAT).

Semirandom model: monotone adversary 

can add arbitrary clauses in which all three 

literals are set in agreement with a.

29

Conservative local search

a(j) is the assignment at iteration j, T(j) is the 

set of clauses already satisfied. 

a(0) is the majority vote.

Pick an arbitrary clause C not in T(j).

Find the assignment closest (in Hamming 

distance) to a(j) that satisfies T(j) + C.

Increment j and repeat.

30

Time complexity

The algorithm obviously finds a 

satisfying assignment. The only 

question is how fast.

The number of iterations is at most m

(the number of satisfied clauses 

increases in every iteration).
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Complexity per iteration

Let h be Hamming distance between a(j)

and a(j+1).

At least one of three variables in C needs 

to be flipped.

In a clause that becomes not satisfied in 

T(j), at least one of two variables needs 

to be flipped.

Time proportional to 1
2*3
h

32

33

Main technical lemma

Lemma: With high probability over the 

choice of f, in all iterations  h < O(log n).

Hence algorithm runs in polynomial time.

(True also for the semirandom model.)

34

Sketch of proof � the core

A variable x for which a(0) = a is a  core

variable if flipping x ruins T(0), and T(0)

can then be satisfied only by flipping a 

linear number of other variables.

The set of clauses not satisfied by the core 

decomposes into sub-formulas of size 

O(log n) not sharing non-core variables.

35

Main invariant

An iteration can be completed in O(log n)

flips, of non-core variables.

As long as h = O(log n), no core variable will 

accidentally be flipped, and the invariant is 

maintained. 

The algorithm need not know the core.

36

Worst case analysis

Algorithm works on every input formula f

with property P (defined in terms of core).

Probabilistic analysis (much too complicated 

to be shown here) shows that in the 

planted model, input formula f is likely to 

have property P.
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Open problems

Does the algorithm run in polynomial time on 

random satisfiable formulas?

When m >> n? For arbitrary m?

Does the cavity method (survey propagation 

[Braunstein, Mezard, Zecchina]) provably 

work on random formulas?

Alternative algorithms?

More challenging models?

38

Refutation algorithms

If the formula is not satisfiable, the algorithm 

presented takes exponential time to detect 

this.

Heuristics for finding solutions are not the 

same as heuristics for refutation (unlike 

worst case algorithms).

Common refutation algorithms (resolution) 

take exponential time on random formulas.

39

Refutation by approximation

When m >> n, every assignment satisfies 

roughly 7m/8 clauses of a random formula.

An algorithm for approximating max 3sat 

within a ratio strictly better than 7/8 would 

refute most dense 3SAT formulas.

Unfortunately, approximating max 3sat (in 

the worst case) beyond 7/8 is NP-hard 

[Hastad].

40

Turning the argument around

What if refuting random 3sat is hard?

Would imply hardness of approximation:

� Max 3sat beyond 7/8 (PCP + Fourier).

� Min bisection, dense k-subgraph, bipartite 

clique, 2-catalog segmentation, treewidth, etc.

A good rule of thumb. Most of its predictions (with 

weaker constants) can be proved assuming NP 

not in subexponential time [Khot].

41

A simple refutation algorithm

Assume                   .

There are 3n clauses that contain x1. 

Suffices to refute this subformula f1.

Substitute x1 = 0. Simplify to a 2CNF formula.

Random 2CNF formula with 3n/2 clauses.

Unlikely to be satisfiable.

2SAT can be refuted in polynomial time.

Repeat with x1 = 1.

2
nm

42

Best current bounds

Can refute random formulas with                 

[Feige-Ofek].

Based on pair-wise statistical irregularities, 

and eigenvalue computations.

Can be run in practice on formulas with 

n=50000,                         , if one trusts 

standard software packages for the 

eigenvalue computations.

2/3
5.2 nm

2/3
cnm
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The basic idea [Goerdt-Krivelevich]

Will be shown for random 4SAT formula f

with              

In a satisfying assignment a, at least half 

the variables are negative (w.l.o.g.).

Let S be the set of variables negative in a. 

Then there is no positive clause in f whose 

four variables are in S.

2
cnm
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Reduction to graph problem

Every pair of variables [xi xj] � a vertex.

Every positive clause (xi xj xk xl) � an 

edge ([xi xj], [xk xl]).

S forms an independent set of size N/4.

45 46

Random non-satisfiable f

Random graph with N vertices and much 

more than N edges.

Unlikely to have an independent set of size 

N/4.

Moreover, this can be certified efficiently, 

by eigenvalue techniques (or by SDP, 

computing the theta function of Lovasz).

Refutes random 4SAT with 
2

cnm

47

Extension to 3SAT

Trivially extends when 

With additional ideas, get down to

A certain natural SDP cannot get below

[Feige-Ofek].

Neither can resolution [Ben-Sasson and 
Widgerson].

Goal: refute random 3SAT with  m = O(n).

2
cnm

2/3
cnm

2/3
cnm
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Summary

Several rigorous models in which to study 

heuristics.

Rigorous results in these models, including 

hardness results (not discussed in this 

talk).

The heuristics may be quite sophisticated.

Wide open research area.
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Efficient Algorithms for 

the Longest Path 

Problem

Ryuhei UEHARA (JAIST)

Yushi UNO (Osaka Prefecture University)

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

The Longest Path Problem

Finding a longest (vertex disjoint) path in a 

given graph

Motivation (comparing to Hamiltonian path):

� Approx. Algorithm, Parameterized Complexity

� More practical/natural

� More difficult(?)

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

The Longest Path Problem

Known (hardness) results;

We cannot find a path of length n-n in a given 

Hamiltonian graph in poly-time unless P=NP [Karger, 

Motwani, Ramkumar; 1997]

We can find O(log n) length path [Alon, Yuster, Zwick;1995]

( O((log n/loglog n)2) [Björklund, Husfeldt; 2003])

Approx. Alg. achieves O(n/log n) [AYZ95] 

( O(n(loglog n/log n)2)[BH03])

Exponential algorithm [Monien 1985]

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

The Longest Path Problem

Known polynomial time algorithm;

Dijkstra�s Alg.(196?) Linear alg. for finding a longest path in a tree;

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

The Longest Path Problem

Known polynomial time algorithm;

Dijkstra�s Alg.(196?) Linear alg. for finding a longest path in a tree;
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The Longest Path Problem

Known polynomial time algorithm;

Dijkstra�s Alg.(196?) Linear alg. for finding a longest path in a tree;
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The Longest Path Problem

Known polynomial time algorithm;

Dijkstra�s Alg.(196?) Linear alg. for finding a longest path in a tree;

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Approaches to the Efficient 

Algs to Longest Path Problem

1. Extension of the Dijkstra�s algorithm
Weighted trees (linear), block graphs (linear), cacti (O(n2)).

2. Graph classes s.t. Hamiltonian Path can be found 
in poly time

Some graph classes having interval representations

(bipartite permutation, interval biconvex graphs)

3. Dynamic programming to the graph classes that 
have tree representations (on going)

Cacti(linear), �

(ISAAC 2004)

(ISAAC 2004)
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Approaches to the Efficient 

Algs to Longest Path Problem

1. Extension of the Dijkstra�s algorithm
Weighted trees (linear), block graphs (linear), cacti (O(n2)).

2. Graph classes s.t. Hamiltonian Path can be found 
in poly time

Some graph classes having interval representations

(bipartite permutation, interval biconvex graphs)

3. Dynamic programming to the graph classes that 
have tree representations (on going)

Cacti(linear), �

(ISAAC 2004)

(ISAAC 2004)

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra�s Alg

Bulterman et.al. (IPL,2002) showed that       

the correctness of Dijkstra�s alg stands for;

1. For each  u,v,

length of the shortest path between u and v

= length of the longest path between u and v

2. For each u,v,w,

d(u,v) d(u,w) + d(w,v)

3. For each u,v,w,

d(u,v) d(u,w) + d(w,v)  if and only if

w is on the unique path between u and v

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra�s Alg

Construct G�=(V�,E�) from G=(V,E) s.t.

V V�

For each u,v V,

length of the shortest path between u,v on G�

= length of the longest path between u,v on G

For each u,v V,

the shortest path between u,v on G� is unique

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra�s Alg

Theorem: ExDijkstra finds a longest path if G

and G� satisfy the conditions.

ExDijkstra: G=(V,E) and G�=(V�,E�)

1. pick any vertex w in V;

2. find x V with max{d(w,x)} on G�;

3. find y V with max{d(x,y)} on G�;

4. x and y are the endpoints of the longest path in 

G, and d(x,y) on G� is its length. 
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1. Ex of Dijkstra�s Alg (Summary)

Theorem: Vertex/edge weighted tree (linear)

Theorem: Block graph (O(|V|+|E|))

Theorem: Cactus (O(|V|2))

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra�s Alg (Cacti)

Cactus: 

Each block is a cycle

Two cycle share at most one vertex which is a separator

The longest path   

between 

u and v on G

cactus
G�G

The shortest path   

between 

u and v on G�
=

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra�s Alg (Cacti)

Sample
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1. Ex of Dijkstra�s Alg (Cacti)

Sample
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1. Ex of Dijkstra�s Alg (Cacti)

Sample
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1. Ex of Dijkstra�s Alg (Cacti)

Sample
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1. Ex of Dijkstra�s Alg (Cacti)

Sample
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1. Ex of Dijkstra�s Alg (Cacti)

Sample

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra�s Alg (Cacti)

Sample

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Graph classes s.t. Hamiltonian

Path can be found in poly time

Fact 1: 

Hamiltonian Path is NP-hard on a chordal graph.

(In fact, strongly chordal split graph[Müller,1997].)

Fact 2:

Hamiltonian Path is solvable on an interval graph in 

linear time. [Damaschke, 1993].

Our goal:

Poly-time algorithm for Longest Path on an interval 

graph.

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Interval Graphs

An interval graph G=(V,E) has an interval 

representation s.t. {u,v} E iff Iu Iv

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Interval Graphs

An interval graph G=(V,E) has an interval 

representation s.t. {u,v} E iff Iu Iv

u

v

Iu

Iv

Hamiltonian Path: linear time solvable.

Longest Path: ????

Restricted interval graphs�
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Restricted Interval Graphs

An interval biconvex graph G=(S Y,E) has 

an interval representation s.t�

Y: biconvex

S: integer points

s1
s2 s4

s3

s5

s6
s7

s8

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Restricted Interval Graphs

Interval biconvex graph G=(S Y,E) is 

introduced [Uehara, Uno; 2004] from graph 

theoretical viewpoints;

Natural analogy of biconvex graphs (bipartite graph class) 

Generalization of proper interval graphs

Generalization of threshold graphs

Best possible class longest path can be found in poly time�

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Poly-time alg for longest path on 

an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];

Embed the vertices in S into P as possible;

Adjust endpoints if necessary.

3 4 3 7 1 9 2 3 8 8 30
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Poly-time alg for longest path on 

an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];

Embed the vertices in S into P as possible;

Adjust endpoints if necessary.

3 4 3 7 1 9 2 3 8 8 30

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

30

Poly-time alg for longest path on 

an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];

Embed the vertices in S into P as possible;

Adjust endpoints if necessary.

3 4 3 7 1 9 2 3 8 8

3

4
7

9

8

8
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30

Poly-time alg for longest path on 

an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];

Embed the vertices in S into P as possible;

Adjust endpoints if necessary.

3 4 3 7 1 9 2 3 8 8

3

4
7

9

8

30
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Poly-time alg for longest path on 

an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];

Embed the vertices in S into P as possible;

Adjust endpoints if necessary.

3 4 3 7 1 9 2 3 8 8

3

4
7

9

8

30

How can we determine the 

vertices in S?

Where do we embed them?

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

30

Poly-time alg for longest path on 

an interval biconvex graph (idea)

Embed the vertices in S into P as possible;

3 4 3 7 1 9 2 3 8 8

30
8

3
4
3
7
1
9
2
3
8

w(e) is the number 

at the right-endpoint
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30

Poly-time alg for longest path on 

an interval biconvex graph (idea)

Embed the vertices in S into P as possible;

3 4 3 7 1 9 2 3 8 8

30
8

3
4
3
7
1
9
2
3
8

w(e) is the number 

at the right-endpoint

Find the maximum 

weighted matching!!
2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Open Problems

Longest Path on an interval graph??

Combination of DP/Dijkstra and weighted 
maximum matching on MPQ-tree representation?

Related to the following open problem?

Hamiltonian Path with a start point on an interval graph? 
[Damaschke, 1993].

Extension to 

Longest cycle on some graph classes

Hamiltonian cycle/path on some graph classes
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Proposal of

Asynchronous Distributed 

Branch and Bound 

Atsushi Sasaki�, Tadashi Araragi�, 

Shigeru Masuyama�

�NTT Communication Science Laboratories, 

NTT Corporation, 

Kyoto, Japan

�Dept. of Knowledge-based Information Eng.,

Toyohashi University of Technology

Toyohashi, Japan

Outline

� Proposal of a new framework of 

asynchronous branch and bound to obtain 

optimal solutions for discrete optimization 

problems where each variable denotes a host, 

e.g., load balancing. 

� This framework is promising as it has more 

flexibility and robustness than conventional 

ones with some centralized control.  

Load Balancing

� Fundamental problem to affect the performance of 

distributed systems   

� NP-hard e.g., Multiprocessor Scheduling [Garey, 

Johnson 79], Mobile Agent Allocation [Sasaki et al 

05]

� Most conventional solution methods for discrete 

optimization are kinds of local search [Shiragi et al, 95]

� Further improvement from a local optimum is difficult

� Few studies focus on optimization

Desirable Properties

� Exact  optimal solution is obtained
from any state, non-optimal solution can be 

improved

� Fully  distributed control 

� Can be used as an approximation algorithm 
especially in a large-scale system

� Asynchronous operation

� Fault tolerance and adaptation to dynamic changes

� High performance

Conventional Branch and Bound under 

Distributed Environment
� Synchronous branch and bound [Yokoo, 01]

� Simulating the sequential branch and bound

� Assigning an agent to each variable  and execute just like sequential 

branch and bound

� Exactly one agent operates at a time (e.g., when  branching 

is executed) so that a unique branching tree is maintained 

� Distributed branch and bound[Barta et al, 02]

� Assigning each partial problem obtained by branching 

operation to a different host  (natural way in a distributed 

environment)

� Essentially the same as the parallel branch and bound 

An Example of Branching Tree in a 

Conventional Distributed Branch and Bound 

with Central Control

}{}{}2,1{ }{}2,1{}{ }2,1{}{}{

}{}2}{3,1{
}{}3,2}{1{

}3}{2}{1{
}2}{}{3,1{

}2}{3}{1{
}3,2}{}{1{

}{}1}{3,2{
}{}3,1}{2{

}3}{1}{2{
}2}{1}{3{

}2}{3,1{}{
}3,2}{1{}{

}1}{}{3,2{
}1}{3}{2{

}3,1}{}{2{
}1}{2}{3{

}1}{3,2{}{
}3,1}{2{}{

The case where both the number of tasks and that of hosts are 3.

Both of them  maintain a unique branching tree.
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Synchronous Distributed Branch and 

Bound

}{}{}2,1{ }{}2,1{}{ }2,1{}{}{

}{}2}{3,1{
}{}3,2}{1{

}3}{2}{1{
}2}{}{3,1{

}2}{3}{1{
}3,2}{}{1{

}{}1}{3,2{
}{}3,1}{2{

}3}{1}{2{
}2}{1}{3{

}2}{3,1{}{
}3,2}{1{}{

}1}{}{3,2{
}1}{3}{2{

}3,1}{}{2{
}1}{2}{3{

}1}{3,2{}{
}3,1}{2{}{

Agent 1

Agent 2

Agent 3

Both the number of tasks and that of hosts are 3.

