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Z#%5: An introduction to the puzzle of European research funding
Josep Diaz (A_XA « Zu=7 T KZF)

At the end of the decade of the 70’s, the European Union (EU) decided to invest in order to create strong
research groups formed with teams from different EUcountries. The research Framework Programmes were
created. They coexisted and rely on the national research programmes from each EU country.

Before continuing, we need a little explanation of the political setting of the EU. The EU has the
European Parliament, elected by the citizens of the EU countries, and the European Commission,
nominated by the governments of the different EU countries (k1). The European Commission has 17
general directorates (GD) equivalent to ministries, among other the GD of Information Society, the GD of
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Research and the GD of Energy and Transport. The research founded by the Framework Programmes was
spread (and still is) among different (GD), in particular the ones mentioned above.

In 2000, there was the convincement in the European Commission, that the lack of coordination between
EU Framework Programmes and the programmes of individual countries resulted in a duplication of effort
and dissipation of resources, which made difficult to talk about European research as a coherent entity, in
the same way that we could talk about Americanor Japanese research. Therefore, in order to make the
European Union one of the most competitive and dynamic knowledge—based economy in the world by 2010,
the European Union established the concept of 7he European Research Area (ERA), which is intended to
be a legislative framework for developing at the European level a joint and coordinate research effort, which
will create an European critical mass of researchers in different fields, and hopefully would attract the best
researchers from the rest of the world.

The main instrument to start implementing the ERA concept was the 6th Framework Program (FP)
(2003-2007). In the words of the official advertisement of the European Commission (EC) " the FP6 will
channel its budget into actions and projects designed to build the ERA in partnership with Europe’s best
researchers”. The FP6, still coexists with national programs, but the amount of resources dedicated are
greatly increased with respect to the previous FP, which in some cases implies that some EU countries had
to make drastic cuts in their national programmes. In the FP6, the research is focused on specific themes
that are strategically important to Europe’s future (according to the European Commission). They are not
structured from the starting point of traditional research disciplines. The FP6 priority themes are the
following (among parenthesis the millions of Euros devoted to each priority):

1. Life sciences, genomics and biotechnology for health (5028)

2. Information Society Technologies (IST) (3984)

3. Nanotechnologies and nanosciences, knowledge—based multifunctional materials, and new production
processes and devices (1429)

4. Aeronautics and space (1182)

5. Food quality and safety (753)

6. Sustainable development, global change, and ecosystems (2329)

7. Citizens and governance in a knowledge—based society (247).

There are other source of founds within FP6, for instance support to big European infraestruture (like an
European GRID) (715), the Euroatom program (1230), international cooperation (developing countries,
Latin America and other joint programs like with NSF) (401), and others. The most relevant priority area to
this report is the Information Society Technologies (IST), which fellin the DG 11, Information Society. The
IST is subdivided into four subprograms:

1. Applied IST research addressing major social and economical challenges.

2. Components and Microsystems.

3. Communication, computing and software technologies.

4. Knowledge and Interface technologies.

Each one of those has a budget of 896 millions of euros. There are three modalities of projects inside of
each program: The network of excellence large teams of researchers from EC countries or associate states
form a network for traveling, (within Europe), holding workshops and schools, interchange of students and
researchers, etc. At the moment there is one such a network per subprogram. The Integrated Project,
rather large projects, with substantial participation of industrial partners (mandatory) designed to create
the knowledge required to implement a new result in the area, which is achieved by integrating a critical
mass of activities (research, demonstration, training, innovation, management) and resources (staff, skills,
competences, finances, infrastructure, equipment etc.). The IP get the largest share of the budget. The
third modality is the Specific Targeted Research Projects (STREP), small size projects where the goal is
developing new products or processes contributing to meet the needs of society or community policies (this
could be considered more academic projects with limited number of partners and a focused goal).
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Moreover, in IST there is a fifth subprogram: Future and Enabling Technologies (FET), which is the
subprogram corresponding to basic research. It has a budget of 400 millions of euros. There are two kinds
of projects, the Open scheme and the roactive initiatives. The purpose of FET open is to enable a range of
ideas for future and emerging technologies to be explored and realized. The scheme is open to the widest
possible spectrum of research opportunities that relate to Information Society Technologies. There are
STREP type and the usual budget is around 2.5 millions euros for 3 years and 10 partners. The partners
must be at least from 4 different countries of the EU or associated states. Trips outside Europe must be
very detailed justified.

On the other hand, the proactive initiatives are launched on topics where early ground breaking work has
already demonstrated an important potential, but where significant scientific or technological barriers and
risk justify a concerted action at basic research level before the area can be taken up as mainstream
industrial research. The initiatives usually involve multidisciplinary work at the frontier of information
technology. The total budget per initiative inacallmay be in the range of 15 to 30 million euro, and can be
covered by several projects (around 4 or 5 different projects have been approved for each proactive
initiative). Some of the recent initiatives are: Global Computing, Bio—Inspired Intelligent Information
Systems, Quantum Information Processing and Communication, Complex Systems, and The Disappearing
Computer. For an example of a project in the Complex System initiative see the web page
http://delis.upb.de/. The great drawback of the projects is he great amount of paperwork involved
(directly proportional to the founding amount). I have no experience outside FET, but I guess in other
subprograms, the burocratic load must be quite heavy. Other kinds of support are the Marie—Curie
scholarships, where a researchers (from a EU country or associated state) apply for a scholarship to be
during 4 years in a given university (in the EU).

ALCOM: A case of study

In 1988, eleven teams working in algorithms in Europe asked for a project to develop the field of Algorithms
and Complexity in Europe. The project was awarded and started in May of 1989, with a global budget of 1.5
Million euros. The participant sites were Aarhus Universitet, Computer Technology Institute (Patras),
EHESS-CAMS (Paris), Frei Universitaet Berlin, INRIA-Paris, INRIA-Sophia—Antipolis, Max Planck Institut
fur Informatik, UPC, Universita di Roma “La Sapienza”, Universiteit van Utrecht, University of Warwick.
Fourteen years later ALCOM-FT (the 4th. ALCOM founded by the EC) finished. The project had a budget
of 2.5 million euros for 4 years, and the participants in that ALCOM were: Aarhus Universitaet, Computer
Technology Institute (Patras), INRIA-Paris, Max Planck Institut fur Informatik, UPC, Universitaet zu Koln,
Universita di Roma “La Sapienza”, University of Cyprus, Universitaet zu Paderborn, Universiteit van
Utrecht, University of Warwick. Behind there is a history of over 60 successful theoretical Computer
Scientist trained by the ALCOM projects, which hold academic (many of them at the Professor level) and
industry positions in Europe and elsewhere (even one of them in Japan). Over 1000 published papers and
books, several computer systems, the better known LEDA and ABACUS. It is beyond any doubt that the
ALCOM series played an key role in the development of algorithmics in Europe, and it has been crucial in
the scientific and human development of the author of this report.

(*1) At this moment there is a very hot issue about the way the Commission is selected. The Commission is
the executive body of the EU, which proposes initiatives, and the Parliament is the legislative body which
approves of rejects the commission initiatives. The composition must be ratified by the parliament, and the
actual parliament has demanded changes in the composition of the new Commission before ratifying it.
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Fast and Sensitive Homology Search

Ming Li*

School of Computer Science, University of Waterloo

(Canada Research Chair in Bioinformatics, Professor)
&

Computer Science Department, City University of Hong Kong
(Visiting Professor)

Homology search, finding similar parts between two sequences, is the most popular task
in bioinformatics. A large fraction of the world’s supercomputing time is consumed by
homology search. We introduce the fundamental ideas and a mathematical theory of
optimized spaced seeds. Based on such ideas, our software PatternHunter is significantly
faster than current homology search tools such as BLAST, at higher sensitivity, or Smith-
Waterman dynamic programming, at its full sensitivity. In just 3 years after their dis-
covery, the optimal spaced seeds are directly benefiting thousands of researchers in the

world, daily.

*Joint work with Bin Ma and John Tromp.
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Dynamic graph algorithms with applications

Mikkel Thorup
AT&T

First we review amortized fully-dynamic polylogarithmic time algorithms for connectivity,
MST, 2-edge- and biconnecitivity. Second we discuss how they yield improved static
algorithms: connectivity in constructing a tree from homeomorphic subtrees and 2-edge
connectivity for finding unique matchings in graphs.