Distributed Branch and Bound

}{}{}2,1{ }{}2,1{}{ }2,1{}{}{

}{}2}{3,1{
}{}3,2}{1{

}3}{2}{1{
}2}{}{3,1{

}2}{3}{1{
}3,2}{}{1{

}{}1}{3,2{
}{}3,1}{2{

}3}{1}{2{
}2}{1}{3{

}2}{3,1{}{
}3,2}{1{}{

}1}{}{3,2{
}1}{3}{2{

}3,1}{}{2{
}1}{2}{3{

}1}{3,2{}{
}3,1}{2{}{

Both the number of tasks and hosts are 3.

Host 2 Host 1 Host 3

Drawback of the Conventional 

Distributed Branch and Bound

� Fragile to fault and dynamic changes

� Essentially centralized control

� Difficult to apply to large-scale 

systems as an approximation 

algorithm

Strategy of Our Research

� Each host operates asynchronously and

cooperate to enumerate (implicitly) all the 

feasible solutions

� Each host processes only information relevant 

to the host

� Utilize the fact that the initial state is feasible

Definition of Geographical Optimization
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Notations for static  version of Mobile

Agent Allocation [Sasaki et al, 05]

x positions of agents described by host

ID

: initial positions of agents

y: finishing time 

f: CPU cost

p: CPU power of a host

w: load of an agent

g: communication cost between agents

q: communication speed of a link

c: communication amount between 

agents

k: migration cost of an agent

b: size of an agent at migration]

0x

Asynchronous Distributed Branch 

and Bound Asynchronous DBB)
(n=3,m=3)

terminated as

its lower bound >y0 {1}{2}{3}
feasible solution left when y0 unchanged

}3}{2}{1{

}3}{2}{1{

}3}{2}{1{

}3}{}{2,1{ }3,2}{}{1{

}{}2}{3,1{ }3,1}{2{}{

}3}{2,1{}{ }{}3,2}{1{

}3}{1}{2{ }2}{3}{1{

}{}{}3,2{

}1}{2}{3{}{}2,1}{3{ }1}{3,2{}{

}2,1{}{}{

}3,1}{}{2{
}2}{}{3,1{

}{}3,1}{2{ }2}{3,1{}{

}2}{1}{3{ }1}{3}{2{

Undirected edges denote those of the network and (1)(2) (3): initial state  

Only the combination with 

initial state is deleted.

Host 1 Host 3Host 2

Host 1 Host 2 Host 3

: a state with migration to an adjacent host

– 482 –



Basic Operations of the Proposed 

Asynchronous Distributed Branch and 

Bound(Asynchronous DBB)

� Update of the incumbent value

� New value is spread in the system by flooding

� Branching Operation

� Generate a new state by combining at least two states

� Notify adjacent hosts of the state with migration

� Compute cooperatively the objective function of each state

� Bounding Operation

� Terminate a state from which no optimal solution is derived

� Notify adjacent hosts of the terminated state, if necessary 

State combination of variable values that is a candidate of a 
solution where migration is also considered

Messages used in the 

Asynchronous DBB
� Update of the incumbent value update(y�,a�)

� Branch operation

� Branch migrate(xj,s), local_improve(s,y�)

� Computation of objective function local_max(s,y�,a�),

local_max_fix(s,y�,a�)

� Bound operation bound(s,a�)

s:state represented by the difference from the initial 

state y� : objective function value of  s a�: host

from which the message was sent (source host of the 

message)

Outline of the Operation at initial state

� Incumbent value the current value of the 

objective function

� Generate a state where variables are migrated to 

adjacent hosts from the current hosts

� Notify adjacent hosts of the state s and variable xj

to be migrated using  message migrate(xj,s)

Other operations are triggered by some message

An Example of Operations at the 

Initial State

� The case where h1 adjacent host h2 has only variable 

x1

� Initialization of the incumbent value :y=y0 a=a0

� Generate a state where variable x1 is to be migrated to h2,  then 

send                                    to h2

� The generated state is put into I

Set S set of enumerated states at present

S has only     at the initial state. 

Set S� a terminated state whose descendants may yield a better 

value than the incumbent value at the initial state

),( 0

1 xxmigrate

0x

Operation when Update is

Received

� If the value v carried  by the message is smaller than 

the incumbent value z, update the incumbent value to 

v and send it to hosts other than the source of the 

message.

� If there is a state terminated by the update of the 

incumbent value, then bounding operation is executed.

� If v > z, then do nothing. 

� If v = z, then tie breaking is done according to ID of each 

host.

Operation when bound is

Received

� If the bound has been received previously, ignore it. 

� Remove the state attached to the message from S

� If further branching may yield  a good solution, then 

append the state to S�

� If migration of a variable from some other host becomes 

impossible by the removal of the state, then send bound  

to the host. 

� If the  attached state does not have migration, then 

send it to hosts excluding the source of the message.  
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Operation when Migrate is

received
� Generate a state where variables to be migrated are 

set in it and combine the state and states in S, S� to 
generate a new state.  enumeration

� Assign its objective function value to  v of the 
generated state. If v>z where z is the incumbent 
value, then terminate the state. 

� If the non-terminated generated  state has 
migration, then notify the destination of the 
migration by sending migration.

� If all the variables in the non-terminated generated 
state is fixed, then send local_max to compute its 
objective function value. 

Computation of the Objective 

Function Value
� local_max(s,y�,a�)

� Spread the object function value y of state  s at host 

� local_max_fix(s,y�,a�)

� Used for fixing the objective function value spread by the 
above operation. 

� The objective function value is fixed to y� when host      
receives this message from all the adjacent hosts. 

� Computation is done only at hosts that is changed from 
the initial state. 

� If this is not the case of        , then local_improve is sent to 

� Multicast, instead, can be applicable. 

host that gives the objective function value at the initial state. 

'ah

'ah

0ah
0ah

0ah

How to Obtain the Value of the 

Objective Function 

'ah

local_max(s,y�,a�)

local_max_fix(s,y�,a�)

Termination

� Terminate when no message is in the distributed 

system

incumbent values at different hosts are the same 

� A state which gives the incumbent value exists in 

S at some host the incumbent value is the 

optimal solution

S set of states currently enumerated

Correctness

� The incumbent value is integer and 

monotonically decreasing it reaches to the 

optimal value if enumeration is realized

� Enumeration excluding terminated states

realized by message migrate and message 

local_improve

Discussion on Properties and 

Future Prospects

� Approximation

� Combining some other approximation 
methods

� Coping with large-scale systems 

� Asynchronous operation

� Fault tolerance and flexibility for the 
dynamic change

� Efficiency
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Approximation

� The solution corresponding to the 

incumbent value provide an approximation  

solution as is the case of sequential branch 

and bound

� If migration costs are high, optimal solution 

may be obtained earlier.

Using Some Other Approximation 

Method to Obtain an Upper Bound 

� Introducing an upper bound computed by 

some approximation algorithm may helpful 

for cutting the branching tree

� Thus, developing an efficient distributed 

approximation algorithm may help

Coping with Large-scale Systems

� Seamless decomposition is realized  by 
restricting the length of movement for each 
variable.

� By this restriction the number of messages 
may be reduced drastically from 
O(m)

� However, the incumbent value should be 
carefully treated. 

Asynchronous Operation

� Proposed asynchronous DBB is highly 

asynchronous  as operations at each host are  

triggered by messages and relation among 

processing of different hosts are not strong. 

� This property may help improve the efficiency, e.g., 

by assigning priority of processing for each message

This is one of the important topics for future 

research

Fault Tolerance and Coping with 

dynamic change
� Asynchronous DBB can partialy cope with them. 

� Failure at a host where the objective function  at initial 
state is not maximal and different from the current 
incumbent value can be torelated

� Appending a new host

� Appending a  new variable only when the value of the 
objective function does not exceed the incumbent value).

� Other cases are left for future research

� Including the modeling issues, e.g., how to treat variables 
on the failure host

Efficiency

� Searching strategy used in sequential branch 
and bound cannot be straightforwardly 
applied to asynchronous DBB searching 
strategies fit for asynchronous DBB should 
be developed. 

� The number of messages and that of 
memories required is very large

� Some reduction method of messages and 
memories is required
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Conclusion

� A new framework of asynchronous 
distributed branch and bound (asynchronous 
DBB)  was  proposed.

� Asynchronous  DBB is promising from the 
viewpoint of fault tolerance and flexibility  

� This may become an infrastructure for 
future large-scale distributed system

Future Research Topics

� Considering fault tolerance and adaptaion to dynamic 
changes including modeling

� Considering how to improve efficiency

� Examination of detailed operations e.g.,  whether a message 
can be sent or not

e.g., message reduction

� Considering branching order

� Reduction of space complexity

� Considering good distributed approximation algorithm  
for obtaining upper bound

� Experiments for evaluation

� Coping with mixed integer programming
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Energy-Optimal Online Algorithms for

Broadcasting in Wireless Network

Shay Kutten

Hirotaka ono

David Peleg

Kunihiko Sadakane

Masafumi Yamashita

Outline

� Background

� Model

� Problems and Results

� Algorithms and Analyses

� Single Receiver Case

� Multiple Receivers Case

� Conclusion

Background

� Design energy-efficient online message 

broadcasting protocols in ad-hoc wireless 

networks

� energy-efficiency : 

� save the battery-resource

� online property: ad-hoc network

� non-static network

Problem

sender

� The sender does not know the distances to receivers 

� Broadcast a message to nearest n-1 hosts

� Receiving ack from the n-1 hosts

ack

Problem: Design

receiver

a good online algorithm

Problem

� Communication requires energy consumption.

� The energy consumption depends on

the distance between the sender and receivers.

(The distance is longer, the energy must be larger.)

� The sender/receiver have no distance information.

� s sends some message (e.g., beacon) to r.

with some energy consumption.

� If r receives the beacon, he needs to send �ack�

to s with the same amount of energy consumption.

Problem

Problem: Design

Energy: 20 (broadcast)

Energy: 20 (ack)

Energy: 20 (ack)

The total cost (energy) is

Broadcast ack

Energy: 20 (ack)

Energy: 20 (ack)Energy: 20 (ack)

Energy: 20 (ack)

a good online algorithm

(1 20) + (20 6 140
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Problem

Problem: Design

Energy: 5 (broadcast)

Energy: 20 (broadcast)

Energy: 5 (ack)

Energy: 20 (ack)

The total cost (energy) is

Broadcast ack

Energy: 20 (ack)

Energy: 20 (ack)Energy: 20 (ack)

Energy: 20 (ack)

a good online algorithm

(5+20)+(5 1 +20 5 130

an energy-efficient online algorithm

140

Model

� The attenuation of signal power is
where is the distance 
between and and 1 is 
the distance-power gradient. 

is the minimum power to decode a message. 

� The maximum distance to which a message can 
derivered from s is 

� Only a direct broadcast is allowed. 
(No multi-hop delivery is allowed.)

� Synchronous Communication 
(We can utilize a global clock and unique IDs of nodes )

� Collision-free and Failure-free

),(

~

tsd

P
P s
s

/1
)/( sP

Related Works

� Range Assignment Problem
� offline : The distances between any pair of hosts are 

given.

� Minimizing the total energy consumption
to broadcast a message to a set of recipients

� Constructing energy-efficient multicast tree
with several properties: 

� connectivity from a source, strong connectivity, 
small radius, and so on

�On the Complexity of Computing Minimum Energy Consumption 
Broadcast Subgraphs�, [CCPRV 2001]

�Power Consumption in Packet Radio Networks�, [KKKP 2000] 

Problems and Results

Algorithms and its Performance

� Minimize the total energy consumption

� Our model is �online�, i.e., no a-priori information. 

� Use competitive analysis: 

� The performance of algorithm A (competitive ratio) 
is

� cost* : the minimum value of the  total energy           
consumption with complete information

instance:
)(cost*

),cost(
sup I

I

IA

Problems and Results (1)

� Problem BA2 (Broadcast+Ack-2)

� one sender s and one receiver r

� s sends a message to r.

� r sends an ack to s after receiving the message.

�

� Theorem

s r
message

ack

22/3

The optimal competitive ratio of problem BA2

is

(No online algorithm whose competitive ratio is smaller than )22/3

dp 22*cost
*
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Problems and Results (2)

� Problem BAn (Broadcast+Ack-n)

� one sender s and  n-1 receivers, r1, r2, � ,rn-1

� s sends a message to r1, r2, � ,rn-1.

� Each r sends an ack to s after receiving the message.

s
d1

d2

d3

n1 receivers n2 receivers n3 receivers

ki

i nn
,..,1

1

Problems and Results (3)

Theorem

The optimal competitive ratio of problem 

BAn is . 22/3

Algorithms and Analyses

Generic Protocol (Algorithm)

Procedure 

2.while

do

if

Procedure 

2. while

do

if

/1

1
)/(P /1

2
)/(P

/1

3
)/(P

i =1

i =2

i =3

/1

3
)/(P

ack

The total cost (energy consumption) 

of the procedure is

J

J

i i ppA
1

)cost(

s

t

Single Receiver Case (1)

� Algorithm: DA[ ] (Doubling Algorithm) 

� In SendMessage, 
. and Set 

11 ii ppp

2

3

2

1

p

p

p

s

2

1 2 4
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Single Receiver Case (2)

� Proposition: 
DA[ ] algorithm achieves the competitive 
ratio is                   for problem BA2.

The value                 is minimized when                 ,

and it is               .  

1

)12(

1

)12(

2

1
1

2
2

3

Single Receiver Case (3)

� Theorem 

22/3

The optimal competitive ratio of problem BA2

is

Sketch of Proof:

1. Assume an optimal online algorithm with competitive ratio 

c 3/2+ 2 and its output, say �. 

2. From the competitive ratio property, we have the following

inequality,    

1

1

2

1
  ,

i

iiii

c
cxx

Sketch of Proof: (continued)

3. The parameter sequences      is a Cauchy sequence, 

so       converges to a real value   , and we have the 

following quadratic equation:

4. From the condition of the existence of      is 

5. The algorithm achieves the competitive ratio; 

i.e., it gives the upper bound.                                 

Q.E.D 

c
c

2

1

2
2

3
c

i

i

Multiple Receivers Case(0)

� Problem BAn (Broadcast+Ack-n)

� one sender s and  n-1 receivers, r1, r2, � ,rn-1

� s sends a message to r1, r2, � ,rn-1.

� Each r sends an ack to s after receiving the message.

� Offline case: 
A simple Dynamic Programming can solve this 
in liner time.  

s

d1 d2 d3

n1 receivers n2 receivers n3 receivers

Multiple Receivers Case (1)

Consider a simple special case:

� Problem UBAn (Broadcast+Ack-n)

� one sender s and  n-1 receivers, r1, r2, � ,rn-1 

all at the same distance d from s. 

� s sends a message to r1, r2, � ,rn-1.

� Each r sends an ack to s after receiving the message.

s

n-1 receivers

d

Multiple Receivers Case (2)

� Proposition

� Theorem

nn

12
1

The optimal competitive ratio of problem UBAn

is

The previous proofs can be extended to this case. 

n

1
1

The competitive ratio of DA[ ] algorithm 

fixing                  , for UBAn is at most 
nn

12
1
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Procedure DDA

2.while

do

Dynamic Doubling Algorithm

k
k

1
1

To solve the general case, we propose 

the following online algorithm: 

Results of Multiple Receivers (1)

Theorem

The optimal competitive ratio of problem 

BAn is . 22/3

Sketch of Proof:

� Lower bound : Consider the following situation (instance): 

s

1 receiver

n-2 receivers

This dominates the total energy consumption.

Sketch of Proof:

� Upper bound : DDA algorithm achieves the 

competitive ratio                .

1. The problem instance can be considered

the union of                and                        . 

2. In the             part, DDA algorithm achieves 

competitive ratio

3. By applying this discussion repeatedly, 

the competitive ratio of each part is 

at most                  , so in total the competitive

ratio is               .  