Finally, on the more practical side, we will discuss how output senstive algorithms
for dynamic shortest paths have been applied successfully in local search algorithms for

improving routing on the internet, roughly doubling the capacity.
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Approximation Algorithms

for Stochastic Combinatorial Optimization

R. Ravi

Carnegie Mellon University

Two-stage stochastic programming with recourse is an attempt to model data uncertainty.
Data for the current time (e.g. current costs, demands) are known, whereas the uncertain
future is characterized by a given probability distribution. After a set of decisions are made
in a first stage, the actual future is revealed (according to the probability distribution).
The first-stage solution can then be augmented in a second recourse stage to obtain a
feasible solution for the realized scenario. The goal is to minimize the sum of first-stage
costs plus the expected costs in the second stage.

We consider several classical combinatorial optimization problems in this framework,
and provide tight (up to small constants) approximation algorithms for them. In the
talk, we will focus on a canonical problem in network design (Steiner trees). We consider
different ways to model future uncertainty and present approximation algorithms based
on boosted sampling and rounding an LP relaxation.

This talk describes recent work with Anupam Gupta, Martin Pal and Amitabh Sinha.
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More approximation algorithms

for stochastic programming problems

David B. Shmoys

Cornell University

Abstract

Stochastic optimization problems attempt to model uncertainty in the data by assuming
that (part of) the input is specified in terms of a probability distribution, rather than
by deterministic data given in advance; they have been studied since the 50’s, and have
become an important paradigm in a wide range of application areas, including transporta-
tion models, logistics, financial instruments, and network design. Particular attention has
been paid to 2-stage models with recourse: first, given only distributional information
about (some of) the data one commits on initial actions, and then once the actual data
is realized (according to the distribution), further (recourse) actions can be taken. These
problems pose significant computational obstacles, both from a practical perspective, as
well as from the point of view of complexity theory.

There have been a number of recent results in that give approximation algorithms, that
is, algorithms that are guaranteed to find solutions with provably near-optimal expected
costs. However, these results are limited either in terms of the types of distributions
that can be modeled, or in terms of the cost structure. We show that in a ”black box”
model for specifying the distribution, an arbitrary cost structure can be handled, and give
the first constant-factor approximation algorithms for this setting. This is based on first
designing a fully polynomial approximation scheme for solving the exponentially large (in
both the constraints and variables) linear programming relaxation. We will discuss both
these specific results, as well as to lay out a number of directions in which performance

guarantees for stochastic programming problems might still be obtained.

This research is joint work with Chaitanya Swamy.
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Efficient Haplotype Inference on Pedigrees and
Applications in Gene Association Mapping

Jing Li* Tao Jiang T

Abstract

We discuss the problem of how to infer haplotypes from genotypes on pedigree data under
the Mendelian law of inheritance and the minimum recombination principle. The problem is
important for the construction of haplotype maps and genetic linkage/association analysis. We
prove that the problem of finding a minimum-recombinant haplotype configuration is in gen-
eral NP-hard. This is the first complexity result concerning the problem to our knowledge.
An iterative algorithm based on blocks of consecutive resolved marker loci (called block-
extension) is proposed. It is very efficient and can be used for large pedigrees with a large
number of markers, especially for those data sets requiring few recombinants (or recombina-
tion events). A polynomial-time exact algorithm for haplotype reconstruction without recom-
binants is also presented. The algorithm first identifies all the necessary constraints based on
the Mendelian law and the zero-recombinant assumption, and represents them as a system of
linear equations over the cyclic group Z 2. By using a simple method based on Gaussian elimi-
nation, we could obtain all possible feasible haplotype configurations. Finally, we describe an
integrated approach to haplotype inference and missing allele imputation based on integer lin-
ear programming (ILP). We have implemented the block-extension ILP algorithms and tested
them on simulated data and real data. The results show that the programs perform very well
on both types of data and will be useful for large scale haplotype inference projects. If time

allows, we will also describe an application in gene association mapping.

*Department Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio.
jingli@eecs.cwru.edu. Research supported by NSF grant CCR-9988353.

Department of Computer Science, University of California - Riverside and Shanghai Center for Bioinformatics
Technology. jiang@cs.ucr.edu. Research supported by NSF Grants CCR-0309902 and National Key Project for
Basic Research (973) 2002CB512801.
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New Horizons in Machine Learning

Avrim Blum*

Carnegie Mellon University

In this talk I will survey some of the current challenges and “hot topics” in the field of
machine learning. I will then focus more specifically on one topic, kernel methods, that
has become quite popular in machine learning, especially in conjunction with the notion
of margins. Kernel functions allow one to implicitly map data into a high-dimensional
space and perform certain operations there without paying a high price computationally.
Furthermore, if the data has a large-margin separator in that space, then one can avoid
paying a high price in terms of sample size as well. For example, this is the key idea
underlying Support Vector Machines. I will discuss how techniques of random projection
and dimensionality-reduction studied in the theory community can be used to provide
insight into the behavior of kernels and what it is they really provide. In particular, I
will show how given a kernel as a black-box function, we can use various forms of random
projection to extract an explicit small feature space that captures much of the power of

the given kernel.

*Portions of this talk are joint work with Nina Balcan and Santosh Vempala.
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Rigorous Analysis of Heuristics for NP-hard

Problems

Uriel Feige
Weizmann Institute, Israel
uriel.feige@Qweizmann.ac.il

Abstract

The known NP-hardness results imply that for many combinatorial
optimization problems there are no efficient algorithms that find an op-
timal solution, or even a near optimal solution, on every instance. A
heuristic for an NP-hard problem is a polynomial time algorithm that
produces optimal or near optimal solutions on some input instances,
but may fail on others. The study of heuristics involves both an al-
gorithmic issue (the design of the heuristic algorithm) and a concep-
tual challenge, namely, how does one evaluate the quality of a heuris-
tic. Current methods for evaluating heuristics include experimental
evidence, hand waving arguments, and rigorous analysis of the per-
formance of the heuristic on some wide (in a sense that depends on
the context) classes of inputs. This talk is concerned with the lat-
ter method. On the conceptual side, several frameworks that have
been used in order to model the classes of inputs of interest (includ-
ing random models, semi-random models, smoothed analysis) will be
discussed. On the algorithmic side, several algorithmic techniques and
principles of analysis that are often useful in these frameworks will be
presented.

1 Introduction

Given a computational problem, it is desirable to have algorithms that pro-
duce optimal results, are efficient (polynomial time), and work on every
input instance. For many combinatorial problems, this goal is too ambi-
tious, as shown by the theory of NP-completeness. Hence one should set
goals that are more modest. Approaches that are tried and have firm theo-
retical foundations include approximation algorithms (relax the optimality
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requirement) and fixed parameter tractability (refine the efficiency require-
ment). We shall discuss a different approach, that of heuristics, that relaxes
the universality requirement. Here we define a heuristic to be a polynomial
time algorithm that produces optimal results on typical inputs. The notion
of a typical input is rather fuzzy, and a major conceptual challenge of the
study of heuristics is to give this notion a rigorous meaning.

Some of the research goals of the study of heuristics are the following;:

e Explain the apparent success of known heuristics.
e Come up with good heuristic ideas.
e Match heuristics to problems.

e Investigate fundamental limitations of the heuristic methodology.

If we wish to perform a mathematically rigorous study of heuristics, we
may want to ask our selves how does one prove that a certain heuristic is
good, and likewise, how does one prove that a certain heuristic is bad.

Here we use the following approach. One should first provide a rigorous
definition of what the concept of typical input means. Given such a definition
(for example, suppose that in some context, a typical graph can be assumed
to be a planar graph), one is no longer dealing with the fuzzy notion of
heuristics, but with the familiar notion of worst case analysis of algorithms.
It will often be the case that we shall model a typical input as an input
chosen at random from some well defined distribution. We remark that
also in this case (of average case analysis), we will typically be performing
worst case analysis. The reason for this is that usually analysis of algorithm
in random models breaks down into two parts. One first establishes that
random inputs are likely to have a certain property P (e.g., random graphs
are likely to have very strong expansion properties), and then one shows an
algorithm that work on every input that has property P.

2 Some theoretical frameworks

We sketch some theoretical frameworks that have been suggested in order
to model typical inputs.
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2.1 Random inputs

A good example is the G, , model of random graphs.

An interesting algorithmic result [7] in this model is that there is a
polynomial time algorithm that with high probability finds Hamiltonian a
cycle in a random graph, even when p is so small such that the minimum
degree in the graph is 2. (When the minimum degree is below 2, then
certainly the graph does not have a Hamiltonian cycle.)

On the other hand, there are other NP-hard problems (such as max-
clique) for which no polynomial time algorithm is known to produce optimal
results on a random graph.