Q.E.D

22/3

2
2

312
1

11
nn

1
UBAn )(

1
nnBA

1
UBAn

22/3

22/3

Conclusion

� Direct broadcast on online setting

� Single receiver and multiple receivers

� Energy-optimal online algorithms

� doubling algorithm and 

dynamic doubling algorithm

� The optimal competitive ratios are 

both 22/3

Future Work

� Not only energy-efficient 

but also time-efficient online algorithm

� Considering failure, collision, and so on
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Ultimate Implementation and Analysis Ultimate Implementation and Analysis 
of the AMO Algorithm of the AMO Algorithm 
for Approximate Pricingfor Approximate Pricing
of Europeanof European--Asian OptionsAsian Options

Akiyoshi ShiouraAkiyoshi Shioura
(Tohoku University)(Tohoku University)

joint work with T. Tokuyamajoint work with T. Tokuyama

SummarySummary of This Talkof This Talk

option：typical financial derivative

pricing European-Asian optionon binomial model

--- difficult to compute accurately

⇒ a pproxim ation 

Aingworth, Motwani & Oldham (SODA00) 

time: O(kn2),     absolute error O(nX/k)

Our Algorithm: 

time: O(kn2),     absolute error O(X/k)

n, X: problem parameters, k: time-error tradeoff param. 

OptionOption

option: right to sell (or buy) 
some financial asset (e.g., stock)
at some point in the future ( expiration date)
for a specified price (strike price) 

gain more benefit by investment
hedge risk from the fluctuation of stock price

Payoff of OptionPayoff of Option

Payoff of European Option:

(S ‒X)+ ＝max{S ‒ X, 0}

（Ｓ：stock price at expiration date,   Ｘ：strike price）

stock price goes up to $220 at the year-end
⇒exercise option to buy the stock at $200
⇒sell it for $220 ⇒ gain $20（payoff)

stock price goes down to $170
⇒do not exercise option ⇒ payoff= $0

Example: option to buy a stock of Google Inc. 
at the year-end at $200

EuropeanEuropean--Asian OptionAsian Option
payoff of European-Asian option

depends on average of stock price A
duringwhole period

payoff:(A ‒X)+ ＝max{A ‒ X, 0}

strike 
price Ｘ

time

S: stock price

A: average of 
stock price

(S-X)+ = 0

(A-X)+ > 0

safe against fluctuation of stock price

Computation of Option PriceComputation of Option Price

Our model: binomial model(discrete model)
proposed by Cox, Ross & Rubinstein (1979)
representstock price movement                      
by a binomial tree
can compute exact option priceby ＤＰ

priceof option = discountedexpected value of payoff 
--- need to model the movement of stock price 
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Binomial ModelBinomial Model

a path P=(S0, S 1, S 2, ..., Sn) from the root to 
a leaf represents the movement of stock price

payoff of European-Asian option = 

init. stock 
price Ｓ

uＳ

dＳ

d2Ｓ

u2Ｓ

udＳ

price goes up 
to uS

with prob. p

0th period
S0

1st period
S1

n-th period
（expiration date）

Sn

price goes down
to dS

with prob. 1-p

2nd period
S2

ud = 1

X
n

Sn

i i

1
0

Our ProblemOur Problem

payoff is dependenton the path P=(S0, S 1, S 2, ..., Sn)
（path-dependent option）

payoff is nonlinear w.r.t. the running total ∑iSi
⇒ need enumeration of all the paths
⇒ exponential time
computation of the price of path-dependent option
is #P-hard

compute the expected payoff 
of European-Asian option 
on the binomial model

X
n

S
E

n

i i

1
0

Approximation Algorithms Approximation Algorithms 
for Pricing Europeanfor Pricing European--Asian OptionAsian Option

Monte Carlo Method
based on path sampling
error bound depends on the volatility of stock price

Other methods
based on heuristics
no theoretical error bound

AMO Algorithm and its VariantsAMO Algorithm and its Variants

（n：depth of binomial tree, X: strike price, k: positive integer）

Aingworth, Motwani 
& Oldham (2000)

time: O(kn2)
abs. err.: O(nX/k)
DP + bucketing  

Ohta, Sadakane, 
Shioura & Tokuyama
(2002)
abs. err.:

randomization

Shioura & Tokuyama 
(2004)
abs. err.: 

use both ideas

Dai, Huang & Lyuu 
(2002)
abs. err.:

adjust # of buckets

k
Xn

O

k
Xn 4

1

O

k
X

O

n disappears!

Our Result

independent 
of volatility

(267, 1/4)

100

150

225

67

44

100

338

150

67

30

(250, 1/2)

(167, 1/2)

(475, 1/4)

(350, 1/4)

(211, 1/4)

(100, 1)

prob. 0.5
u=1.5

prob. 0.5
d=0.67

(813, 1/8)

(625, 1/8)

(500, 1/8)
(417, 1/8)

(417, 1/8)

(334, 1/8)
(278, 1/8)

(241, 1/8)

Exact Algorithm by DPExact Algorithm by DP
at each node of binomial tree, compute
all possible running subtotals

& their probabilities

t

i iS
0

# of running subtotals can be exponential
⇒ approximate running subtotals by bucketing

AMO Algorithm (1)AMO Algorithm (1)

(310, 0.05)400
300

(80, 0.05)
(30, 0.01)

(170, 0.10)
(150, 0.10)
(110, 0.10)

(205, 0.15)
(240, 0.12)
(285, 0.20)

running subtotal
& probability

100
0

200

100

300

200

interval round up 
running subtotals

&
sum up 

probabilities
in each bucket

(100, 0.06)

(200, 0.30)

(300, 0.47)

(400, 0.05)

100
0

200
100

300
200

400
300
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k: # of buckets at each node
⇒ error bound ≦ max. value of running subtotal/k

running subtotal            is ≧ (n+1)X
at the t-th period

option will be exercised at the expiration date
conditional expectation of the payoff 

can be computed easily

⇒ error bound of AMO algorithm = (n+1) X/k

AMO Algorithm (2)AMO Algorithm (2)

t

i iS
0

Algorithm Algorithm byby Dai et al. (2002)Dai et al. (2002)

(0,0)

(1,0)

(2,0)

(1,1)

(2,2)

(2,1)

AMO algorithm ： use the same number k
of buckets at each node

error bound 
n

i

i

j ij

ji
k
X

0 0

),(

k

k

k

k

k

k
k00

k11

k10

k22

k21

k20

set the number of buckets k ij

at the node (i, j) flexibly

probability of 
reaching node (i , j)

error bound k
Xn

O

adjust # of buckets k ij
to minimize error bound 
under the condition ∑kij= kn

2

Algorithm Algorithm byby Ohta et Ohta et al. (2002)al. (2002)

(170, 0.30)
(150, 0.10)
(110, 0.20)

running subtotal & 
probability

200

100

interval

(170, 0.60) 

(150, 0.60) 

(110, 0.60) prob. 1/3

prop. 1/2

prob. 1/6

AMO algorithm ：approximate running subtotals
in a bucket by rounding-up

(200, 0.60) 
choose a running subtotal randomly

as approximate value

regard the behavior of randomized algorithm

as stochastic process⇒ Martingale

expectation of the error by random choice

of running totals at a node = 0

⇒ apply Azuma’s inequality (1967)

Analysis of Ohta et al. (2002)Analysis of Ohta et al. (2002)

y)probabilit high (withObounderror 
k
Xn 4

1

analysis is difficult

adjust # of buckets k ij

to minimize error bound 
under the condition ∑kij= kn

2

Our AlgorithmOur Algorithm

2

1 0

n

i

i

j ijk
jiX ),(

Oerror bound

error bound
k
X

O

analysis is quite easy!

set the number of buckets k ij

at node (i, j) flexibly
random choice of running subtotal

Open ProblemsOpen Problems
derandomization of our algorithm with the same 
error bound
approximation of American-Asian option
analysis of error bound compared to exact price

– 494 –



On Computing all Abductive Explanations 

from a Propositional Horn Theory

Kaz Makino 
(Graduate School of Engineering Science, Osaka Univ.)

Joint work with Thomas Eiter
(Technische Universitat Wien)

..

Outline

1. 3 reasoning mechanisms

2. Abduction from Horn theories 

3.  Generating abductive explanations from 

Horn theories

4. Model-based representation for Horn 

theories

Deduction: fact      knowledge base         ?

Induction:  fact                  ? observation 

Abduction:   ? knowledge base       observation 

3 Reasoning Mechanisms

Fact: battery is down

knowledge: if the battery is down, the car will not start

�����������

Deduction

The car will not start

Deduction: fact      knowledge base         ?

Induction:  fact                  ? observation 

Abduction:   ? knowledge base       observation 

3 Reasoning Mechanisms

Induction

Rule: if the battery is down, the car will not start 

Fact: battery is down

Observation: The car will not start

Deduction: fact      knowledge base         ?

Induction:  fact                  ? observation 

Abduction:   ? knowledge base       observation 

3 Reasoning Mechanisms

Abduction

Fact: battery is down

knowledge: if the battery is down, the car will not start

�����������

Observation: The car will not start

Abduction (formulated by C.S. Peirce 31- 58)

Basis for

Truth Maintenance Systems (TMS, ATMS)

Clause management Systems (CMS)

Diagnosis

Database Update, ...

Widely used in Computer Science and AI
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Propositional Horn Knowledge Base

Propositional variables: 

CNF (conjunctive normal form):  E.g.,

Horn CNF: at most 1 positive literal in each clause

Knowledge 

Propositional Horn Knowledge Base

Horn CNF: at most 1 positive literal in each clause

Horn rule:

Horn clause:

(antecedent/consequent: may be empty)

Core language in AI and logic programming

Horn CNF representation is not unique

E.g., 

Explanations

: a propositional variable

: a Horn CNF 

(1)

(2) s.t.

(1)

(2)                is satisfiable

An explanation for     from    : a minimal set      s.t. 

:                 implies                 for all 

Explanations

: a propositional variable

: a Horn CNF 

(1)

(2)                is satisfiable

An explanation for     from    : a minimal set      s.t. 

Abduction:   ? knowledge base       observation

E.g.,  Explanations for      from 

: trivial explanation for

(1)

(2)                is satisfiable

Well-known: 

Finding a nontrivial explanation     is poly. time. 

Finding an explanation               is NP-hard. 

(Selman & Levesque '90)
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Abduction:   ? knowledge base       observation

: if the battery is down, the car will not start

if the gas tank is empty, the car will not start 

�����������

: The car will not start

: {battery is down} , �

Car diagnosis

{gas tank is empty}

1. Generate all possible explanations 

2. Find a real one from them

Can we generate all (poly. many) explanations 

efficiently ?

Eiter & Makino (2002) disproved it

Conjecture by Selman & Levesque ('90)

Generating          explanations is NP-hard, 

even if there are only few explanations overall. 

Note: Exponentially many explanations might exist. 

explanations

Complexity of generating problem

start � � halt

P delay

Output P
Slow

Fast

Incremental P

Prime implicate    of

Ex.

(1)

(2)                is satisfiable

Explanation minimal      s.t. 

nontrivial explanation for

prime implicate containing 

Explanations and prime implicates How to generate all prime implicates

resolvent

E.g., resolvent of
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Procedure Resolution

Input: A CNF                       representing

Output: All prime implicates of

Step 1:

Step 2: Repeat (s) simplification and (r) resolution.

(s) Remove    from    if               s.t.

(r) Add a resolvent of two clauses in

Step 3: Output all clauses in

Ex.

[Blake ('37), Brown ('68), Quine ('55), Samson-mills ('54)]

Resolution procedure generates all prime implicates.

There is no output P algorithm for generating 

all prime implicates, unless P=NP.

Even if     is Horn, resolution procedure 

may require exponential time.

Procedure Resolution

Input: A CNF                       representing

Output: All prime implicates of

Step 1:

Step 2: Repeat (s) simplification and (r) resolution.

(s) Remove    from    if               s.t.

(r) Add a resolvent of two clauses            in

Step 3: Output all clauses in

(1) Input resolution:

(2) Add a prime implicate      s.t.

(3) Output      in (r)  immediately,  if      is new.

[Boros, Crama, Hammer ('90)]

If      is Horn, then input-resolution procedure 

generates all prime implicates in incremental

P time. 

nontrivial explanation for

prime implicate containing 

Procedure Resolution

Input: A CNF                       representing

Output: All prime implicates of

Step 1:

Step 2: Repeat (s) simplification and (r) resolution.

(s) Remove    from    if               s.t.

(r) Add a resolvent of two clauses            in

Step 3: Output all clauses in

(1) Input resolution:

(2) Add a prime implicate      s.t.

(3) Output      in (r)  immediately,  if      is new.

(4)

[Eiter, Makino (2002, 2003)]

All explanations for    from a Horn CNF can 

be computed with  P delay.

P many explanations for     from a Horn CNF

can be computed in (input) P time. 

Sketch:
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nontrivial explanation for a negative literal

prime implicate containing 

Explanations for a negative literal
Procedure Resolution

Input: A CNF                       representing

Output: All prime implicates of

Step 1:

Step 2: Repeat (s) simplification and (r) resolution.

(s) Remove    from    if               s.t.

(r) Add a resolvent of two clauses            in

Step 3: Output all clauses in

(1) Input resolution:

(2) Add a prime implicate      s.t.

(3) Output      in (r)  immediately,  if      is new.

(4)

All explanations for     from an acyclic Horn CNF 

can be computed in incremental  P time.

[Eiter, Makino (2003)]  

Explanations for a negative literal

[Eiter, Makino (2003)]

There exists no output P algorithm for generating all 

explanations for     from a Horn CNF, unless P=NP.

[Eiter, Makino (2003)]

Our resolution procedure does not generate all 

explanations for     from a Horn CNF.

Summary

Knowlege

Horn CNF                  P delay              no output P

Acyclic Horn CNF      P delay            incremental P 

Characteristic set       MDual MDual

Explanations 

query query

Knowlege

Horn CNF                   coNPc coNPc

Acyclic Horn CNF       coNPc coNPc

Characteristic set       MDual MDual

Explanations 

query query

Model-based reasoning

Deduction

E.g.,

All models                      satisfy 

does not satisfy 

large inefficient

[P. N. Johnson-Laird ('83)]. 

Humans typically argue by just looking at 

some examples. 

Of course, incorrect ! 

Some models                       satisfy

conclude               otherwise,

– 499 –



intersection of

E.g.,

Horn CNF:  syntactic characterization

[McKinsey ('43)]

a Horn function

is closed under

Semantic, model theoretic characterization

Model-based representation of  a Horn function

for maximal model
Relational Database: generating set

E.g.,

Intersection closure

Characteristic set

Horn CNFs

Finding a nontrivial explanation     is poly. time. 

Finding an explanation               is NP-hard. 

Given  Characteristic set

Dedution:  poly. time

Finding a nontrivial explanation     is poly. time. 

Finding an explanation               is poly. time.  

Summary

Knowlege

Horn CNF                  P delay              no output P

Acyclic Horn CNF      P delay            incremental P 

Characteristic set       MDual MDual

Explanations 

query query

Knowlege

Horn CNF                   coNPc coNPc

Acyclic Horn CNF       coNPc coNPc

Characteristic set       MDual MDual

Explanations 

query query

Monotone Dualization

Output Prime DNF     of 

Ex.

Input: A CNF     of (a monotone function)

Monotone Dualization

Output Prime DNF     of 

Input: A CNF     of (a monotone function)

Many P equivalent problems
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Best known

[Fredman, Khachiyan, 94]

time where

[Eiter, Gottlob, Makino, 02]

guessed bits

Summary

Knowlege

Horn CNF                  P delay              no output P

Acyclic Horn CNF      P delay            incremental P 

Characteristic set       MDual MDual

Explanations 

query query

Knowlege

Horn CNF                   coNPc coNPc

Acyclic Horn CNF       coNPc coNPc

Characteristic set       MDual MDual

Explanations 

query query

Explanations 

Knowlege general   DNF   CNF      pos    Horn   general   pos  neg general

Horn CNF coNPc nOP coNPc Pd    coNPc coNPc Pd   nOP nOP

coNPc nOP coNPc nOP MD       nOP MD  nOP nOP

Explanations 
query

clause term

Knowlege general   DNF   CNF      pos    Horn   general   pos  neg general

Horn CNF coNPc coNPc coNPc

coNPc nOP MD     nOP MD coNPc coNPc

query
clause term

nOP: no Output P,  Pd: P delay,  MD:  Monotone Dual
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1. Abductive Inference

2. Monotone Dualization

3. Horn Transformation

4. Vertex Enumeration

Open Problems 

Conclusion

Generating abductive explanations from 

Horn CNFs

Practical side

High order logic, non-Horn case.
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Procedure Resolution

Input: A CNF                       representing

Output: All prime implicates of

Step 1:

Step 2: Repeat (s) simplification and (r) resolution.