2.2 Planted solution models

When the random model seems too difficult, it may be useful to consider a
planted solution model. For example, one can plant a clique of large size k
in a random graph, and ask how large k can be so that a polynomial time
algorithm can detect it. It is known that k& = Q(y/n) suffices [2].

2.3 Semi-random models, monotone adversaries

Given a specific random model (or planted solution model), there is danger
that algorithms designed for the model will suffer from ”over-fitting”, and
would not work under a slightly different model. To add robustness to
algorithms, one may consider semi-random models, first suggested by Blum
and Spencer [6].

Here is an example of what the author considers to be over-fitting. When
k > \/nlogn, the vertices of a planted k-clique almost surely are those of
highest degree in an otherwise random graph. An algorithm may select the
k highest degree vertices and check if they form a clique.

A specific version of semi-random models is that of the monotone adver-
sary [10]. For example, in the planted clique model, the monotone adversary
is allowed to remove arbitrarily many non-clique edges. The degree based
algorithm no longer works. Still, more sophisticated algorithms based on
semidefinite programming do work, up to k = Q(y/n) [11].

2.4 Smoothed analysis

This model was advocated by Spielman and Teng [18]. The idea is to take an
arbitrary input, but then to make a random perturbation to the input. This
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may capture well situations where in a typical numerical input, the low order
bits are random. Such a model was used in order to offer an explanation for
the practical success of the simplex algorithm [18]. For NP-hard problems,
it was shown that problems that have fully polynomial time approximation
schemes are typically solved in polynomial time on smoothed instances [3].

2.5 Stable inputs

In some applications (such as clustering), the interesting inputs are those
that are stable in the sense that a small perturbation in the input does not
change the combinatorial solution. Bilu and Linial [5] define the notion
of stable inputs, and present algorithms that solve NP-hard cut problems
whenever the input instance is (highly) stable.

2.6 A comparison

In smoothed analysis, one first picks an arbitrary (worst case) instance. This
instance defines a certain region in instance-space (all input instances that
can be derived by small perturbations from the original instance). Then, a
random input is chosen in this region.

In the monotone adversary model, first an instance is chosen at random,
which then defines a region (all instances reachable from the original instance
by monotone changes). Thereafter, an arbitrary (worst case) input is chosen
in this region.

Hence in a sense, the difference between smoothed analysis and monotone
adversary is mainly in the order of quantifiers (forall followed by random
versus random followed by forall). In this respect, the monotone adversary
model is more difficult.

For stable inputs, the regions in instance-space are determined by the
combinatorial solution, rather than by the instance representation. A worst
case region is picked, and within it, a worst case input, provided that it is
far from the boundary of the region.

3 Algorithmic techniques

Common techniques for designing heuristics in some of the models presented
above include detecting statistical irregularities induced by an optimal solu-
tion, the use of approximation algorithms, and ”hill climbing” once a near
optimal solution is found, using the fact that in many of these models near

— 349 —



optimal solutions are necessarily of small Hamming distance from the opti-
mal solution.

3.1 Random 3SAT

We will use the well known problem of 3SAT to demonstrate some of the
past rigorous work on analysis of heuristics. We shall consider a random
3CNF input formula f with n variables and m clauses, with m > n. The
expected number of satisfying assignments for f is (1—1/23)™.2" implying
that when m > n the formula is unlikely to be satisfiable.

We shall consider two tasks. One is to search for a satisfying assignment
when the formula happens to be satisfiable. The other is to prove non-
satisfiability for non-satisfiable formulas (refutation). We remark that for
worst case analysis, refutation and search are strongly related (when a search
procedure stops without finding a satisfying assignment, this serves as a
refutation). For heuristics, we shall see that search and refutation may
require very different algorithms.

3.2 Searching for a solution

There are algorithms that appear to very quickly find satisfying assignments
in random formulas [8], and it would be very interesting to support this
empirical finding by rigorous analysis. We are not able to do so at the
moment. Here we present some results that can be proved rigorously.

When m > nlogn, then if the formula happens to be satisfiable, the
satisfying assignment is likely to be unique. It then can be shown that
the distribution on random satisfiable formulas can be approximated by the
following distribution in the planted solution model.

Pick at random an assignment a to the variables. Choose clauses at
random, discarding clauses not satisfied by a, until m clauses are reached.
When m > nlogn, it is likely that a is the unique satisfying assignment.

The planted solution a induces some easily detectable statistical prop-
erties. For every variable x, in every clause C' that contained x and was
discarded, the polarity of x in C disagreed with its polarity in a. Set z
according to the polarity that agrees with the majority of the occurrences
of z in f. When m > nlogn, it is likely that this algorithm recovers a.

We now consider the more difficult case of m = d - n for some large
constant d. In this case the distribution generated by the planted model
is no longer known to be statistically close to that of random satisfiable
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formulas. The reason is that the planted model favors formulas with many
satisfying assignments. We shall present an algorithm that works in the
planted model. It is not known whether this algorithm also extends to the
model of random satisfiable formulas.

Given the formula f, start with an initial assignment a(0) that is simply
the majority vote assignment (breaking ties arbitrarily). A linear fraction of
the variables (exponentially small in d) are likely to be set in disagreement
with a, and a linear fraction of clauses are likely not to be satisfied by a(0).
We now move to a satisfying assignment by a ”hill climbing” procedure.
The procedure described here is taken from [13], and its analysis is based
on [1, 14]. The procedure itself is a considerable simplification of the proce-
dures described in [1, 14]. This simplification was achieved by following the
methodology of considering semi-random inputs (a monotone adversary is
allowed to add arbitrary clauses in which all three literals are set in agree-
ment with a), which forces one to make algorithms more robust, and often
helps clean away aspects of the algorithm that rely on too detailed statistical
properties of the input distribution.

The hill climbing algorithm works it iterations. In each iteration, a local
search is performed in order to improve the current assignment. Let a(j)
denote the assignment at iteration j, and let T'(j) be the set of clauses
satisfied by a(j).

Pick an arbitrary clause C not satisfied by a(j). Find the assignment
closest (in Hamming distance) to a(j) that satisfies the sub-formula T'(j)UC.
Increment j and repeat.

The algorithm obviously finds a satisfying assignment. The only question
is how fast.

To analyse the complexity of a single iteration, we let h(j) denote the
Hamming distance between a(j) and a(j+1). Since a(j+ 1) can be reached
from a(j) by iteratively flipping variables in currently arbitrary unsatisfied
clauses in T'(j) U C, it follows that the time per iteration is at most 3 -
2/=1nOM which is polynomial when h = O(logn).

The main technical lemma is that with high probability, in all iterations,
h < O(logn). Hence the algorithm works in polynomial time. The proof of
this lemma shows that with high probability, f has a core with properties
as defined below, and that the algorithm works on every formula that has
such a core.

A variable x for which a(0) = a is a core variable if flipping it makes at
least one clause in 7'(0) not satisfied, and every assignment in which z is
flipped that satisfies T'(0) requires flipping a linear number of other variables.
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Probabilistic analysis shows that removing the core variables and simplifying
the random formula f, it is likely to decompose into small sub-formulas of
size O(logn), on disjoint sets of (non-core) variables.

In any formula (and initial assignment a(0)) that has such a core one
has the following property. An iteration can be completed by O(logn) flips
of non-core variables. Moreover, as long as h = O(logn), no core variable
will accidently be flipped, and hence the above property is maintained in all
iterations.

3.3 Refutation

If a formula is not satisfiable, the heuristic presented above takes exponential
time to detect this. Hence we need a different heuristic for refutation.

A general approach for refutation may use approximation algorithms.
When m > n, every assignment satisfies roughly 7m/n clauses of a ran-
dom formula. An algorithm for approximating max-3SAT within a ratio
better than 7/8 would refute most dense 3SAT formulas. Unfortunately,
approximating max-3SAT (in the worst case) beyond 7/8 is NP-hard [16].

Turning the above algorithm around, we may ask what are the conse-
quences of the hypothesis that there is no polynomial time algorithm for
refuting dense random 3CNF formulas. This would imply that one cannot
approximate max-3SAT within a ratio better than 7/8, which is a known
(but very difficult) NP-hardness result. Many other hardness of approxima-
tion results would follow [9], some of which are currently not known to have
NP-hardness analogues. The above hypothesis (regardless of its correctness)
seems to be a good rule of thumb for conjecturing hardness of approxima-
tion results. Many of its predictions (with weaker constants) can be proved
assuming that NP does not have sub-exponential algorithms [17].