(s) Remove    from    if               s.t.

(r) Add a resolvent of two clauses            in

Step 3: Output all clauses in

(1) Input resolution:

(2) Add a prime implicate      s.t.

(3) Output      in (r)  immediately,  if      is new.

(4)

All explanations can be generated by the 

input resolution procedure

No negative clause

if     is definite Horn

:CNF consisting of all prime implicates

:CNF consisting of all prime implicates generated so far

prime

: irredundant (                                          )Note

:CNF consisting of all prime implicates

:CNF consisting of all prime implicates generated so far

a contradiction. 

Horn clause

From

or
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Metric Labeling: Upper and Lower Bounds

SEFFI NAOR

COMPUTER SCIENCE DEPT.
TECHNION

HAIFA, ISRAEL

Based on Joint Work with:
CHANDRA CHEKURI, JULIA CHUZHOY, SANJEEV KHANNA, ROY SCHWARTZ, AND

LEONID ZOSIN.

Metric Labeling: The Problem

• Input:

– Undirected graph G with edge weights w(u; v).
– A set L of k labels equipped with a metric d.
– Cost function c : V (G) × L → R.

• Goal: An assignment f : V (G) → L (or a labeling of V (G)).

• Objective Function: minimize
∑

u∈V (G)

c(u; f(u))

︸ ︷︷ ︸

+
∑

u;v

w(u; v)d(f(u); f(v))

︸ ︷︷ ︸

Labeling Cost Separation Cost

1

Example

G

G

L

2

Combinatorial Optimization: Related Problems

• Multiway Cut:

– Set of terminals t1; : : : ; tk.
– Find minimum cut separating the terminals.
– Special case of ML: uniform metric and no assignment cost.

• 0-Extension:

– Same as multiway cut except that metric is arbitrary:
penalty of cut edge depends on terminals that endpoints belong to.

– Special case of ML.

• Quadratic Assignment: dropping the bijective property in QA yields
metric labeling.

3

Motivation

• Clean and general abstraction of classification problems [Kleinberg
and Tardos, 1999].

• Links to Markov random fields and their applications.

• Specific applications to image processing and analysis.

• Generalization of well known optimization problems.

4

Do assignment costs matter?

The (0;∞)-Extension Problem:

c(u; i) ∈ {0;∞} for all u ∈ V (G); 1 ≤ i ≤ k.

• Approximation preserving reduction from metric labeling with
arbitrary assignment costs to (0;∞)-extension.

• Reduction preserves label set, but changes graph (in a simple way).

Theorem. [Chuzhoy 2001] If there is a f(n; k)-approximation algorithm
for (0;∞)-extension, then there is a f(n+nk; k)-approximation algorithm
for general metric labeling.

5
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Relaxation: Embedding in a Simplex

[Chekuri, Khanna, N., Zosin, 2001]

• For each v ∈ V : v 7−→ (x(v; 1); x(v; 2); : : : x(v; k)), where

k∑

i=1

x(v; i) = 1

Vertex v is mapped into a probability distribution over the label set.

6

• Distance between u and v defined by Earthmover Metric -
solution to a transportation problem between (u; 1); : : : (u; k) and
(v; 1); : : : ; (v; k) with respect to label metric d.

dEM(u; v) =
∑

i;j

d(i; j) · x(u; i; v; j)

x(u; i; v; j) - flow on edge ((u; i); (v; j))

0.5

0.3

0.2
x(v)x(u)

0.6
0.1

0.3

0.1

0.5

0.4

H(u,v)

7

Linear Program: Computing the Embedding

• Result: Embedding in a simplex where distances are defined by an
earthmover metric (and not `1).

• Objective Function: Minimize

∑

u∈V

k∑

i=1

c(u; i) · x(u; i)

︸ ︷︷ ︸

+
∑

(u;v)∈E

w(u; v)
∑

1≤i;j≤k

d(i; j) · x(u; i; v; j)

︸ ︷︷ ︸

labeling cost separation cost

8

Constraints

k∑

i=1

x(u; i) = 1 ∀ u ∈ V

k∑

j=1

x(u; i; v; j) − x(u; i) = 0 ∀ u; v ∈ V; i ∈ 1; : : : ; k

x(u; i; v; j) − x(v; j; u; i) = 0 ∀ u; v ∈ V , i; j ∈ 1; : : : ; k

x(u; i); x(u; i; v; j) ≥ 0

9

Uniform Metric

• For any i 6= j, d(i; j) = 1.

• What does the earthmover solution look like? for edge (u; v):

x(u; i; v; i) = min{x(u; i); x(v; i)}

• Thus,

dEM(u; v) =
∑

i;j

d(i; j)x(u; i; v; j) ≥ 1

2
·

k∑

i=1

|x(u; i) − x(v; i)|

10

Uniform Metric: Rounding Algorithm

Rounding an LP solution. [Kleinberg and Tardos, 1999].

Idea: Random choices should be correlated.

Algorithm: repeat until all vertices are labeled.

1. pick i at random from {1; 2; : : : ; k}.

2. pick θ at random from the interval [0; 1].

3. label an unlabeled vertex u with i iff θ ≤ x(u; i).

11
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Uniform Metric: Integrality Gap

Observation: Probability of assigning i to u is exactly x(u; i).

Lemma: Probability that u and v get different labels is at most

k∑

i=1

|x(u; i) − x(v; i)|

Recall: dEM(u; v) ≥ 1
2 ·

∑k
i=1 |x(u; i) − x(v; i)|

Theorem: For a uniform metric, integrality gap ≤ 2.

Open Question: Can the 2-approximation be improved?

12

General Metrics

• Solve the simplex embedding LP.

• Approximate the fractional solution to the LP by a deterministic HST
metric losing a factor of O(log k).

• The integrality gap on an HST tree is O(1).

• Yielding an O(log k)-approximation for general metrics [Kleinberg
and Tardos, 1999].

13

Linear Metric

Rounding of LP solution:

• Assume w.l.o.g. labels are integers 1; 2; : : : ; k.

• For each vertex u, define α(u; i) =

i∑

j=1

x(u; j).

• Pick θ uniformly at random from [0; 1].

• L(u) = i iff α(u; i − 1) < θ ≤ α(u; i).

• All vertices get a label since α(u; k) = 1.

14

Lemma 1: dEM(u; v) ≥
k∑

i=1

|α(u; i) − α(v; i)|.

Flow is uncrossing

v

ui

Flow crossing i is exactly |α(u; i)−α(v; i)|. 2

15

Analysis

Lemma 1: dEM(u; v) ≥
k∑

i=1

|α(u; i) − α(v; i)|:

Lemma 2: E [d((L(u); L(v))] =

k∑

i=1

|α(u; i) − α(v; i)|:

⇓

Theorem: The integrality gap of the LP for the line metric is 1.

16

Convex functions on the line

• d(i; j) = f(|i − j|) where f is convex and increasing.

• d is a metric iff f is linear.

• The linear programming formulation is useful for convex f .

• Integrality gap is 1 since flow is uncrossing.

17
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Truncated Linear Metric

• d(i; j) = min{M; |i − j|}.

• Applications to image processing.

• Generalizes uniform and linear metrics and is NP-hard.

• 2 +
√

2 ' 3:414-approximation by generalizing the linear algorithm.
[Chekuri, Khanna, N., Zosin, 2001]

• Open Question: Improve the approximation factor.

18

Truncated Quadratic Distance

• d(i; j) = min{(i − j)2; M}. Not a metric!

• Useful function for vision applications.

• O(
√

M)-approximation easy.

• Open Questions:

– NP-hard?
– LP gap?
– O(1) approximation?

19

0-Extension Problem

• Input:

– Graph G with edge weights w(u; v).
– T ⊂ V (G) - Set of k terminals.
– d - Metric on T .

• Solution: Partitioning of the graph, s.t. each terminal is in a different
connected component.

– t(v) - terminal in connected component of v.

• Objective: minimize
∑

(u;v)∈E(G)

w(u; v) · d(t(u); t(v)).

20

0-Extension Problem: Open Questions

• Is 0-extension easier than (0;∞)-extension?

• I.e., if each non-terminal vertex can be labeled for free, does that
make the metric labeling problem easier?

• Best approximation factor known: O
(

log k
log log k

)

[FHRT] for general

metrics (improving a previous factor of O(log k) [CKR]).

21

Balanced Metric Labeling

• Input: Metric labeling instance.

• Additional constraint:

Each label can be assigned to at most ` vertices.

[N., Schwartz, STOC 2005]

22

Motivation

• Minimum weight k-way balanced partitioning:

– Each part contains at most 2n/k vertices.
– Minimizing weight of edge cuts.

• Special case of balanced metric labeling:

– Label is equivalent to a Part.
– ` ≤ 2n/k.
– Uniform metric.

23
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Motivation (contd.)

• What if each vertex can only be labeled by a subset of the labels?

– The balanced {0;∞}-extension problem.

• Application: Clustering Base Transceiver Stations in GSM networks:

– Weighted graph on the BTS-s: traffic 7→ edge weight.
– Each cluster is controlled by a Base Station Controller (= label).
– Base Station Controller have bounded capacity.
– Each BTS can only be assigned to a subset of the BSC-s.

• Graph arrangement problems:

– E.g., linear-arrangement: linear metric and capacity = 1.

24

Balanced Uniform Metric Labeling - Difficulties

• Bounding the number of vertices assigned to each label?

– Not obvious in the methods developed for uncapacitated uniform
metric labeling, e.g., the Kleinberg-Tardos algorithm.

• Incorporating label assignment costs?

– Not obvious in the techniques developed for approximating graph
partitioning problems ([LR], [ENRS], and [ARV]).

– For example, there may not always exist a label that can be
assigned to all vertices in a single cluster of the partition.

25

Spreading Constraints

• Very useful for approximating graph partitioning problems.

• Example: ∀S ⊆ V; ∀u ∈ S:
∑

v∈S

d(u; v) ≥ |S| − `:

• For large subsets S, there is a radius guarantee:

∃v ∈ S : d(u; v) ≥ 1 − `

|S|

• Radius guarantee ⇒ Ball growing techniques can be applied.

26

The Relaxation

• Embedding in a k-dimensional simplex.

• Spreading constraints.

• Capacity constraints:

∀ label j :
∑

v∈V

x(v; j) ≤ `

• Closeness constraints.

27

The Relaxation: Closeness Constraints

• Closeness of u and v wrt label j: cj(u; v) ≤ x(u; j); x(v; j).

• Variation distance: ∀u; v,

d(u; v) = 1 −
∑

j∈L

cj(u; v)

• Triangle inequality: ∀u; v; w ∈ V ,

∑

j

∣
∣cj(u; v) − cj(u; w)

∣
∣ ≤ 1 −

∑

j

cj(v; w)

28

The Approximation Algorithm

• Overview: A combination of randomized metric decomposition and
label assignment techniques.

• Initial Labeling: Each vertex v is assigned a root labeling,
f∗ : V → L, satisfying:

Pr[f∗(v) = j] = x(v; j) ; ∀v ∈ V; ∀ label j:

• Iteratively: Each vertex, in its turn, is a root and labels a subset of
the unlabeled vertices.

29
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Radius and Label Tests

• Current root: Vertex u.

• Radius test:

– Choose radius R from the distribution:

fR(r) =

(
n

n − 1

)

· 1 + ε

ε
· ln n · n−r·1+ε

ε ; r ∈
[

0;
ε

1 + ε

]

– Define a ball of radius R, with respect to metric d, around root
vertex u:

{x | d(u; x) ≤ R}

30

Radius and Label Tests (contd.)

• Label Test:

– Choose uniformly in random α ∈ [0; x(u; f∗(u))].
– Define vertices close to the root u with respect to root label f∗(u):

{
x | cf∗(u)(u; x) ≥ α

}

• Labeling: All unlabeled vertices that pass both radius and label tests
receive label f∗(u)).

31

Approximation Algorithm: Summary

• For each u ∈ V , iteratively:

– Apply radius and label test.

• Output labeling.

Theorem: Upon termination, all vertices are labeled.

Proof: Each vertex passes the radius and label tests when it becomes
the root vertex.

32

The Approximation Algorithm - Example

u1

u2 u5

u6

u3

u4

L = {Red; Blue; Green}

33

The Approximation Algorithm - Example

u1

u2 u5

u6

u3

u4

L = {Red; Blue; Green}

34

The Approximation Algorithm - Example

L = {Red; Blue; Green}

R1

u1

u3
u2

u6

u4

u5

35
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The Approximation Algorithm - Example

L = {Red; Blue; Green}

R1

u1

u3
u2

u6

u4

u5

36

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

37

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5R2

38

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5R2

39

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

40

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

R3

41

– 510 –



The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

R3

42

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

43

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

R4

44

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

R4

45

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

46

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5R5

47

– 511 –



The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5R5

48

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

49

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5
R6

50

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5
R6

51

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

52

The Approximation Algorithm - Example

L = {Red; Blue; Green}

u1

u3
u2

u6

u4

u5

53
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Analysis

• Difficulty:

– Capacity: Easy to bound the number of vertices assigned to a label
with independent random labels.

– Vertex separation costs: If the labels chosen for the vertices are
dependent [KT], cost of vertex separation is bounded.

54

Analysis (contd.)

• Main Ingredient: The algorithm balances the dependencies
between the labels assigned to the vertices.

– Label of a vertex depends on only a limited number of other labels:
Labels of vertices that are far from each other are independent.

– Spreading constraints: not too many vertices are close.

– Number of vertices assigned to each label is bounded via a new
inequality of Janson for tail bounds of (partly) dependent random
variables.

– Separation cost is bounded.

55

Approximation Factor

• Bicriteria approximation factor: For any 0 < ε < 1,

– O
(
ln n
ε

)
-approximation to the solution cost.

– min
{

O(ln k)
1−ε ; ` + 1

}

(1 + ε) ` vertices are assigned to each label.

• For ` = O(1) or k = O(1), capacity is violated by a constant
multiplicative deviation.

• Compare with balanced k-way partitioning:

Either (O(log n); const), [ENRS] or (O(
√

log n log k); const) [ARV].

56

Open Questions

• Can we improve the approximation factor?

• Can we obtain the same biciriteria factor (log n; constant) known for
balanced partitioning?

57

Hardness of Metric Labeling

• Back to uncapacitated metric labeling [Chuzhoy, N., FOCS 2004]:

• There is no constant approximation for Metric Labeling unless P=NP.

• No log
1
2−δ n-approximation exists unless NP ⊆ DTIME(npoly log n) (for

any constant δ).

• Hardness is proved for (0;∞)-extension.

58

Gap 3SAT(5)

Input: A 3SAT(5) formula ϕ on n variables.

• ϕ is a YES-instance if it is satisfiable.

• ϕ is a NO-instance (with respect to some ε) if at most a (1−ε)-fraction
of the clauses are simultaneously satisfiable.

Theorem: [ALMSS’92] There is some 0 < ε < 1, such that it is NP-hard
to distinguish between YES and NO instances.

59
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A 2-prover Protocol for 3SAT(5) Formula ϕ

• Verifier: randomly chooses clause C and one of its variables x.

• Prover 1: receives the clause C and answers with an assignment to
the variables of C that satisfy it.

• Prover 2: receives variable x and answers with an assignment to x.

• Verifier: checks that the two assignments match.

Theorem:
• If ϕ is a YES-instance: there is a strategy of the provers such that the
verifier always accepts.
• If ϕ is a NO-instance: for any strategy, the acceptance probability is at
most

(
1 − ε

3

)
.

60

The Raz Verifier

• Performs ` parallel repetitions of the 2-Prover Protocol.

• A query to prover 1 is an `-tuple of clauses and a query to prover 2
is an `-tuple of variables.

• If ϕ is a YES-instance: then there is a strategy of the two provers that
makes the verifier always accept.

• If ϕ is a NO-instance: then for any strategy of the two provers the
acceptance probability is at most 2−O(`).

61

A Simple (3 − ε)-Hardness

• Start from a 3SAT(5) formula ϕ.

• Use the Raz verifier with ` repetitions (` is a large constant) to
produce a (0;∞)-extension instance:

– If ϕ is a YES-instance, then there is a solution of cost |R|.

– If ϕ is a NO-instance, then the cost of any solution is at least (3 −
δ)|R|.

62

A (3 − ε)-Hardness: Label Set

• ∀ query-answer pair (q; a) of each prover, there is a label `(q; a).

• Given:

– random string r.
– queries q1, q2 sent to the provers under r.
– a1 and a2 is a pair of consistent answers to q1 and q2.

=⇒ There is an edge of length 1 between (q1; a1) and (q2; a2).

• Label distances are defined by shortest paths in the label graph.

• Label graph is bipartite: Part ⇔ Prover. Distances: either 1, or ≥ 3.

63

A (3 − ε)-Hardness: the Graph

• For each possible query q to provers 1 and 2 there is a vertex v(q)
that can only be assigned to its corresponding labels (`(q; a)).

• For each random string r, let q1, q2 be the queries sent to the two
provers under r. There is an edge between v(q1) and v(q2).

Note that every assignment of the vertices to the labels defines a
strategy for the provers and vice versa.

64

Properties

• If ϕ is a YES-instance:

– ∃ strategy of provers s.t. their answers are always consistent.
– Strategy defines an assignment of vertices to labels of cost |R|.

• If ϕ is a NO-instance:

– Assignment of labels to vertices defines a strategy for the provers.
– Acceptance probability of this strategy is at most 2−O(`).
– Hence, almost all the edges in the graph pay (at least) 3.
– The solution cost is arbitrarily close to 3|R|.

65
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Extending to
√

log n-Hardness

Difficulty:

• Suppose queries q1 and q2 are sent to the two provers.

• If their answers a1,a2 are inconsistent, then there is a path of length
(precisely) 3 in the label graph between the labels `(q1; a1) and
`(q2; a2).

• This is true even if the answers are inconsistent in many coordinates.

Goal: If the answers are inconsistent in many coordinates, the length of
the path between them should also be large.

66

Plan

k−prover protocol

GAP 3SAT(5)

67

A New k-Prover System

For each pair of provers (i; j), 1 ≤ i < j ≤ k:

• The verifier chooses randomly and independently clause Cij and one
of its variables xij.

• Prover i receives clause Cij and answers with an assignment to its
variables satisfying the clause.

• Prover j receives xij and answers with an assignment to it.

• Every other prover a 6= i; j receives both Cij and xij and answers
with an assignment to the variables of Cij satisfying the clause.

68

A Query

Each query has
(
k
2

)
coordinates.

Coordinate (a; b) (for a < b) of the query for prover i:

• If i = a, it contains Cab

• If i = b, it contains xab

• If a; b 6= i, it contains both Cab and xab

69

Example: Queries in a 3-Prover Protocol

(1; 2) (1; 3) (2; 3)

P1 C1;2 C1;3 C2;3; x2;3

P2 x1;2 C1;3; x1;3 C2;3

P3 C1;2; x1;2 x1;3 x2;3

70

The k-Prover System: Properties

Definition:

• Let Ai, Aj be the answers of provers i, j to their queries.

• The answers are weakly consistent if their (i; j) coordinates match.

• They are strongly consistent if all their coordinates match.

Theorem: If ϕ is a YES-instance, then there is some strategy of the
provers, such that their answers are always strongly consistent.

Theorem: If ϕ is a NO-instance, then for every pair of provers, the
probability that their answers are weakly consistent is at most (1 − ε

3).

71
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The Reduction - an Overview

Given a 3SAT(5) formula ϕ on n variables, we use the k-prover system
to produce an instance of (0;∞)-extension, such that:

• If ϕ is a YES-instance, there is a solution of cost k
2|R|.

• If ϕ is a NO-instance, the cost of any solution is at least |T | ≥
(
k
2

)
ε
3|R|)

• Thus, the gap between YES and NO instances is Ω(k).

• The instance size is N = nO(k2).

⇒ Choosing k = poly(log n), no log
1
2−δ N approximation exists unless

NP ⊆ DTIME(npoly log n) (for any constant δ).

72

The Construction: Label Metric

There are two types of labels:

• Query Label `(Pi; qi; Ai):

– For each prover Pi,
– For each query qi to prover Pi,
– For each possible answer Ai to qi.

• Constraint Label `(r; A1; : : : ; Ak):

– For each random string r,
– For each k-tuple A1; : : : ; Ak of strongly consistent answers of the

provers to the queries implied by r.
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Label Metric: Edges

Let r be a random string, q1; : : : ; qk be the corresponding queries, and
let A1; : : : ; Ak be a k-tuple of strongly consistent assignments. For each
i, there is an edge of length 1

2 between `(r; A1; : : : ; Ak) and `(Pi; qi; Ai).
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The Graph: Vertices

• Query Vertices: For each prover Pi, for each query qi to Pi, there is a
vertex v(Pi; qi), which can only be assigned to labels corresponding
to the same query of the same prover (i.e., `(Pi; qi; A).)

Note that the assignments of all the query vertices to the labels define
a strategy of the k provers.

• Constraint Vertices: For each random string r, there is a vertex v(r),
which can be only assigned to the labels corresponding to r (i.e.,
`(r; A1; : : : ; Ak)).

Note that the assignment of v(r) defines the answers of the provers
when the random string is r.
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The Graph: Edges

Let q1; : : : ; qk be the queries corresponding to random string r. Then,
for each i, there is an edge between v(r) and v(Pi; qi).

76

YES Instance

• There exists an accepting strategy of the provers.

• Queries q1; : : : ; qk correspond to random string r.

• A1; : : : ; Ak are the answers to the queries.

Therefore, the solution cost is k
2|R|.
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NO Instance

• Assignments of the query vertices define a strategy for the provers.

• Let T be the set of “inconsistent” triples (r; i; j) (i < j), s.t. for random
string r, the answers of provers i and j are not weakly consistent.

• |T | ≥
(
k
2

)
ε
3|R|. (Recall that the probability that a pair is weakly

consistent is at most (1 − ε
3)).

• We can show that the solution cost is at least |T |, yielding a gap of
Ω(k) between YES and NO instances.

• Since the construction size is N = nO(k2), choosing k = poly(log n),
no log

1
2−δ N approximation exists unless NP ⊆ DTIME(npoly log n) (for

any constant δ).
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Open Questions

• There is still a gap between the logarithmic upper bound and the
lower bound of log1/2−δ n on the approximability of metric labeling.
Can this gap be closed?

• Can we prove better (non-constant?) lower bounds on the
approximability of 0-Extension?

• Or, can we obtain better approximation factors?
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Approximate Distance Oracles
and

Spanners with sublinear surplus

Mikkel Thorup

AT&T Research

Uri Zwick

Tel Aviv University

Compact data
structure

AP
SP

alg
or
ith

m

mn 1/k
time

n 1+1/k
space

Approximate Distance Oracles (TZ�01)

O(1) query time
stretch 2k-1

Stretch-Space tradeoff is 

essentially optimal!

n by n
distance
matrix

mn
tim

e

n2
sp
ac

e

Weighted
undirected graph

u,v
�
�(u,v)

An estimated distance !�(u,v)

is of stretch t iff

!(u,v) " !�(u,v) " t ·!(u,v)

An estimated distance !�(u,v)

is of surplus t iff

!(u,v) " !�(u,v) " !(u,v) + t

Approximate Shortest Paths

Let !(u,v) be the distance from u to v.

Multiplicative

error

Additive

error

Spanners

Given an arbitrary dense graph, can we 

always find a relatively sparse subgraph that 

approximates all distances fairly well?

Spanners [PU�89,PS�89]

Let G=(V,E) be a weighted undirected graph.

A subgraph G�=(V,E�) of G is said to be a t-spanner
of G  iff � G� (u,v) � t � G (u,v) for every u,v in V.

Theorem:

Every weighted undirected graph has a 
(2k-1) -spanner of size O(n1+1/k). [ADDJS �93] 

Furthermore, such spanners can be constructed 
deterministically in linear time.  [BS �04] [TZ �04]

The size-stretch trade-off is essentially optimal.

(Assuming there are graphs with #(n1+1/k) edges of 
girth 2k+2, as conjectured by Erdös and others.)

Additive Spanners

Let G=(V,E) be a unweighted undirected graph.

A subgraph G�=(V,E�) of G is said to be an additive
t-spanner if G  iff � G� (u,v) ��� G (u,v) +t for every u,v $V.

Theorem: Every unweighted undirected graph has an 
additive 2-spanner of size O(n3/2). [ACIM �96] [DHZ �96]

Theorem: Every unweighted undirected graph has an 
additive 6-spanner of size O(n4/3). [BKMP �04]

Major open problem

Do all graphs have additive spanners with 
only O(n1+� ) edges, for every � >0 ?
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Spanners with sublinear surplus

Theorem:

For every k>1, every undirected graph G=(V,E)
on n vertices has a subgraph G�=(V,E�) with 
O(n1+1/k) edges such that for every u,v$V, if �

G(u,v)=d, then 
�

G�(u,v)=d+O(d1-1/(k-1)).

d d+O(d1-1/(k-1))

Extends and simplifies a result of Elkin and Peleg (2001)

All sorts of spanners

A subgraph G�=(V,E�) of G is said to be a functional
f-spanner if G  iff � G� (u,v) � f(� G (u,v)) for every u,v $V.

referencef(d)size

[EP �01](1+� )d + � ( � , � )� n 1+ �
[BKMP �04]d + 6n 4/3

[ACIM �96] [DHZ �96]d + 2n 3/2

[TZ �05]d + O(d 1 - 1/(k-1) )n 1+1/k

[ADDJS �93](2k-1 )dn 1+1/k

Part I

Approximate 

Distance Oracles

Approximate Distance Oracles [TZ�01]

A hierarchy of centers

A0%V ; Ak %& ;
Ai %sample(Ai-1,n

-1/k) ; 

Bunches

1 1
( ) { | ( , ) ( , )}

i i i

i

B v w A A w v A v! !' '% $ ( )!

A0=
A1=
A2=

v

p1(v)

p2(v)

Lemma: E[|B(v)|] � kn1/k

Proof: |B(v)*Ai| is stochastically 

dominated by a geometric random 

variable with parameter p=n-1/k.
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The data structure

Keep for every vertex v$V:

� The centers p1(v), p2(v),�, pk-1(v)

� A hash table holding B(v)

For every w$V, we can check, in

constant time, whether w$B(v), 

and if so, what is !(v,w).

Query answering algorithm

Algorithm distk(u,v)

w%u , i%0

while w+B(v)

{   i %i+1

(u,v) %(v,u)

w %pi(u)      }

return !(u,w)+ !(w,v)

Query answering algorithm

u v

w1=p1(v)$A1

w2=p2(u)$A2

w3=p3(v)$A3

u v

wi-1=pi-1(v)$Ai-1

wi=pi(u)$Ai

Analysis

,

(i-1),
i,i,

(i+1),

Claim 1:

�
(u,wi) � i� , i even�
(v,wi) � i� , i odd

Claim 2:

�
(u,wi) +

�
(wi,v)

� (2i+1)�
� (2k-1)�

Where are the spanners?

Define clusters, the �dual� of bunches.

For every u$V, include in the spanner 

a tree of shortest paths from u to all 

the vertices in the cluster of u.

ClustersClusters A0=
A1=
A2=

1 1
( ) { | ( , ) ( , )} ,

i i i
C w v V w v A v w A A! ! ' '% $ ) $ (

w
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BunchesBunches andand clustersclusters

1

1

1

1

( ) { | ( , ) ( , )} ,

( ) { | ( , ) (

( ) (

, }

)

)
i i

i

i

i

i i

C w v V w v A v

if w

w

B v w A A w v A

B

A A

v v C w

v

!

! !

!

' '

'

'

$ - $

% $ (

$ )

)

%

$ (

!

Part II

Spanners with 

sublinear surplus

The construction used above, 

when applied to unweighted

graphs, produces spanners with 

sublinear surplus!

We present a slightly modified 

construction with a slightly 

simpler analysis.

Balls

v

p1(v)

p2(v)

A0=
A1=
A2=

1 1( ) { | ( , ) ( , )} ,i i iBall u v V u v u A u A A! ! ' '. $ ) $ (

1 1[ ] ( ) { ( )} ,i i iBall u Ball u p u u A A' '. / $ (

The modified construction

For every u$V, add to the spanner a 

shortest paths tree of Ball(u).

The original construction

Select a hierarchy of centers A001A11�1Ak-1.

For every u$V, add to the spanner a 

shortest paths tree of Clust(u).

Select a hierarchy of centers A001A11�1Ak-1.

Spanners with sublinear surplus

For every u$V, add to the spanner a 

shortest paths tree of Ball(u).

Select a hierarchy of centers A001A11�1Ak-1.
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The path-finding strategy

Let 
�

be an integer parameter.

Suppose we are at u$Ai and want to go to v.

If the first xi=
�

i-
�

i-1 edges of a shortest path 

from u to v are in the spanner, then use them.

Otherwise, head for the (i+1)-center ui+1 nearest to u.

u$Ai v

ui+1$Ai+1

xi

xi

�
The distance to ui+1 is at most xi.  (As u�$Ball(u).)

u�

/

The path-finding strategy

u$Ai v

ui+1$Ai+1

xi

xi

u�

We either reach v, or at least make 

xi= � i-� i-1 steps in the right direction.

Or, make at most xi=� i- � i-1 steps, possibly in a 

wrong direction, but reach a center of level i+1.

If i=k-1, we will be able to reach v.

The path-finding strategy

u0 v

xi-1

ui

x1

x0

xi-2

x
i=! i-! i-1

!i-1

After at most !i steps:

either we reach v

or distance to v
decreased by 

!i -2!i-1

The path-finding strategy

Surplus

2!i-1

Stretch

1

2
1

2 2

i

i i(

,
. '

, ( , , (

The surplus is incurred only once!

22
(1 )

2
'( , ) ( , ) 2 ku v u v! ! (2

(
'

,
,'"

After at most !i steps:

either we reach v

or distance to v
decreased by 

!i -2!i-1

Sublinear surplus

22
(1 )

2
'( , ) ( , ) 2 ku v u v! ! (2

(
'

,
,'"

1/( 1)( , ) , 2ku v d d! (3 4. , . '5 6

1
1

1
'( , ) ( )kd O du v! (

(
'"

Open problems

Arbitrarily sparse additive spanners?

Distance oracles with sublinear surplus?
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The walkers problem

J.D., X.Perez, M.Serna, N.Wormald

Partially supported by the EC 6th FP 001907: DELIS
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GOAL

STUDY THE CONNECTIVITY OF THE AD-HOC 

NETWORK STABLISHED BETWEEN THE 

AGENTS, AS THESE MOVE FOLLOWING 

THE EDGES OF A GRAPH:

� Cycle

� Grid

� Hypercube

� Random Geometric graph

GOAL

STUDY THE ITERACTIONS  OF 

SIMULTANEOUS RANDOM WALKS ON 

DIFFERENTS TOPOLOGIES. 

Walkers in the toroidal grid

� Given a set W (|W|=w) of walkers (agents, 

robots,..) which at each step, they can move 

N/S/E/W on the edges of a toroidal grid TN, 

with N=n2, the walkers have RF 

communication  within a  distance d

(Manhatan, euclidian, etc.), we wish to 

study the evolution of the connectivity 

graph Gt[W], as the walkers move.