So how does one refute random 3CNF formulas? When m > n? one can
do the following. There are roughly 3n clauses containing the variable x;.
It suffices to refute the sub-formula f; containing these clauses. Substitute
x1 = 0 and simplify f; to a 2SAT formula. This is a random formula with
roughly 3n/2 clauses, and hence is unlikely to be satisfiable. 2SAT can be
decided in polynomial time. Repeating the above argument with z; = 1
refutes fi.

As m gets smaller, refutation gets harder. The best algorithms known
for refuting random 3SAT [12] require m > cn®/? (where experimentation
shows that one can take ¢ = 2.5). These algorithms are based on pair-wise
statistical irregularities and eigenvalue computations. This approach was
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initiated in [15] for 4SAT. We sketch this approach.

Consider a random 4SAT formula f with m > n? clauses. In a satisfying
assignment a, at least half the variables are negative. (A complimentary
argument handles the case that at least half of the variables are positive in
a.) Let S be the set of variables negative in a. observe that there cannot be
a positive clause in f whose four variables are in S. Construct a graph G
on N = (Z) vertices, in which every pair of variables is a vertex, and every
positive clause (z; V x; V x V x;) contributes an edge ([z;z;], [zra]). If f is
satisfiable then S induces an independent set of size N/4. Hence to refute
f it suffices to show that G has no independent set of size N/4. But when
f is random, the graph G is random, and the condition m > n? implies
that G has a large linear number of edges. Such graphs do not have large
independent sets. Moreover, this can be certified efficiently by eigenvalue
techniques (or by semidefinite programming, using the theta function of
Lovasz).

In combination with some additional ideas, the above approach extends
to refuting random 3SAT formulas with m > ¢n®/? clauses for large enough
¢ [12]. Tt is not know how to refute random 3SAT formulas with less than n%/?
clauses. In particular, it is known that when m is much smaller than n3/2,
resolution would take exponential time [4], and that certain semidefinite
programming approaches (reducing 3SAT to independent set on a graph
with 7m vertices, and computing the theta function of the resulting graph)
would not work.

4 Summary

We presented some rigorous models in which one can study heuristics. We
presented some algorithmic results in these models (the presentation was
biased towards algorithms that the author is more familiar with). There are
also hardness results for some of these models, showing that under certain
settings of the parameters of the model, no heuristic will work. This is
beyond the scope of this presentation, but see [10] for example.

Two points that we wish to make is that in principle, it is possible to
study heuristics in a mathematically rigorous way, and that once this is
done, the design of heuristics may require quite sophisticated algorithmic
ideas and supporting mathematical analysis. But perhaps the main point is
that the rigorous study of heuristics is still a young and wide open research
area.
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Data Stream Algorithms in Computational Geometry

Timothy M. Chan*

University of Waterloo

The data stream model has received considerable attention in recent years, due to its
ability to cope with massive data sets. The model is simple: an algorithm makes one (or
a small number of) pass(es) over the input and is allowed to store only a limited amount
of information at any moment in time.

In this talk, we discuss some recent results about streaming algorithms in computa-
tional geometry. A number of basic geometric problems are considered, and a few different

types of streaming algorithms are explored. For example:

- we describe a one-pass algorithm that can compute approximate extents (or convex

hulls) in fixed dimensions, using only a constant amount of space;

- we describe a sliding-window algorithm to maintain an approximation to the diam-
eter of a low-dimensional point set, using O(log R) space, where R is a bound on

the distance ratio;

- we show that if a constant number of passes is allowed, then certain geometric prob-
lems, such as low-dimensional linear programming, can actually be solved exactly,

using O(n®) space, for any fixed § > 0.

*Some parts of the talk are joint work with B. Sadjad and with E. Y. Chen.
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Steps into Computational Algebraic Topology

Herbert Edelsbrunner
Arts and Sciences Professor of Computer Science and Mathematics
Duke University

A nested sequence of progressively larger topological spaces implies a sequence of homol-
ogy groups connected by maps induced by the inclusions of the corresponding spaces. For
each pair of groups, we call the image of the earlier in the later group a persistent homology
group. Given a function on a topological space, the sublevel sets form such a nested sequence
of spaces. The corresponding persistent homology groups can be encoded using a finite mul-
tiset in the extended plane. We call this multiset the persistence diagram of the function.
Assuming a triangulation of the space and a piecewise linear function, we have an algorithm
that computes the persistence diagram in worst-case time cubic in the size of the triangula-
tion. However, its observed running time is vastly better so that even triangulations with a few
million simplices can be processed in a matter of seconds. We have proved that for two contin-
uous functions on a common space, the Fréchet bottleneck distance between the two diagrams
is bounded from above by the maximum norm of the difference function.

We justify the introduction of the above concepts and the design and implementation of
their algorithms by three applications:
(i) the estimation of the homology of a shape from a finite point sample;

(ii) the establishment of a new bound on the difference between the total mean curvatures of
two topologically equivalent surfaces;

(iii) the development of a coarse docking algorithm for proteins based on the detection of
shape features on a continuum of scale levels.

— 357 —



Efficient Algorithms for the Longest Path Problem

Ryuhei Uehara
JAIST

The longest path problem is to find a longest path in a given graph. While the graph
classes in which the Hamiltonian path problem can be solved efficiently are widely inves-
tigated, few graph classes are known to be solved efficiently for the longest path problem.
We show some efficient algorithms for the longest path problems for some graph classes.
The complexity of the longest path problem for interval graphs, convex graphs, and bi-

convex graphs is remained open.
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Improved Approximation Algorithms for Metric Max TSP

Zhi-Zhong Chen * Takayuki Nagoya '

Abstract

We present two O(n?)-time approximation algorithms for the metric case of the maximum

traveling salesman problem, where n is the number of vertices in the input (undirected or

directed) graph. Omne of them is for directed graphs and its approximation ratio is g—g The
7

other is for undirected graphs and its approximation ratio is g —o(1). Both algorithms improve
on the previous bests.

1 Introduction

The mazimum traveling salesman problem (MaxTSP) is to compute a maximum-weight Hamil-
tonian circuit (called a tour) in a given complete edge-weighted (undirected or directed) graph.
Usually, MaxTSP is divided into the symmetric and the asymmetric cases. In the symmetric case,
the input graph is undirected; we denote this case by SymMaxT'SP. In the asymmetric case, the
input graph is directed; we denote this case by AsymMaxTSP. Note that SymMaxTSP can be
trivially reduced to AsymMaxTSP.

A natural constraint one can put on AsymMaxTSP and SymMaxTSP is the triangle inequality
which requires that for every set of three vertices uy, u2, and ugz in the input graph G, w(uy, ug) <
w(ui, u3) + w(ug, uz), where w(u;, u;) is the weight of the edge from u; to u; in G. If we put this
constraint on AsymMaxTSP, we obtain a problem called metric AsymMaxTSP. Similary, if we
put this constraint on SymMaxTSP, we obtain a problem called metric SymMaxTSP.

Both metric SymMaxTSP and metric AsymMaxTSP are Max-SNP-hard [1] and there have
been a number of approximation algorithms known for them [7, 4, 5]. In 1985, Kostochka and
Serdyukov [7] gave an O(n?)-time approximation algorithm for metric SymMaxTSP that achieves
an approximation ratio of %. Their algorithm is very simple and elegant. Tempted by improving
the ratio 2, Hassin and Rubinstein [4] gave a randomized O(n?®)-time approximation algorithm for
metric SymMax TSP whose expected approximation ratio is % — 0(1). This randomized algorithm
was recently (partially) derandomized by Chen et al. [3]; their result is a (deterministic) O(n?)-
time approximation algorithm for metric SymMaxTSP whose approximation ratio is % —o0(1). In
this paper, we completely derandomize the randomized algorithm, i.e., we obtain a (deterministic)
O(n?)-time approximation algorithm for metric SymMaxTSP whose approximation ratio is %—0(1).
Our algorithm also has the advantage of being easy to parallelize. Our derandomization is based

*Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports
and Culture of Japan, under Grant No. 14580390. Department of Mathematical Sciences, Tokyo Denki University,
Hatoyama, Saitama 350-0394, Japan. Email: chen@r.dendai.ac.jp.

TDepartment of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:
nagoya@r.dendai.ac.jp.
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on the idea of Chen et al. [3] and newly discovered properties of a folklore partition of the edges
of a 2n-vertex complete undirected graph into 2n — 1 perfect matchings. These properties may
be useful elsewhere. In particular, one of the properties says that if G = (V| E) is a 2n-vertex
complete undirected graph and M is a perfect matching of GG, then we can partition £ — M into
2n — 2 perfect matchings Mj, ..., Ma,_o among which there are at most k% — k perfect matchings
M; such that the graph (V, M U M;) has a cycle of length at most 2k for every natural number
k. This property is interesting because Hassin and Rubinstein [4] prove that if G and M are as
before and M’ is a random perfect matching of GG, then with probability 1 — o(1) the multigraph
(V,M U M’) has no cycle of length at most y/n. Our result shows that instead of sampling from
the set of all perfect matchings of GG, it suffices to sample from M, ..., Ms,_o. This enables us to
completely derandomize their algorithm.

As for metric AsymMaxTSP, Kostochka and Serdyukov [7] gave an O(n?)-time approximation
algorithm that achieves an approximation ratio of %. Their result remained the best in two decades

until Kaplan et al. [5] gave a polynomial-time approximation algorithm whose approximation ratio
is %.
and C in the input graph G such that C; and Cy do not share a 2-cycle and the sum of their weights

The key in their algorithm is a polynomial-time algorithm for computing two cycle covers Cy

is at least twice the optimal weight of a tour of G. They then observe that the multigraph formed
by the edges in 2-cycles in C; and Cs can be split into two subtours of G. In this paper, we show that
the multigraph formed by the edges in 2-cycles in C; and Cy together with a constant fraction of the
edges in non-2-cycles in C; and Cy can be split into two subtours of G. This enables us to improve

Kaplan et al.’s algorithm to a polynomial-time approximation algorithm whose approximation ratio

27

1S 35"

2 Basic Definitions

Throughout this paper, a graph means a simple undirected or directed graph (i.e., it has neither
multiple edges nor self-loops), while a multigraph may have multiple edges but no self-loops.

Let G be a multigraph. We denote the vertex set of G by V(G), and denote the edge set of G
by E(G). For a subset F' of E(G), G — F denotes the graph obtained from G by deleting the edges
in F'. Two edges of G are adjacent if they share an endpoint.

Suppose G is undirected. The degree of a vertex v in G is the number of edges incident to v in
G. A cyclein G is a connected subgraph of G in which each vertex is of degree 2. A cycle cover of
G is a subgraph H of G with V(H) = V(G) in which each vertex is of degree 2. A matching of G is
a (possibly empty) set of pairwise nonadjacent edges of G. A perfect matching of G is a matching
M of G such that each vertex of G is an endpoint of an edge in M.

Suppose G is directed. The indegree of a vertex v in G is the number of edges entering v in
G, and the outdegree of v in G is the number of edges leaving v in GG. A cycle in G is a connected
subgraph of GG in which each vertex has indegree 1 and outdegree 1. A cycle cover of G is a subgraph
H of G with V(H) = V(G) in which each vertex has indegree 1 and outdegree 1. A 2-path-coloring
of G is a partition of E(G) into two subsets Ej and E» such that both graphs (V(G), Eq) and
(V(G), E2) are collections of vertex-disjoint paths. G is 2-path-colorable if it has a 2-path-coloring.

Suppose G is undirected or directed. A path in G is either a single vertex of G or a subgraph of
G that can be transformed to a cycle by adding a single (new) edge. The length of a cycle or path
C is the number of edges in C. A k-cycle is a cycle of length k. A 3T -cycle is a cycle of length
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at least 3. A tour (also called a Hamiltonian cycle) of G is a cycle C of G with V(C) = V(G). A
subtour of GG is a subgraph H of G which is a collection of vertex-disjoint paths.

A closed chain is a directed graph that can be obtained from an undirected k-cycle C' with
kE > 3 by replacing each edge {u,v} of C' with the two directed edges (u,v) and (v,w). Similarly,
an open chain is a directed graph that can be obtained from an undirected path P by replacing
each edge {u,v} of P with the two directed edges (u,v) and (v,u). An open chain is trivial if it is
a single vertex. A chain is a closed or open chain. A partial chain is a subgraph of a chain.

For a graph G and a weighting function w mapping each edge e of G to a nonnegative real
number w(e), the weight of a subset F' of E(G) is w(F) = Y .crw(e), and the weight of a subgraph
Hof Gisw(H) =w(E(H)).

3 New Algorithm for Metric AsymMaxTSP

Throughout this section, fix an instance (G,w) of metric AsymMaxTSP, where G is a complete
directed graph and w is a function mapping each edge e of G to a nonnegative real number w(e).
For each cycle C' in G, we define its reversal to be the cycle obtained by reversing the direction of
each edge in C. Note that C' is the reversal of its reversal. Moreover, C' is its reversal if and only
if C' is a 2-cycle.

Let OPT be the weight of a maximum-weight tour in G. Our goal is to compute a tour in
G whose weight is large compared to OPT. We first review Kaplan et al.’s algorithm and define
several notations on the way.

3.1 Kaplan et al.’s Algorithm

The key in their algorithm is the following:

Theorem 3.1 [5] We can compute two cycle covers Cy, Co in G in polynomial time that satisfy the
following two conditions:

1. Cy and Cy do not share a 2-cycle. In other words, if C' is a 2-cycle in C1 (respectively, Cs),
then Co (respectively, C) does not contain at least one edge of C.

2. w(Cy) + w(Cy) > 2-OPT.

Let G3 be the subgraph of G such that V(G2) = V(G) and E(G2) consists of all edges in
2-cycles in C; and/or Cy. Then, Gy is a collection of vertex-disjoint chains. For each closed chain
C in G2, we can compute two edge-disjoint tours 77 and T, (each of which is of length at least 3),
modify C; by substituting 77 for the 2-cycles shared by C' and C;, modify Cy by substituting T5 for
the 2-cycles shared by C and Co, and further delete C from G5. After this modification of C; and
C, the two conditions in Theorem 3.1 still hold. So, we can assume that there is no closed chain
in GQ.

For each i € {1,2}, let W 5 denote the total weight of 2-cycles in C;, and let W; 3 = w(C;) — W 2.
For convenience, let Wy = %(Wl,g + W) and W3 = %(WLg + Wa3). Then, by Condition 2 in
Theorem 3.1, we have Wy + W3 > OPT. Moreover, using an idea in [7], Kaplan et al. observed
the following:
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Lemma 3.2 [5] We can use C1 and Cs to compute a tour T of G with w(T) > 2W, + 2Ws in
polynomial time.

Since each nontrivial open chain has a 2-path-coloring, we can use G5 to compute a tour 7" of
G with w(T") > W5 in polynomial time. Combining this observation, Lemma 3.2, and the fact that
Wy + W3 > OPT, the heavier one between T and T” is of weight at least %OPT.

3.2 Details of the New Algorithm

The idea behind our new algorithm is to improve the second tour T” in Kaplan et al.’s algorithm
so that it has weight at least Wy + %Wg. The tactics is to add some edges of 3"-cycles in C; with
Wiz = max{Wi 3, Wa3} to G2 so that Gy remains 2-path-colorable. Without loss of generality, we
may assume that Wi 3 > Wa 3. Then, our goal is to add some edges of 3"-cycles in C; to Gz so
that G2 remains 2-path-colorable.

We say that an open chain P in Gg spoils an edge (u,v) of a 3T-cycle in C; if v and v are the
two endpoints of P. Obviously, adding a spoiled edge to G2 destroys the 2-path-colorability of Gb.
Fortunately, there is no 3™-cycle in C; in which two consecutive edges are both spoiled. So, let C1,
..., Cy be the 3*-cycles in C;; we modify each C; (1 < j < /) as follows (see Figure 1):

e For every two consecutive edges (u,v) and (v,x) of C; such that (u,v) is spoiled, replace
(u,v) by the two edges (u,x) and (x,v). (Comment: We call (u,x) a bypass edge of C;, call
the 2-cycle between v and x a dangling 2-cycle of C;, and call v the articulation vertex of the
dangling 2-cycle. We also say that the bypass edge (u,x) and the dangling 2-cycle between v
and x correspond to each other.)

We call the above modification of C; the bypass operation on C;. Note that applying the bypass
operation on C; does not decrease the weight of C; because of the triangle inequality. Moreover,
the edges of C; not contained in dangling 2-cycles of C; form a cycle. We call it the primary cycle
of Cj. Note that Cj may have neither bypass edges nor dangling 2-cycles (this happens when Cj
has no bad edges).

Figure 1: (1) A 3*-cycle C; (formed by the one-way edges) in C; and the open chains (each shown
by a two-way edge) each of which has a parallel edge in C;. (2) The modified C; (formed by the
one-way edges), where bypass edges are dashed and dangling 2-cycles are painted.