� At step t=0, the w walkers are sprinkled 

u.a.r. on TN. f:W V(TN) (static case)

� At each step t, every walker is forced to 

move

� At  step t+1, every walker is forced to move

Toy example

� At t=0, sprinkle 5 walkers in a nxn grid, 

with a max communication distance d=3 (in 

the l2 norm) 

� Look evolution of Gt[W] up to t=4.
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t=0 f

t=0 t=1

t=1 t=2
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t=2 t=3

t=3 t=4

t=4

Static case
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Some parameters

� K = # connected components in Gf[W]

=w/N (expected walkers per node)

� h = minimum number vertices around a 

simple component.

� Simple component: isolated vertex in Gf[W]

h for l1 and l2 distances (for d=3)

Some values for h

l1 h=2d(d+1)

l2 h~ d2 for large d

l h=4d(d+1)

Observation

� If d 2n Gf[W] is connected

� If d2= (N/ w) Gf[W] connected 

a.a.s.

� Interesting case of study: d2=o(N/ w)

d=o(n)

Random variables

� X = number simple components

� K = number connected components

Let  N(1-e- ) e-h . Then

w  e-h if w/N

N(1-e- e-h if w/N c

Ne-h if w/N
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Shape distribution of  X

Theorem The expected number of simple 

Components satisfy E[X]= N(1-e- (1-h/N)w

Moreover 

If then X , there are 

no simple components a.a.s.

If there are simple components a.a.s.

If then X is Poisson with mean 

Corollary. The probability of not having simple

Components is

Pr[X=0]=e +o(1).

Sketch of proof

Compute the K-th moment:

k=E[[X]k]= Pr[Sv1=1 � Svk=1]

where Svi=1 if vi is the center of a simple 

component, otherwise Svi=0, and the sum is 

over all k-tuples of vertices which occupy 

different walkers.

Use inclusion-exclusion

� A r-component a non-simple component 

which  can be embedded in a  i   j grid 

(i,j<n)

� A nr-component a non-simple component 

which is not r-component

nr-components

Type 1

Type 2

� X = # simple components

� Y = # r-components

� Z1 = # nr-components which can not 

coexists with other nr-components

� Z2 = # non type 1 nr-components

K= X+Y+Z1 +Z2
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Connected component C with the edges of C, the associated empty area

AC and  the external regions

Connected component C,  maximal boundary walk 

and associate outside empty area A

Geometric Lemma

Let C be a component in TN with a max.

boundary walk of length l. Then

|A | dl/1010

If C is rectangular, then |A |> h+dl/1010

Simple components are 

predominant a.a.s. in TN

Lemma

If h hw/N , then

� E[Y]=o(E[X])

� E[Z2]=o(E[X])

Connectivity of Gf[W]

Theorem

For aas Gf[W] consists of simple 

components and a giant connected component

Corollary. If w walkers are placed uar on

TN, the probability that Gf[W] is connected   is   

e +o(1).
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Threshold for  connectivity     

d vs w

Corollary. If 

� If h iff w= (N log N)

� If h (log N) iff w= 

� If h (Nc log N) iff w= -c)

� If h= (N/log N) iff w= log loglog N)

3000x3000; d=cte

3000x3000; d=log n  w=875018 3000x3000; n2/3 w=719

Dynamic properties

Consider labelled (x,y) all vertices in TN

Given f of  {1,�,w} on TN, a configuration

(as t evolves) is a vector a=(a1,a2,..,aw),

where ai=(aix,aiy) is the label  of vertex 

in which walker i is.

a= ((1,2),(1,6),(3,4),(5,1),(5,5))

1

2

3

4

5

(0,0)
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b=((1,7),(2,2),(3,4),(4,5),(5,2))
Let the graph M: 

V(M)={configurations} and 

(a, b) in E(M) if  i dist(ai bi)=

Notice: (a) = 4w.

The dynamic process is a random walk

on  M.

Hitting time hab in M

If N is even, a and b have the same 

parity iff i,j 

(aix-ajx)+(aiy-ajy)=(bix-bjx)+(biy-bjy) mod 2.

Lemma Given a, b in M,

If N is odd, M is ergodic and hab is finite.

If N is even, M no es ergodic but if a and b

have the same parity, hab is finite.

Therefore, the system always reaches  a state 

representing a single connected component, 

within finite expected time

Notice The initial uniform distribution stays 

invariant as t evolves.

So we need to consider only the 

case 

(if  0 then Gt[W] aas connected

if  then Gt[W] aas disconnected)

Dynamic random variables

� X(t) = number simple components at time t

� S(t) = number simple components surviving 

between t and t+1

� B(t) = number simple components born  

between t and t+1

� D(t) = number simple components dying  

between t and t+1
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Theorem. S(t), B(t), D(t) are asymptotically 

jointly independent Poisson and 

E[S(t)] ~ if dw/N 0,

E[S(t)] ~ if dw/N c,

E[S(t)] ~ 4 (1-e- /4)/(1-e- ) if dw/N ,

E[B(t)]= E[D(t)] ~ d if dw/N 0,

E[B(t)]= E[D(t)] ~ if dw/N c,

E[B(t)]= E[D(t)] ~ if dw/N ,

with =(1- e-d )

Sketch of proof: consider all cases of S, B, D

Show that S, B, B are jointly asymptotic 
Poisson

E[[S]q.[B]r.[D]p]= q r p

Survival sc in l2 (for d=2)
t

Survival sc in l2 (for d=2)
t+1

Creation sc in l2 (for d=2)
t

Survival sc in l2 (for d=2)
t+1
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Destruction sc in l2 (for d=2)
t

Destruction sc in l2 (for d=2)
t+1

Theorem.

Pr[X(t+1) 1 and X(t)=0]~

e- b if d 0,

e- (1-e- if d c,

e- (1-e- if d

Prob Gt[W] connected and
Gt+1[W] disconnected

Average lifespan of simple 

component 

Lifespan of simple component: number of steps from 

creation to destruction.

Lvt: lifespan simple component at v, between t and 

t+1.

Average lifespan LT  of simple components born in 

[0,T-1]

LT= (
t v

Lvt ) |{(v,t) : Lvt >0}|

Average lifespan of simple 

component 

Theorem 

L 1/d if d 0

L / if d c

L 1 if d

Average connectiveness  

Let C be the average connectivity of Gf[W]

The random variable counting the expected 

length of any connected period

Theorem 

C 1/d if d 0

C e if d c

C 1 e if d
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Average disconnectiveness  

Let D be the average disconnectivity of Gf[W]

Theorem 

D (e 1)/d if d 0

D (e 1) e if d c

D e if d

Similar results obtained for:

Cycle C
N

n-dimensional hypercube: H
N

Future work on Random Geometric 

Graphs
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Approximation Algorithms for

Network Problems

Susanne Albers

University of Freiburg

Germany

Large networks

Buffer management in switches
Online, competitive analysis
A., Schmidt STOC’04

Web caching, request reordering
Offline, approx. algorithms
A. SPAA’04

Network creation game
Nash equilibria, price of anarchy
A. 05

Large networks

Buffer management in switches
Online, competitive analysis
A., Schmidt STOC’04

Web caching, request reordering
Offline, approx. algorithms
A. SPAA’04

Network creation game
Nash equilibria, price of anarchy
A. 05

Buffer management in switches

Buffer Buffer

Input Ports Output Ports

Switches forward data packets.

Buffers store packets temporarily if capacity available.

Goal: maximize throughput.

Virtual output queueing

Input Ports Output Ports

Each input port maintains for each output port a queue .

Problem

buffers, each of which can store
pakets.

In each time step
– new packets arrive online

: packets in buffer
: new packets at buffer

paket loss:

– one buffer can send one paket
to the output

Goal: maximize transferred pakets
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Competitive analysis

Online problem

:

Online

algorithm

OPT:

Offline

algorithm

is -competitive if such that for all sequences

Previous results

Every reasonable algorithm is -competitive.

Randomized upper bound:
Azar, Richter 2003

Lower bounds
Deterministic: 1.366
Randomized: 1.46 ( )
Azar, Richter 2003

Single buffer problems: pakets have values
Upper bounds: 2, 1.75
Kesselman et al. 2001; Bansal et al. 2004

Greedy algorithms

Greedy: Always serve a buffer currently
storing a maximum number of packets.

Advantages:
– fast
– little extra memory
– best strategy to avoid packet loss

Our results

Exact performance of all Greedy algorithms: 2-competitive

New algorithm Semi-Greedy:
fast, little extra memory, serves full buffers

Lower bounds ( arbitrary)
Deterministic:
Randomized: 1.46

Extra resources: larger buffers, higher transmission rates
Almost matching upper and lower bounds

Optimal offline algorithm running in polynomial time

Semi-Greedy

In each time step execute the first
applicable rule.

1. buffer with packets
serve a buffer with
max. number of packets

2. non-empty buffer that has never been full
amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

Semi-Greedy

In each time step execute the first
applicable rule.

1. buffer with packets
serve a buffer with
max. number of packets

2. non-empty buffer that has never been full
amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets
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Semi-Greedy

In each time step execute the first
applicable rule.

1. buffer with packets
serve a buffer with
max. number of packets

2. non-empty buffer that has never been full
amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

Semi-Greedy

In each time step execute the first
applicable rule.

1. buffer with packets
serve a buffer with
max. number of packets

2. non-empty buffer that has never been full
amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

Semi-Greedy

Whenever all buffers are empty,
the hitherto maximum load of each
queue is set to 0.

Semi-Greedy

In each time step execute the first
applicable rule.

1. buffer with packets
serve a buffer with
max. number of packets

2. non-empty buffer that has never been full
amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

Analysis

OPTSemi-Greedy

Partition input into subsequences so that at the end of each subsequence
Semi-Greedy’s buffers are empty.

Compare: throughput Semi-Greedy / throughput OPT

Web caching

Documents are text files, im-
ages, html pages,

Important properties:
documents have
different sizes and incur
different costs
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Web caching

Request: requests
documents

not in ’s cache: Cost
Optional: loading

Goal: Minimize total service cost

Web caching

cache
network node

remaining
network

Goal: Serve a sequence of requests
so that the total service cost at the node is minimized.

Request reordering

Proxy server: requests are independent

cache
proxy server

network

may be served before if

Advantage: improved cache hit rates

Feder, Motwani, Panigrahy, Zhu 2002

Cost models

Document Size( ) Cost( )

Uniform Model:
Cost( ) Size( ) 1

Bit Model:
Cost( ) Size( )

Fault Model:
Cost( ) 1

General Model:
Cost( ) arbitrary

Previous results, reordering

Online
Uniform Model: ( )-competitive (deterministic)
Bit and Fault Models: ( )-competitive (deterministic)

Offline
General Model: Polynomial algorithm for cache size 1 if

logarithmic in or distinct documents is constant

= size cache = size smallest document

Feder, Motwani, Panigrahy, Seiden, van Stee, Zhu 2003

Our results

Online
General Model: optimal -competitive alg. (deterministic)

Offline

Approximation Extra memory Size

Uniform Model:

Bit Model:

Fault Model:

General Model:

Approach: reduce problem to one of computing batched schedules.
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Batched processing

Batch

Batched processing

Batch

Batched processing

Batch

Batched processing

Lemma: Suppose that serves with cost .
Then there exists that processes in batches and
incurs a cost of at most .

Uniform Model

Algorithm BMIN

1. Serve requests to documents in cache;

2. while with unserved requests do
Serve requests to ;
Determine in cache whose next unserved request is farthest in future;
if next unserved request to is in a later batch than that to then

Load by evicting ;

Uniform Model

Algorithm BMIN

1. Serve requests to documents in cache;

2. while with unserved requests do
Serve requests to ;
Determine in cache whose next unserved request is farthest in future;
if next unserved request to is in a later batch than that to then

Load by evicting ;
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Uniform Model

Algorithm BMIN

1. Serve requests to documents in cache;

2. while with unserved requests do
Serve requests to ;
Determine in cache whose next unserved request is farthest in future;
if next unserved request to is in a later batch than that to then

Load by evicting ;

Uniform Model

Lemma: BMIN is optimal among algorithms processing request sequences
in batches.

Theorem: BMIN achieves an approximation ratio of 2.

Approximations

Construct schedules that serve in batches

Bit, Fault Models: Formulate problems as ILP.

General Model: Formulate problem as a loss minimization problem.
Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber 2001

Network creation game

agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Network creation game

agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Network creation game

agent

Cost of for each edge.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03
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Network creation game

agent

Shortest path distance to agent , for all .
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

Problem

agents

Cost agent edges built by agent

shortest path distance to agent

Dist(agent )

Nash equilibria

No agent can improve its cost if other agents keep their strategies.

Price of anarchy:

Nash eq.

Cost agent
Cost(OPT)

Koutsoupias, Papadimitriou ’99

Previous results

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’03

,
is constant

is bounded by

Tree-conjecture: s.t. for every Nash equilibrium is a tree.

Our results

:

: is constant
: increasing, bounded by

: decreasing, constant for

 N  N**2

Our results

Upper bounds can be extended to:
Weighted game: traffic sent from agent to
Cost sharing: agent can pay for a fraction of an edge

For any and
Nash equilibria that contain cycles.

Transient: seq. of players’ changes leading to non-equilibrium state.

Nash equilibrium representing a chordal graph is transient.
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Upper bound

Nash equilibrium
Shortest path tree rooted at agent

agentdepth

depth

depth

Cost(agent ) tree edges built by agent

Upper bound

Nash equilibrium
Shortest path tree rooted at agent

agentdepth

depth

depth

Cost(agent ) tree edges built by agent

Cost of agent

agent

agent

Cost(agent ) +

Cost of agent

agent

agent

Cost(agent ) +

Cost of agent

agent

agent

Cost(agent ) +

Cost Nash

Cost(agent )

Cost(agent )

Cost(Nash eq.)
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Analysis

Price of anarchy

Cost(Nash eq.)

Cost(OPT)

Open problems

Buffer management:

Determine competitiveness of randomized algorithms.

Packets have limited lifeliness.

Web caching

Improve approximations guarantees.

Complexity in the Uniform, Fault Models.

Network creation

Settle price of anarchy of any .

Study other network creation games.
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Generalized Linear 

Programming

Ji
�
í Matou�ek

Charles University, Prague

The cool slides in this presentation are included by 

the courtesy of Tibor Szabó.

Linear Programming

� Minimize cx subject to Ax ! b.

� Geometry: Minimize a linear function over 

the intersection of  n halfspaces in Rd

(=convex polyhedron).

LP Algorithms

� Simplex method [Dantzig 1947] 

� very fast in practice

� very good �average case�

� exponential-time examples for almost all pivot 

rules

� Ellipsoid method [Khachyian], interior-point 

methods [Karmakar],�

� weakly polynomial but no (worst-case) bound

in terms of n and d alone

Combinatorial LP algorithms

� wanted: time ! f(d,n) for all inputs

� computations �coordinate independent�; 

use only combinatorial structure of the 

feasible set (polyhedron) or of the 

arrangement of bounding hyperplanes

Combinatorial LP algorithms

Computational geometry: research started 

with d fixed (and small)

� [Megiddo] exp(exp(d)).n

� [Clarkson] randomization; d2n+dd/2 log n

� [Seidel] simple randomized; d! n

� [Chazelle, M.] exp(O(d)).n deterministic

� parallel [Alon, Megiddo] [Ajtai, Megiddo]
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A subexponential algorithm

Theory of convex polytopes

(Hirsch conjecture):

[Kalai] 1992

Computational geometry:

[Sharir, Welzl], 

[M., Sharir, Welzl] 1992

exp("(d log d)).n (randomized expected)
� known as RANDOM FACET :

In the current vertex of the feasible polytope, choose 
a random improving facet, recursively find its 
optimum, and repeat

� still the best known running time!

Abstract frameworks

� systems of axioms capturing some of the 

properties of linear programming 

� running time of algorithms counted in terms of 

certain primitive operations

� to apply to a specific problem,  need to 

implement them �

� � and then algorithms become available (such 

as Kalai/MSW, Clarkson)

Abstract frameworks

Abstract objective functions [Adler, Saigal 

1976], [Wiliamson Hoke 1988], [Kalai 

1988]

� P a (convex) polytope

� f : V(P) � R is an abstract objective function

if a local minimum of any face F is also the 

unique global minimum of F

� every generic linear function induces an AOF

� but there are nonrealizable AOF on the 3-

dimensional cube!