Let H be the union of the modified C1, ..., Cy, i.e., let H be the directed graph with V(H) =
Ui<j<¢ V(Cj) and E(H) = Uj<j<c £(Cj). We next show that E(H) can be partitioned into
three subsets each of which can be added to Gy without destroying its 2-path-colorability. Before
proceeding to the details of the partitioning, we need several definitions and lemmas.
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Two edges (u1,u2) and (vi,ve) of H form a critical pair if uy and vy are the endpoints of some
open chain in G and uy and v; are the endpoints of another open chain in G (see Figure 2). Note
that adding both (u1,v1) and (ug,v2) to G destroys its 2-path-colorability. An edge of H is critical
if it together with another edge of H forms a critical pair. Note that for each critical edge e of H,
there is a unique edge €’ in H such that e and €’ form a critical pair. We call €’ the rival of e. An
edge of H is safe if it is not critical. A bypass edge of H is a bypass edge of a C; with 1 < j < /.
Similarly, a dangling 2-cycle of H is a dangling 2-cycle of a C; with 1 < j < /{. A dangling edge of
H is an edge in a dangling 2-cycle of H.

U 7%

1) V1

Figure 2: A critical pair formed by edges (u1,u2) and (v, v9).

Lemma 3.3 No bypass edge of H is critical.

PRrROOF.  Suppose that e = (u1,u2) is a bypass edge of a C; with 1 < j < £. Then, us is the
articulation vertex of a dangling 2-cycle C' of C;. Let uz be the vertex of C' other than us. Then,
there is an open chain P in G5 whose endpoints are u; and ug. Since e leaves u; and ¢’ = (ug,us)
is the unique edge entering ug, €’ has to be the rival of e whenever e is critical. However, by the
definition of criticalness, each critical edge and its rival should not be adjacent. So, e cannot be
critical. a

Lemma 3.4 Fiz a j with 1 < j < {. Suppose that an edge e of C; is a critical dangling edge of
H. Let C be the dangling 2-cycle of C;j containing e. Let €' be the rival of e. Then, the following
statements hold:

1. € is also an edge of C;.

2. If € is also a dangling edge of H, then the primary cycle of C; consists of the two bypass
edges corresponding to C and C', where C' is the dangling 2-cycle of C; containing €.

3. If € is not a dangling edge of H, then €' is the edge in the primary cycle of C; whose head is
the tail of the bypass edge corresponding to C.

PROOF. Let u; be the articulation vertex of C', and let uy be the other vertex of C. Then, there
is an open chain P one of whose endpoints is us. Let ug be the other endpoint of P. We now prove
the statemetns separately as follows.

Statement 1. Note that uz must be a vertex of C; (indeed, (us,u1) is a bypass edge of Cj).
By the definition of criticalness, the rival of e is an edge incident to u3. However, every edge of H
incident to ug is in Cj. Thus, the rival of e must be in C; whenever e is critical.

Statement 2. Suppose that €’ is also a dangling edge of H. Then, since ¢’ is incident to us (as
observed in the proof of Statement 1) and ug appears in the primary cycle of C}, us must be the
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articulation vertex of the dangling 2-cycle C’ containing €¢’. Let uy4 be the vertex of C’ other than
us. Then, by the definition of criticalness, there is an open chain in G5 whose endpoints are u4 and
u1. Now, (u,us) has to be the bypass edge corresponding to C’. Recall that (us,u1) is the bypass
edge corresponding to C'. This completes the proof of Statement 2.

Statement 3. Suppose that €’ is not a dangling edge of H. Recall that €’ is incident to us and
(u3,u1) is a bypass edge of C;. By Lemma 3.3, €’ cannot be (u3,u1). So, ¢’ has to be the edge in
the primary cycle of C; entering ug. O

Lemma 3.5 Fiz a j with 1 < j < £ such that the primary cycle C of C; contains no bypass edge.
Let uy, ..., ug be a cyclic ordering of the vertices in C. Then, the following hold:

1. Suppose that there is a chain P in Gy whose endpoints appear in C' but not consecutively (i.e.,
its endpoints are not connected by an edge of C'). Then, at least one edge of C is safe.

2. Suppose that every edge of C is critical. Then, there is a unique Cjy with j" € {1,...,0} —{j}
such that (1) the primary cycle C' of Cj has exactly k vertices and (2) the vertices of C' have
a cyclic ordering vy, ..., vy such that for every 1 < i < k, u; and vg—;y+1 are the endpoints
of some chain in Ga. (See Figure 4.)

PrROOF. We prove the two statements separately as follows.

Statement 1. By the existence of P, we can find two vertices u; and uy, in C with ¢ < h such that
(1) neither (u;,up) nor (up,w;) is an edge of C, (2) there is a chain in G whose endpoints are u;
and up, and (3) there is no chain in G5 whose endpoints both are in the set {u;y1,u;y2,...,up_1}.
Obviously, (u;,u;41) is safe.

Statement 2. Each vertex u; of C is an endpoint of a chain P; in G5 or else the two edges
incident to u; would be safe. Moreover, Py # Py, Po # P3, ..., Po_1 # Py, and P, # P; because
we have applied the bypass operation on C;. Furthermore, by Statement 1, there do not exist ¢
and h with 1 < i # h < k with P, = P,,. Therefore, for every i € {1,...,k}, the endpoint of F,
other than w; is not in C.

For each i € {1,...,k}, let vp_;41 be the endpoint of P; other than w;. Obviously, for each
i€ {l,...,k — 1}, (vg—i,vg—i+1) has to be an edge of H because (u;,u;+1) is a critical edge.
Similarly, (vg,v1) has to be an edge of H because (ug,u1) is a critical edge. So, v1, ..., vg is a
cyclic ordering of the vertices of some cycle C’ in H. Let j' be the integer in {1,...,¢} such that
C' is a cycle in Cj.

It remains to show that C’ is not a dangling 2-cycle of C}/. For a contradiction, assume that C’
is a dangling 2-cycle of C}. Then, by Statement 1 in Lemma 3.4, j = j” and C has to be the primary
cycle of Cji. Moreover, since C' is a 2-cycle, C is a 2-cycle, too. But then, {uy, u2} N {v1,va} # 0,
because the articulation vertex of C’ has to be a vertex of C. This contradicts the fact that for
each i € {1,...,k}, the endpoint of P; other than u; is not in C' (as observed above). O

Now we are ready to describe how to partition E(H) into three subsets each of which can be
added to Go without destroying its 2-path-colorability. We use the three colors 0, 1, and 2 to
represent the three subsets, and want to assign each edge of E(H) a color in {0, 1,2} so that the
following conditions are satisfied:

(C1) For every critical edge e of H, e and its rival receive different colors.

- 364 —



(C2) For every dangling 2-cycle C of H, the two edges in C' receive the same color.
(C3) If two adjacent edges of H receive the same color, then they form a 2-cycle of H.

To compute a coloring of the edges of H satisfying the above three conditions, we process C1,
..., Cg in an arbitrary order. While processing C; (1 < j < £), we color the edges of C; by
distinguishing four cases as follows (where C' denotes the primary cycle of C}):

Case 1: C is a 2-cycle. Then, C contains either one or two bypass edges. In the former (re-
spectively, latter) case, we color the edges of Cj as shown in Figure 3(2) (respectively, Figure 3(1)).
Note that the colored edges satisfy Conditions (C1) through (C3) above.

Figure 3: Coloring C; when its primary cycle is a 2-cycle.

Case 2: Every edge of C is critical. Then, by Lemma 3.3, C' contains no bypass edge. Let 7' be
the integer in {1,...,¢} —{;j} such that C} satisfies the two conditions (1) and (2) in Statement 2 in
Lemma 3.5. Then, by Lemma 3.4 and Statement 2 in Lemma 3.5, neither C; nor Cj/ has a bypass
edge or a dangling 2-cycle. So, the primary cycle of C; (respectively, Cj/) is C; (respectively, Cj/)
itself. We color the edges of C; and C}s simultaneously as follows (see Figure 4). First, we choose
one edge e of C;, color e with 2, and color the rival of e with 0. Note that the uncolored edges
of C; form a path (). Starting at one end of (), we then color the edges of @ alternatively with
colors 0 and 1. Finally, for each uncolored edge €’ of Cj/, we color it with the color h € {1,2} such
that the rival of ¢’ has been colored with h— 1. Note that the colored edges satisfy Conditions (C1)
through (C3) above.

)

-

‘

Figure 4: Coloring C; and C}j when all their edges are critical.

Case 3: Neither Case 1 nor Case 2 occurs and no edge of C; is a critical dangling edge of H.
Then, by Lemma 3.3 and Statement 1 in Lemma 3.5, C' contains at least one safe edge. Let eq,
..., € be the edges of C, and assume that they appear in C cyclically in this order. Without loss
of generality, we may assume that e; is a safe edge. We color e; with 0, and then color the edges
€2, ..., e in this order as follows. Suppose that we have just colored e; with a color h; € {0,1,2}
and we want to color e;;1 next, where 1 < ¢ < k — 1. If ;41 is a critical edge and its rival has
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been colored with (h; + 1) mod 3, then we color e; 1 with (h; +2) mod 3; otherwise, we color e;11
with (h; +1) mod 3. If ey is colored 0 at the end, then we change the color of e; from 0 to the color
in {1,2} that is not the color of ez. Now, we can further color each dangling 2-cycle C” of C; with
the color in {0, 1,2} that has not been used to color the two edges of C' incident to the articulation
vertex of C’. Note that the colored edges satisfy Conditions (C1) through (C3) above.

Case 4: Neither Case 1 nor Case 2 occurs and some edge of C; is a critical dangling edge of
H. For each dangling edge e of H with e € E(C};), we define the partner of e to be the edge €’ of
C leaving the articulation vertex u of the dangling 2-cycle containing e, and define the mate of e
to be the bypass edge €¢” of C; entering u (see Figure 6). We say that an edge e of C; is bad if e is
a critical dangling edge of H and its partner is the rival of another critical dangling edge of H. If
C; has a bad edge e, then Statement 3 in Lemma 3.4 ensures that C; is as shown in Figure 5 and
can be colored as shown there without violating Conditions (C1) through (C3) above.

Figure 5: C; (formed by the one-way edges) and its coloring when it has a bad edge e.

Figure 6: The rival, the mate, and the partner of a critical dangling edge e of H together with the
opponent of the partner of e.

So, suppose that C; has no bad edge. We need one more definition (see Figure 6). Consider
a critical dangling edge e of H with e € E(C}). Let ¢ and €” be the partner and the rival of e,
" be the edge of C entering the tail of €”. Let P be the open chain in G5 whose
endpoints are the tails of ¢/ and €”. We call ¢ the opponent of ¢/. Note that €’ # ¢ because the
endpoints of P are the tail of ¢’ and the head of ¢’’. Moreover, if €’ is a critical edge of H, then the
rival of €’ has to be ¢”

respectively. Let e

because e is not bad and P exists. In other words, whenever an edge of C

has both its rival and its opponent, they must be the same. Similarly, if ¢’

is a critical edge of H,
then its rival has to be ¢/. Obviously, neither ¢’ nor E” can be the rival or the mate of a critical
dangling edge of H (because C; has no bad edge).

Now, let e1, ..., eq be the edges of C none of which is the rival or the mate of a critical dangling
edge of Cj. We may assume that ej, ..., e, appear in C’ cyclically in this order. Without loss of
generality, we may further assume that e; is the partner of a critical dangling edge of H. Then,
we color e; with 0, and further color e, ..., €4 in this order as follows. Suppose that we have just
colored e; with a color h; € {0,1,2} and we want to color e;;1 next, where 1 <i < qg—1. If ¢;4; is

a critical edge of H and its rival or opponent has been colored with (h; + 1) mod 3, then we color
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ei+1 with (h; +2) mod 3; otherwise, we color e;41 with (h; +1) mod 3. Note that the colored edges
satisfy Conditions (C1) through (C3) above, because the head of e, is not the tail of e;.

We next show how to color the rival and the mate of each critical dangling edge of Cj;. For each
critical dangling edge e of Cj, since its partner €’ and the opponent of ¢’ have been colored, we can
color the rival of e with the color of ¢’ and color the mate of e with a color in {0, 1,2} that is not
the color of ¢/. Note that the colored edges satisfy Conditions (C1) through (C3) above, because
¢/ and its opponent have different colors.

Finally, for each dangling 2-cycle D of C}, we color the two edges of D with the color in {0, 1,2}
that has not been used to color an edge incident to the articulation vertex of D. Note that the
colored edges satisfy Conditions (C1) through (C3) above, because the rival of each critical dangling
edge e of H has the same color as the partner of e does. This completes the coloring of C; (and
hence H).

We next want to show how to use the coloring to find a large-weight tour in G. For each
i € {0,1,2}, let E; be the edges of H with color i. Without loss of generality, we may assume
that w(Ep) > max{w(E;),w(E>)}. Then, w(Ey) > W13 (see the beginning of this subsection for
Wi 3). Consider the undirected graph U = (V(G), F1 U Fy), where Fy consists of all edges {v1,v2}
such that (vy,v2) or (ve,v1) is an edge in Ey, and F; consists of all edges {vs,v4} such that vg and
vg are the endpoints of an open chain in Go. We further assign a weight to each edge of F; as
follows. We first initialize the weight of each edge of F} to be 0. For each edge (v, v2) € Ey, we then
add the weight of edge (v1,v2) to the weight of edge {v1,v2}. Note that for each ¢ € {1,2}, each
connected component of the undirected graph (V(G), F;) is a single vertex or a single edge because
of Condition (C3) above. So, each connected component of U is a path or a cycle. Moreover, each
cycle of U contains at least three edges of F; because of Condition (C1) above. For eacy cycle D
of U, we mark exactly one edge {vi,v2} € Fy in D whose weight is the lightest among all edges
{vi,v2} € Fy in D. Let E3 be the set of all edges (vi,v2) € Ep such that {vy,vs} is marked.
Then, w(E3) < 2w(Ey). Consider the directed graph G obtained from G» by adding the edges of
Ey — E3. Obviously, w(G5) > (Wi + Waz) + §Wi3. Moreover, G is a collection of partial chains
and hence is 2-path-colorable. So, we can partition the edges of G5 into two subsets E{ and E) such
that both graphs (V(G), E7) and (V(G), ES) are subtours of G. The heavier one among the two
subtours can be completed to a tour of G of weight at least %(Wl’z +Wa2)+ 1—18W1,3 > Wy + %Wg.
Combining this with Lemma 3.2, we now have:

Theorem 3.6 There is a polynomial-time approximation algorithm for AsymMaxTSP achieving
an approximation ratio of %

4 New Algorithm for Metric SymMaxTSP

Throughout this section, fix an instance (G,w) of metric SymMaxTSP, where G is a complete
undirected graph with n vertices and w is a function mapping each edge e of G to a nonnegative
real number w(e). Because of the triangle inequality, the following fact holds (see [3] for a proof):

Fact 4.1 Suppose that Py, ..., P, are vertez-disjoint paths in G each containing at least one edge.
For each 1 <1 <t, let u; and v; be the endpoints of P;. Then, we can use some edges of G to connect
Py, ..., P, into a single cycle C in linear time such that w(C) > Sty w(P;) + 5 31 w({ug, v;}).
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Like Hassin and Rubinstein’s algorithm (H&R2-algorithm) for the problem, our algorithm com-
putes two tours 77 and T5 of G and outputs the one with the larger weight. The first two steps of
our algorithm are the same as those of H&R2-algorithm:

1. Compute a maximum-weight cycle cover C. Let C,...,C, be the cycles in G.

2. Compute a maximum-weight matching M in G.

Lemma 4.2 [3] In linear time, we can compute two disjoint subsets Ay and Ag of Uy<,<, E(C;)—M
satisfying the following conditions:

(a) For each j € {1,2}, each connected component of the graph (V(G), M UA;) is a path of length
at least 1.

(b) For each j € {1,2} and eachi € {1,...,r}, |A;NE(C;)| = 1.

For a technical reason, we will allow our algorithm to use only 1 random bit (so we can easily
derandomize it, although we omit the details). The third through the seventh steps of our algorithm
are as follows:

3. Compute two disjoint subsets A; and A of U;<;<, E(C;) — M satisfying the two conditions
in Lemma 4.2.

4. Choose A from A; and As uniformly at random.

5. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the edges in
A from C; and then connect these paths into a single (Hamiltonian) cycle Tj as described in
Fact 4.1.

6. Let S = {v € V(G) | the degree of v in the graph (V,M U A) is 1} and F = {{u,v} C
E(G) | {u,v} C S}. Let H be the complete graph (S, F). Let £ = %|S\ (Comment: |S| is
even, because of Condition (a) in Lemma 4.2.)

7. Let M’ be the set of all edges {u,v} € F such that some connected component of the graph
(V,M U A) contains both v and v. (Comment: M’ is a perfect matching of H because of
Condition (a) in Lemma 4.2.)

Lemma 4.3 [3] Let o = w(A1 U Ag)/w(C). For a random variable X, let E[X] denote its expected
value. Then, E[w(F)] > 1(1 — a)(2¢ — H)w(C).

The next lemma shows that there cannot exist matchings of large weight in an edge-weighted
graph where the weights satisfy the triangle inequality:

Lemma 4.4 For every perfect matching N of H, w(N) < w(F)/¢.

PROOF. Let the edges of N be {uy,us}, {us,us}, ..., {ue_1,us}.

Case 1: ¢ is odd. For each odd number ¢ with 1 < ¢ < £, we assign the vertices u;y2, i3,
...y Upy; of H to the edge {u;, ui+1} of N. For each even number j with 1 < j < ¢, we assign the
vertices u1, U2, ..., Uj, Upyj42, Ugtjts, -- -, Uz Of H to the edge {uesj,uprj41} of N. Note that
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each edge in N is assigned exactly ¢ — 1 vertices of H. For each edge e; = {u;,u;11} € N and each
vertex uy, assigned to e;, we then assign the two edges {u;,up} and {w;y1,un} of H to e;. Since
w({ug, up}) + w{uis1,un}) > w(e;) by the triangle inequality, the total weight of edges assigned
to each edge e; € N is at least (£ — 1)w(e;). Obviously, no edge of N is assigned to itself or another
edge of N. Moreover, a simple but crucial observation is that no edge of H is assigned to two or
more edges of N. Thus, w(F — N) > (¢ — 1)w(N). Hence, w(N) < w(F)/L.

Case 2: 0 is even. Let N1 = {{uy,u2}, {us,us},...,{un—1,un}} and Ny = N — N;. We assume
that w(N7) > w(N2); the other case is similar. For each odd number ¢ with 1 < i < ¢ — 1, we
assign the vertices u;t2, Uit3, ..., uprir1 of H to the edge {u;,u;+1} of N, and assign the vertices
ULy Uy « vy U1y Uptit2y Uptits, - .-, Ugp Of H to the edge {ugys, uprir1} of N. Note that each
edge in Ny (respectively, Ny) is assigned exactly ¢ (respectively, ¢ — 2) vertices of H. For each
edge e; = {u;,ui+1} € N and each vertex uy, assigned to e;, we then assign the two edges {w;,up}
and {u;y1,up} of H to e;. Since w({w;,up}) + w({wit1,un}) > w(e;) by the triangle inequality,
the total weight of edges assigned to each edge e; € Ny (respectively, e; € Ny) is at least fw(e;)
(respectively, (¢ — 2)w(e;)). Obviously, no edge of N is assigned to itself or another edge of N.
Moreover, a simple but crucial observation is that no edge of H is assigned to two or more edges
of N. Thus, w(F — N) > fw(Ny) + (£ — 2)w(N3) > (¢ — 1)w(N). Hence, w(N) < w(F)/L. 0

The following is our main lemma and will be proved in Section 4.1:

Lemma 4.5 We can partition F'— M’ into 2¢ — 2 perfect matchings My, ..., Moyy_o of H in linear
time satisfying the following condition:

e For every natural number q, there are at most ¢> — ¢ matchings M; with 1 <i < 20 —2 such
that the graph (S, M' U M;) has a cycle of length at most 2q.

Now, the eighth through the thirteenth steps of our algorithm are as follows:

8. Partition F' — M’ into 2¢ — 2 perfect matchings My, ..., Ms,_o of H in linear time satisfying
the condition in Lemma 4.5.

9. Let g = [W} Find a matching M; with 1 < i < 2¢—2 satisfying the following two conditions:

(a) The graph (S, M’ U M;) has no cycle of length at most 2q.
(b) w(M;) > w(M,;) for all matchings M; with 1 < j < 2¢—2 such that the graph (.S, M'UM;)
has no cycle of length at most 2gq.

10. Construct the graph G = (V(G),M U AU M;). (Comment: M; N (M U A) = ) and each
connected component of G/ is either a path, or a cycle of length 2¢ + 1 or more.)

11. For each cycle D in G}, mark exactly one edge e € M; N E(D) such that w(e) < w(e') for all
¢' € M; N E(D).

12. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the marked
edges from G}; and then connect these paths into a single (Hamiltonian) cycle T, as described
in Fact 4.1.

13. If w(T1) > w(T), output 17; otherwise, output 7.
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Theorem 4.6 There is an O(n?)-time approzimation algorithm for metric SymMaxTSP achieving
an approximation ratio of% —O(1/n).

PrROOF. Let OPT be the maximum weight of a tour in G. It suffices to prove that max{é‘[ (Th)],
Ew(Ty)]} > (£ — O(1/Yn)OPT. By Fact 4.1, E[w(T1)] > (1 — 3a+ *a)w(C) > (1 — a)OPT.

We claim that |S| > in. To see this, consider the graphs Gy = (V(G), ) and G4 =
(V(G), M U A). Because the length of each cycle in C is at least 3, |4| < in by Condition (b) in
Lemma 4.2. Moreover, since M is a matching of G, the degree of each vertex in G is 0 or 1.
Furthermore, GG 4 is obtained by adding the edges of A to Gjs. Since adding one edge of A to Gy
increases the degrees of at most two vertices, there exist at least n — 2|A| > %n vertices of degree 0
or 1 in G4. So, by Condition (a) in Lemma 4.2, there are at least %n vertices of degree 1 in G 4.
This establishes that |S| > in. Hence, £ > tn.

Now, let z be the number of matchings M; with 1 < j < 2/—2 such that the graph (S, M'UM;)
has a cycle of length at most 2¢q. Then, by Lemmas 4.4 and 4.5, the weight of the matching M;
found in Step 9 is at least (1 — ZH) - w(F) - 505—. So, w(M;) > § - (1 — 265;}12%1) -w(F)
because r < ¢®> — q. Let N; be the set of edges of M; marked in Step 11. Then, w(M; — N;)

q+1 ag&% w(F). Hence, by Lemma 4.3 and the inequality £ > in, we have &[w(M; — N;)]

1(1=a)(1=0(1/n)uw(C).

Obviously, E[w(T2)] > Elw(M UA)]|+Ew(M; — N;)] > (3 — QL)OPT+%aw(C)—i—S[w(Mi—Ni)].
Hence, by the last inequality in the previous paragraph Ew(Th)] > (341a—0(1/Yn))OPT. Com-
bining this with the inequality E[w(T})] > (1 — 1a)OPT, we finally have €max{w(T1), w(T>)}] >
(3 —O(1/¥n)OPT.

The running time of the algorithm is dominated by the O(n?) time needed for computing a

>
>

maximum-weight cycle cover and a maximum-weight matching. O

As observed in [3], the subsets A; and Ay in Lemma 4.2 can be computed in O(log®n) time
using a linear number of processors. So, our algorithm for metric Max TSP is parallelizable because
maximum-weight cycle covers and maximum-weight matchings can be computed by fast parallel
algorithms [6, 8]. We omit the details here.

4.1 Partitioning into Perfect Matchings

Let the vertices of H be oo, 0, 1, ..., 2/ — 2, and let the edges of M’ be
{00,0},{1,2¢ — 2},{2,2¢ - 3},...,{¢ —1,¢}.

Then, a folklore partitioning of F' — M’ into 2¢ — 2 perfect matchings My, ..., Myy_o of H is as
follows:

My {o0,1},{2,0},{3,20— 2},.... {¢, 0+ 1}
My {00,2},{3,1},{4,0},... . {+1,0+2}

Mgy : {00,20—2},{0,20 — 3}, {1,2¢ — 4}, ... {t—2,0—1}.

For each integer j & {0,1,...,2¢ — 2}, we identify j with the vertex h of H such that h =
j (mod 2¢ — 1). Then, for each integer i € {0,1,...,2¢ — 2}, M; consists of edge {o0,i} and all
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edges {j, —j+2i} with j € {0,1,...,20—2} —{i}. Obviously, for each i € {1,...,2¢—2}, the graph
H; = (S, M; UM’) is a collection of vertex-disjoint cycles; we call the cycle containing vertex oo
the main cycle of H; and denote it by D;. For two natural numbers x and y, let ged(x,y) denote
the greatest common divisor of = and y, and let lem(x,y) denote the least common multiple of z
and y.

Lemma 4.7 For eachi € {1,...,20 — 2}, the length of D; is (% + 1).

PROOF. Recall that for each integer i € {0,1,...,2¢ —2}, M; consists of edge {o0,i} and all edges
{j,—j + 2i} with j € {0,1,...,2¢ — 2} — {i}. Fixan i € {1,...,2¢