Abstract frameworks

Acyclic Unique Sink Orientations (AUSO)

� acyclic orientation of the graph of the 

considered polytope such that every 

nonempty face has exactly one sink (sink = all 

edges incoming)

� same as abstract objective functions

Abstract frameworks

LP-type problems [Sharir, Welzl]

� also called Generalized Linear Programs 

[Amenta]

� encompass many geometric optimization 

problems [MSW,Amenta,Halman�]

� smallest enclosing ball of n points in Rd

� smallest enclosing ellipsoid of n points in Rd

� distance of two (convex) polyhedra in Rd

� ���

� plus some non-geometric (games on graphs)

LP-type problems

� H a finite set of constraints

� (W,!) a linearly ordered set (such as the reals)

� w: 2H # W a value function; intuitively: w(G) is 

the minimum value of a solution attainable under 

the constraints in G

� Axiom M (monotonicity):                                         

If F $ G, then w(F) ! w(G).

� Axiom L (locality):                                             

If F $ G and w(F) = w(G) =w(F%{h}), then 

w(G)=w(G%{h}).

– 547 –



Example: Smallest enclosing ball

� H a finite set of points in the plane

� w(G) = radius of the smallest disk containing G

a

e

c

d

b

monotonicity trivial

locality depends on

uniqeness of the smallest

enclosing ball!

LP-type problems: more notions

� basis for G: inclusion-minimal B $ G with 

w(B)=w(G)

� dimension d of (H,w): maximum cardinality 

of a basis

� computational primitives (B a given basis)

� violation test: value(B%{h})>value(G)?

� pivoting: compute a basis for B%{h}

Abstract frameworks

Abstract Optimization Problems [Gärtner]

� only one parameter: dimension d=|H| (no n)

� a linear ordering of 2H 

� primitive operation: Is G optimal among all 

sets containing F? If not, give a better G�

� nice randomized algorithm: exp(O("d)) 

[Gärtner]

� allows a (rather) efficient implementation of 

�primitives� in Kalai/MSW, e.g., for the 

smallest enclosing ball problem

Algorithms in the abstract 

frameworks
� several algorithms (Kalai/MSW = RANDOM 

FACET; Clarkson) work for AOF�s, same 

analysis

� AUSO given by oracle: returns edge orientations for a 

given vertex

� yields n.exp(O("d)) randomized algorithm 

� analysis tight in this abstract setting [M.]

� for LP-type problems they work too (but�)

� O(n) algorithms for fixed d usually immediate

� but primitives �depend on d� � may be hard

� sometimes Gärtner�s algorithm helps

Algorithms in the abstract 

frameworks
RANDOM EDGE

� the simplex algorithm that selects an 

improving edge uniformly at random

� for AUSO: random outgoing edge

� great expectations: perhaps always 

quadratic???  [Williamson Hoke 1988] 

RANDOM EDGE

Expected running time

� on the d-dimensional simplex: &(log d) 

[Liebling]

� on d-dimensional polytopes with d+2 facets: 

&(log2d) [Gärtner et al. 2001]

� on the d-dimensional Klee-Minty cube:

� O(d2) Williamson Hoke (1988)

� '(d2/log d) Gärtner, Henk, Ziegler (1995)

� &(d2) Balogh, Pemantle (2004) 
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RANDOM EDGE can be 

(mildly) exponential

There exists an AUSO of the d-dimensional cube such 

that RANDOM EDGE, started at a random vertex, 

makes at least exp(c.d1/3) steps before reaching the 

sink, with probability at least 1- exp(-c.d1/3).

[M., Szabó, FOCS 2004]

The Klee-Minty cube

reversed KMm-1

KMm-1

KMm

A blowup construction Hypersink reorientation

A simpler construction

Let A be a d-dimensional cube on which 

RANDOM EDGE is slow (constructed 

recursively) 

� take the blowup of A with random KMm�s 

whose sink is in the same copy of A, m="d

� reorient the hypersink by placing a random 

copy of A

� thus, a step from d to d+"d

A

A

A

rand A

A simpler construction
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A typical RANDOM EDGE move

� Move in the frame:

� RANDOM EDGE move in KMm

� stay put in A

� Move within a hypervertex:

� RANDOM EDGE move in A

� move to a random vertex of 

KMm on the same level

A

rand A

A

A

v

Random walk with reshuffles on KMm

RANDOM EDGE on A

Walk with reshuffles on KMm

� Start at a random v(0) of KMm   

� v(i) is chosen as follows:

� with probability pi,step make a step of 

RANDOM EDGE from v(i-1);

� with probability pi,resh randomly permute

(reshuffle) the coordinates of v(i-1) to obtain v(i) 

� with probability 1- pi,step - pi,resh,  v(i) = v(i-1).

Walk with reshuffles on KMm is slow

Proposition. Suppose that

Then with probability at least 

the random walk with reshuffles makes 

at least         steps (
�

and
�

are constants).

stepireshi pp ,, max11min ()
me *++1

me,

Reaching the hypersink

� Either we reach the sink by reaching the sink of a 

copy of A and then perform RANDOM EDGE on 

KMm. This takes at least T(d) time.

� Or we reach the hypersink without entering the 

sink of any copy of A. That is, the random walk 

with reshuffles reaches the sink of KMm . This 

takes at least  exp(,m) ) T(d) time.

The recursion

� RANDOM EDGE arrives to the hypersink at a 
random vertex. Then it needs T(d) more steps.

So passing from dimension d to d+"d the 
expected running time of RANDOM EDGE 
doubles.

� Iterating "d - times gives T(2d) ) 2"d T(d).

� In order to guarantee that reshuffles are frequent 
enough we need a more complicated 
construction and that is why we are only able to 
prove a running time of exp(c.d1/3).

Open questions

� Obtain any reasonable upper bound on 
the running time of RANDOM EDGE

� Can one modify the construction such that 

the cube is realizable? (Probably not �) 

� Or at least it satisfies the Holt-Klee

condition?

� Or at least each three-dimensional 

subcube satisfies the Holt-Klee condition?
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More open questions

� Find an algorithm for AOF on the d-cube 

better than exp("d)

� The model of unique sink orientations of 

cubes (possibly with cycles) include LP on 

an arbitrary polytope.

Find a subexponential algorithm!

THE END
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My Favorite Ten My Favorite Ten 

Complexity TheoremsComplexity Theorems

of the Past Decade IIof the Past Decade II

Lance FortnowLance Fortnow

University of ChicagoUniversity of Chicago

Madras, December 1994Madras, December 1994

Invited Talk at Invited Talk at 

FST&TCS FST&TCS ��0404

My Favorite Ten My Favorite Ten 

Complexity Complexity 

Theorems of the Theorems of the 

Past DecadePast Decade

Why?Why?

Ten years as a complexity theorist.Ten years as a complexity theorist.

Looking back at the best theorems during Looking back at the best theorems during 
that time.that time.

Computational complexity theory Computational complexity theory 
continually produces great work.continually produces great work.

Use as springboard to talk about research Use as springboard to talk about research 
areas in complexity theory.areas in complexity theory.

LetLet��s recap the favorite theorems from s recap the favorite theorems from 
19851985--1994.1994.

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 1Favorite Theorem 1

BoundedBounded--width Branching Programs width Branching Programs 

Equivalent to Boolean FormulaEquivalent to Boolean Formula

Barrington 1989Barrington 1989

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 2Favorite Theorem 2

Parity requires 2Parity requires 2 (n(n1/d1/d)) gates for circuits of gates for circuits of 

depth d.depth d.

HHååstad 1989stad 1989

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 3Favorite Theorem 3

Clique requires exponentially large Clique requires exponentially large 

monotone circuits.monotone circuits.

Razborov 1985Razborov 1985
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Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 4Favorite Theorem 4

Nondeterministic Space is Closed Under Nondeterministic Space is Closed Under 

ComplementComplement

Immerman 1988 and Immerman 1988 and SzelepcsSzelepcséényinyi 19881988

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 5Favorite Theorem 5

Pseudorandom Functions can be Pseudorandom Functions can be 

constructed from any oneconstructed from any one--way function.way function.

ImpagliazzoImpagliazzo--LevinLevin--LubyLuby 19891989

HHååstadstad--ImpagliazzoImpagliazzo--LevinLevin--LubyLuby 19991999

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 6Favorite Theorem 6

There are no sparse sets hard for NP via There are no sparse sets hard for NP via 

bounded truthbounded truth--table reductions unless table reductions unless 

P = NPP = NP

OgiharaOgihara--Watanabe 1991Watanabe 1991

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 7Favorite Theorem 7

A pseudorandom generator with seed of A pseudorandom generator with seed of 

length O(slength O(s22(n)) that looks random to any (n)) that looks random to any 

algorithm using algorithm using s(ns(n) space.) space.

Nisan 1992Nisan 1992

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 8Favorite Theorem 8

Every language in the polynomialEvery language in the polynomial--time time 

hierarchy is reducible to the permanent.hierarchy is reducible to the permanent.

Toda 1991Toda 1991

Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 9Favorite Theorem 9

PP is closed under intersection.PP is closed under intersection.

BeigelBeigel--ReingoldReingold--SpielmanSpielman 19941994
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Favorite Theorems 1985Favorite Theorems 1985--9494

Favorite Theorem 10Favorite Theorem 10

Every language in NP has a Every language in NP has a 

probabilistically checkable proof that can probabilistically checkable proof that can 

be verified with be verified with O(logO(log n) random bits and n) random bits and 

a constant number of queries.a constant number of queries.

AroraArora--LundLund--MotwaniMotwani--SudanSudan--SzegedySzegedy 19921992

Kyoto, March 2005Kyoto, March 2005

Invited Talk at Invited Talk at 

NHC Conference.NHC Conference.

Twenty years in Twenty years in 

field.field.

My Favorite Ten My Favorite Ten 

Complexity Complexity 

Theorems of the Theorems of the 

Past Decade IIPast Decade II

DerandomizationDerandomization

Many algorithms use Many algorithms use 

randomness to help randomness to help 

searching.searching.

Computers donComputers don��t have t have 

real coins to flip.real coins to flip.

Need strong Need strong 

pseudorandom pseudorandom 

generators to generators to 

simulate randomness.simulate randomness.

Hardness vs. RandomnessHardness vs. Randomness

BPP BPP �� Class of languages computable Class of languages computable 

efficiently by probabilistic machinesefficiently by probabilistic machines

1989 1989 �� Nisan and Nisan and WigdersonWigderson

If exponential time does not have circuits that If exponential time does not have circuits that 

cannot solve EXPcannot solve EXP--hard languages on average hard languages on average 

then P = BPP.then P = BPP.

Many extensions leading to Many extensions leading to ��

Favorite Theorem 1Favorite Theorem 1

If there is a language computable in time 2If there is a language computable in time 2O(n)O(n)

that does not have 2that does not have 2 nn--size circuits then P = BPP.size circuits then P = BPP.

ImpagliazzoImpagliazzo--WigdersonWigderson ��9797

PrimalityPrimality

How can we tell if a number is prime?How can we tell if a number is prime?
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Favorite Theorem 2Favorite Theorem 2

Primality is in PPrimality is in P

AgrawalAgrawal--KayalKayal--SaxenaSaxena 20022002

Complexity of PrimalityComplexity of Primality

Primes in coPrimes in co--NP: Guess factorsNP: Guess factors

Pratt 1975: Primes in NPPratt 1975: Primes in NP

SolovaySolovay--StrassenStrassen 1977: Primes in co1977: Primes in co--RPRP

Primality became the standard example of Primality became the standard example of 

a probabilistic algorithmsa probabilistic algorithms

Primality is a problem hanging over a cliff Primality is a problem hanging over a cliff 

above P with its grip continuing to loosen above P with its grip continuing to loosen 

every day. every day. �� HartmanisHartmanis 19861986

More Prime ComplexityMore Prime Complexity

GoldwasserGoldwasser--Kilian 1986Kilian 1986

AdlemanAdleman--Huang 1987Huang 1987

Primes in RP: Probabilistically generate Primes in RP: Probabilistically generate 

primes with proofs of primality.primes with proofs of primality.

FellowsFellows--KublitzKublitz 1992: Primes in UP1992: Primes in UP

Unique witness to primalityUnique witness to primality

AgrawalAgrawal--KayalKayal--SaxenaSaxena �� Primes in PPrimes in P

DivisionDivision

Division in NonDivision in Non--uniform uniform LogspaceLogspace

BeameBeame--CookCook--Hoover 1986Hoover 1986

Division in Uniform Division in Uniform LogspaceLogspace

Chiu 1995Chiu 1995

Division in Uniform NCDivision in Uniform NC11

ChiuChiu--DavidaDavida--LitowLitow 20012001

Division in Uniform TCDivision in Uniform TC00

HesseHesse 20012001

Probabilistically Checkable Probabilistically Checkable 

ProofsProofs
From 1994 list:From 1994 list:

Every language in NP has probabilistically Every language in NP has probabilistically 

checkable proof (PCP) with checkable proof (PCP) with O(logO(log n) random n) random 

bits and constant queries.bits and constant queries.

AroraArora--LundLund--MotwaniMotwani--SudanSudan--SzegedySzegedy

Need to improve the constants to get Need to improve the constants to get 

stronger approximation bounds.stronger approximation bounds.

Favorite Theorem 3Favorite Theorem 3

For any language L in NP For any language L in NP 

there exists a PCP using there exists a PCP using 

O(logO(log n) random coins and n) random coins and 

3 queries such that3 queries such that

If x in L verifier will accept If x in L verifier will accept 

with with probprob 11-- ..

If x not in L verifier will If x not in L verifier will 

accept with accept with probprob ½½..

HHååstadstad 20012001
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Approximation BoundsApproximation Bounds

Given a 3CNF formula we can find Given a 3CNF formula we can find 

assignment that satisfies 7/8 of the assignment that satisfies 7/8 of the 

clauses by choosing random assignment.clauses by choosing random assignment.

By By HHååstadstad cancan��t do better unless P = NP.t do better unless P = NP.

Uses tools of parallel repetition and list Uses tools of parallel repetition and list 

decodable codes that we will see later.decodable codes that we will see later.

ConnectionsConnections

Beauty in results that tie together two Beauty in results that tie together two 

seemingly different areas of complexity.seemingly different areas of complexity.

ConnectionsConnections

Beauty in results that tie together two Beauty in results that tie together two 

seemingly different areas of complexity.seemingly different areas of complexity.

Extractors Extractors �� Information TheoreticInformation Theoretic

Extractor

0110

011100101

010010101
Random

High Entropy Close to Random

ConnectionsConnections

Beauty in results that tie together two Beauty in results that tie together two 

seemingly different areas of complexity.seemingly different areas of complexity.

Extractors Extractors �� Information TheoreticInformation Theoretic

Pseudorandom Generators Pseudorandom Generators --

ComputationalComputational

PRG
0110 010010101

Fools Circuits
Small Seed

Favorite Theorem 4Favorite Theorem 4

Equivalence between Equivalence between 

PRGsPRGs and Extractors.and Extractors.

Allows tools for one to Allows tools for one to 

create other, for create other, for 

example example ImpagliazzoImpagliazzo--

WigdersonWigderson to create to create 

extractors.extractors.

Trevisan 1999Trevisan 1999

SuperlinearSuperlinear BoundsBounds

Branching ProgramsBranching Programs

Size corresponds to space needed for computation.Size corresponds to space needed for computation.

Depth corresponds to time.Depth corresponds to time.

We knew no nonWe knew no non--trivial bounds for general trivial bounds for general 
branching programs.branching programs.
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Favorite Theorem 5Favorite Theorem 5

NonNon--linear time lower linear time lower 

bound for Boolean bound for Boolean 

branching programs.branching programs.

Natural problem that Natural problem that 

any linear time any linear time 

algorithm uses nearly algorithm uses nearly 

linear space.linear space.

AjtaiAjtai 19991999

Parallel RepetitionParallel Repetition

0110

1010

1100

1001

Accepts with prob ½

Parallel RepetitionParallel Repetition

0110

1010

1100

1001

Accepts with prob 1/4  

0010

1011

0100

1011

Parallel RepetitionParallel Repetition

0110

1010

1100

1001

Accepts with prob 1/4  

0010

1011

0100

1011

FALSE

Favorite Theorem 6Favorite Theorem 6

Parallel Repetition Parallel Repetition 

does reduce error does reduce error 

exponentially in exponentially in 

number of rounds.number of rounds.

Useful in construction Useful in construction 

of optimal PCPs.of optimal PCPs.

RazRaz 19981998

List DecodingList Decoding

00101110
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List DecodingList Decoding

010001100101001110010101010111001110111110001110

00101110

List DecodingList Decoding

010001100101001110010101010111001110111110001110

00101110

List DecodingList Decoding

010001100101001110010101010111001110111110001110

00101110

00101110

List DecodingList Decoding

010001100101001110010101010111001110111110001110

00101110

List DecodingList Decoding

010001100101001110010101010111001110111110001110

00101110

10010010

00101110

10111000

11101110

Favorite Theorem 7Favorite Theorem 7

List Decoding of List Decoding of 

ReedReed--Solomon Codes Solomon Codes 

Beyond Classical Beyond Classical 

Error BoundError Bound

Sudan 1997Sudan 1997

Later Later GuruswamiGuruswami and and 

Sudan gives Sudan gives 

algorithm to handle algorithm to handle 

believed best possible believed best possible 

amount of error.amount of error.
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Learning CircuitsLearning Circuits

Can we learn circuits Can we learn circuits 

by making by making 

equivalence queries, equivalence queries, 

i.e., give test circuit i.e., give test circuit 

and get out and get out 

counterexample.counterexample.

No unless we can No unless we can 

factor.factor.

Favorite Theorem 8Favorite Theorem 8

Can learn circuits with equivalence queries and Can learn circuits with equivalence queries and 

ability to ask SAT questions.ability to ask SAT questions.

BshoutyBshouty--CleveCleve--GavaldGavaldàà--KannonKannon--TamonTamon 19961996

CorollariesCorollaries

If SAT has small circuits, we can learn If SAT has small circuits, we can learn 

circuit for SAT with SAT oracle.circuit for SAT with SAT oracle.

If SAT has small circuits then PH If SAT has small circuits then PH 

collapses to ZPPcollapses to ZPPNPNP..

KKööblerbler--Watanabe Watanabe 

Quantum Lower BoundsQuantum Lower Bounds

00010010
10001000

0100

10001

Quantum Lower BoundsQuantum Lower Bounds

00010010
10001000

0100

10001

Favorite Theorem 9Favorite Theorem 9

RazborovRazborov 20022002

NN1/2 1/2 quantum bits quantum bits 

required to compute required to compute 

set set disjointnessdisjointness, i.e., , i.e., 

whether the two whether the two 

strings have a one in strings have a one in 

the same position.the same position.

Matches upper bound Matches upper bound 

by Buhrman, Cleve by Buhrman, Cleve 

and and WigdersonWigderson..
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DerandomizingDerandomizing SpaceSpace

Given a randomized Given a randomized 

log n space algorithm log n space algorithm 

can we simulate it in can we simulate it in 

deterministic deterministic space?space?

Simulate any Simulate any 

randomized algorithm randomized algorithm 

in login log22 n space.n space.

Savitch 1969Savitch 1969

Favorite Theorem 10Favorite Theorem 10

SaksSaks--Zhou 1999Zhou 1999

Randomized log space can be simulated in Randomized log space can be simulated in 

deterministic space logdeterministic space log3/23/2 n.n.

ConclusionsConclusions

Complexity theory has had a great decade Complexity theory has had a great decade 

producing many groundproducing many ground--breaking results.breaking results.

Every theorem builds on other work.Every theorem builds on other work.

Wide variety of researchers from a cross Wide variety of researchers from a cross 

section of countries.section of countries.

New techniques still needed to tackle the New techniques still needed to tackle the 

big separation questions.big separation questions.

The Next DecadeThe Next Decade

Favorite Theorem 1Favorite Theorem 1

Undirected Graph Connectivity in Undirected Graph Connectivity in 

Deterministic Logarithmic SpaceDeterministic Logarithmic Space

ReingoldReingold 20052005
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Abstract

We propose some Heuristic Approach for analyzing average performance of local search algorithms.

As an example, we consider some satisfiability problems and invesitgate local search algorithms for

them.

Sorry!¶ ³
• No theorem

−→ Some proposal

Small observations

• No animation

• No color

µ ´
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1. Motivation: Experiments =⇒ ? =⇒ Rigorous Analyses

Facts

• Some problems, though they are believed hard in the worst case, are solvable “efficiently” on

average by relatively simple algorithms.

• Most of the positive results are given by computer experiments.

Why Analysis? Computer experiments are not enough!?

• More efficient than running the algorithm for many times.

• For better understanding of the feature/principle of the algorithm, which may leads us to im-

provements/applications to other problems.

But rigorous analysis is difficult!!

¶ ³
What shall we do!?

µ ´

Our Strategy¶ ³

ANALYSYS ⇐=











1. bra bra bra

2. are kore

3. nan ya kan ya

⇑

need experiments on some step

µ ´

Remarks.

• There are some strong mathematical techniques developed in different fields of mathematical

sciences, e.g., statistical physics, which have been also applied for analyzing average case perfor-

mance of such algorithms.

⇒ But these approaches are not perfect:

e.g., analysis for n → ∞ or t → ∞ may not be sufficient.

• Some rigorous analyses have been reported also in computer science.

⇒ But there are still some limitations:

e.g., applicable to a certain class of algorithms.

2

2. Our Approach for Analyzing Local Search Algorithms

Motivation:

• Many contraint satisfaction problems can be solved to some extent by local search algorithms on

average.

• Local search algorithm is not unique! There are many variations.

Our Approach [Watanabe-etal, SAGA’03]:

0. Modify an algorithm to a randomized one.

1. Define a relatively simple Markov process that simulates (reasonably well) the execution of

the algorithm.

2. Approximate average states of this process by a relatively simple formula.

Remarks.

0. ⇐ This may lose some efficiency, but it reduces dependency to paricular inputs.

1. ⇐ This may be hard to justify.

2. ⇐ We have some justification for this approximation.

3. First Example

Problem: 3-⊕-SAT (Parity SAT)

Closest Solution Search for 3-⊕-SAT

Input: (1) 3-⊕-SAT formula F over variables x1, ..., xn.

(2) Assignment a.

Output: A sat. assignment that is closest to a.

3-⊕-SAT formula = a conjunction of parity clauses

F = (¬x3 + x7 + x2) ∧ (x1 + ¬x12 + ¬x61) ∧ · · ·

Average Case Senario: Random Positive (3, 6)-⊕-SAT Formulas

(1) Every variable appears 6 times in F ; hence, # of clauses = 2n.

(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.

(3) An initial assignment a is chosen uniformly at random from those with Hamming distance pn

from 0; that is, a has pn 1’s.

Remarks.

• Essentially the same as the Decoding Problem for Linear Codes.

• A solution search for ⊕-SAT is poly. time computable.

x3 + x7 + x2 = 1, x1 + x12 + x61 = 0, ...

• The closest solution search is NP-hard.

... But a is regarded as a hint !?

3

Algorithm: Local Search Algorithm; Greedy (or Steepest Decending Method?)

Local Search Algorithm for (3, 6)-⊕-SAT

program GreedyPSAT(F , a);

x1, ..., xn ← a;

repeat the following MAXT steps
[

if F is satisfied with ~x then output the current assignment and halt;

flip the value of xi with the highest(∗) penalty;

program end.

(*) If there are several, choose one in some determinisitic way.

penalty of xj = # of unsatisfied clauses containing xj .

Remarks.

• Each xj appears 6 times. Thus, 0 ≤ Penalty of xj ≤ 6.

• Fix MAXT = 2pn, where Ham(a,0) = pn. Use n = 6000.

¶ ³
This works quite well !!

µ ´
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Fig 1. The success prob. vs. p

Recall p is the parameter for the init. Ham. distance Ham(a,0) = pn.

By using larger bounds, the success threshold gets increased; but not so much, and seems to have

some limit.
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Fig 2. The success prob. vs. p

MAXT = 2pn(≈ 3600), 10000, and 20000
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Fig 3. average steps vs. p
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For Understanding the Success Threshold

How does the Ham. distance change on average?

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 4. Ham. distance vs. step t for some execution, p = 0.30 and p = 0.32

Technical Goal: State the following function (or its approximation) in a simple form.

errp(t) = the average Ham. distance from the solution after the tth step.

5

Our Approach

Step 0. Modify the algorithm to a randomized one.

program GreedyPSAT(F , a);

x1, ..., xn ← a;

repeat the following MAXT steps
[

if F is satisfied with ~x then output the current assignment and halt;

flip the value of xi with the highest(∗) penalty;

program end.

⇓

program SoftGreedyPSAT(F , a);

x1, ..., xn ← a;

repeat the following MAXT steps






if F is satisfied with ~x then output the current assignment and halt;

choose xi randomly according to their weights(∗);

flip the value of xi;

program end.

How to Choose xj ?

Pr[ xj is chosen ] =
W (penalty of xj)

total weithts
,

where W is set, e.g., as follows for n = 6000,

W (0) = 0, W (1) = 1, W (2) = 100, W (3) = 10000,

W (4) = 100000, W (5) = 500000, W (6) = 2500000.

Our Approach, Cont.

Step 1. Define a simple Markov process simulating the algorithm.

Remark.

The execution of the algorithm is indeed a Markov chain with the following state space:

{ (y1, ..., yn) : yj ∈ {0, 1} } ← the set of
assignments to variables xj .

But this is too big!

⇓ state space reduction

A simple Markov process

6

*** first idea ***

Use a tuple (n+,0, ..., n+,6, n−,0, ..., n+,6) of numbers such that

n+,k = # of correctly assigned variables with penalty k.

Regard the execution of the algorithm as the change of this state by the following transition rule:

1. Choose sg ∈ {+,−} and k, 1 ≤ k ≤ 6, with prob. P (sg, k), where

P (sg, k) =
W (k) · nsg,k

6
∑

`=1

W (k) · (n+,k + n−,k)

(

=
W (k) · nsg,k

total weights

)

.

2. Update the current state by

nsg,k → nsg,k − 1

nsg,6−k → n−sg,6−k + 1

3. Futher update the state for reflecting the staus change of related variables.

Remarks. nt = (n
(t)
+,0, ..., n

(t)
+,6, n

(t)
−,0, ..., n

(t)
−,6)

• The total number is
6

∑

`=0

n
(t)
+,` + n

(t)
−,` = n (= 6000).

• The Ham. distance is errp(t) =
6

∑

`=0

n
(t)
−,`.

• An initial state n0 = (n
(0)
+,0, ...) can be estimated by p.

But here we will use the values for some randomly generated instance.

Unfortunately, this state space is too simple.

1. Choose sg ∈ {+,−} and k, 1 ≤ k ≤ 6, with prob. P (sg, k).

2. Update the current state by changing nsg,k and nsg,6−k.

⇒3. Futher update the state for reflecting the staus change of related variables.

in the execution:
unsat.

+ − +(x1 + ¬x7 + x2)
↑

−→
sat.

+ + +(x1 + ¬x7 + x2)

in the simulation:
? − ?( · +◦+ · )

↑
−→

? + ?( · +◦+ · )

We need info. for co-existing variables in each of 6 clauses.

n±,〈 i 〉 =
# of variables assigned (in)correctly (+/−)

that appears in 6 clauses assigned of pattern i,

where i = 1 ∼ 56 (effective ones are ≤ 20).

(x, +, +) (x, +, +)

(x, +,−) (x, +,−)

(x, +,−) (x,−,−)

assignment pattern

Express the state of the execution by using these 112 = 2 × 56 numbers.

7

Then the simulation matches the execution quite well !

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 5. Ham. distance vs. step t: simulation and execution, p = 0.30 and p = 0.32

¶ ³
Assume that this simulation is accurate enough.

µ ´
Then the analysis becomes feasible.

Our Approach, Cont.

Step 2. Approximate this random process by a simple recurrence formula.

E[nt ] ≈ f t(n0).

⇓

errp(t) = E[
∑

i

n
(t)
−,〈 i 〉 ] ≈ Sum−(f t(n0))

def
= approx-errp(t)

Then by analyzing approx-errp(t), we can observe that a gap exists when the execution reaches to a

stage where no variable with penalty ≥ 4 exist.

Remarks.

• By make a flip on a penalty k variable, the total penalty gets decreased by k − 3.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Fig 6. (average) derivative at the beginning of stage 3
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Is it Enough ?
Am I Happy ? No !

E[nt ] ≈ f t(n0).

The function f is “relatively” simple. But...

Currently, f is expressed as a program with several hundred lines!

f is a formula on 40 variables :-(

• • •

9

4. Second Example

Problem: 3-SAT (CNF SAT)

Input: 3-CNF formula F over variables x1, ..., xn.

Output: A sat. assignment.

Average Case Senario: Random Positive (3, d)-SAT Formulas

(1) Every variable appears d times in F ; hence, # of clauses = dn/3.

(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.

Algorithm: Local Search Algorithm; Random Walk (often called WALKSAT)

Local Search Algorithm for (3, d)-SAT

program RandomWalkSAT(F );

x1, ..., xn ← randomly chosen a in {0, 1}n;

repeat the following MAXT steps






if F is satisfied with ~x then output the current assignment and halt;

choose one unsat. clause and select one of the three variables in it;

make a flip on the selected variable;

program end.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cf.

program GreedySAT(F );

x1, ..., xn ← randomly chosen a in {0, 1}n;

repeat the following MAXT steps






if F is satisfied with ~x then output the current assignment and halt;

choose one variable with the highest penalty;

make a flip on the selected variable;

program end.

10

¶ ³
Why not Greedy ?

µ ´
Easy Answer:

Because it does not work.

Usually trapped by a local minimum.

No Problem !!

program SoftGreedySAT(F );

x1, ..., xn ← random a;

repeat the following MAXT steps






if F is satisfied with ~x then output the current assignment and halt;

choose xi randomly according to their weights;

flip the value of xi;

program end.

In fact, e.g., for (3, 6)-SAT and n = 6000,

RandomWalkSAT ↔ W [0] = 0, W [1] = 1, ..., W [6] = 6.

SoftGreedySAT ↔ W [0] = 0, W [1] = 1, W [2] = 20, ..., W [6] = 205.

Second Answer:

Not so much difference.
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Fig 7. n0 = # of penalty 0 var.s

SoftGreedy vs. RandomWalk

Remark.

Penalty 0 variables are those appearing only in sat. clauses.

11

For Understanding the Behavior
=⇒ Simulation by a Simple Markov Process

A similar but slightly different set of parameters is used.
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Fig 8. n0 = # of penalty 0 var.s

Simulation vs. SoftGreedy

What does make this difference ?

Maybe the correlation between flipped variables.

⇓ then

What if a flip is restricted only once ?

12
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¶ ³
It works !!

µ ´
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Fig 8. n0 = # of penalty 0 var.s

Simulation, SoftGreedy (flip once), SoftGreedy, and RandomWalk

Remarks.

• Usually a solution cannot be obtaind under the flip-once restriction. But an assignment, after

running out all unflipped variables (with penalty > 0), gets close enough to some solution.

• We cannot always hope this nice property. This algorithmic trick works for d ≤ 8.
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Fig 9. (3, 8)-SAT
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Fig 10. (3, 9)-SAT
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5. Concluding Remarks

1. An Heuristic Analysis (Real exec. → Simple process)

⇒ Some reasoning for the success threshold

⇒ An improvement of the algorithm

2. Some Observations (On Local Search Algorithms)

(1) Greedy is fast, but it needs to get a solution (or something very close to it) before running

out high penalty variables.

(2) There seems some other reasoning for RandomWalk.

14

– 564 –




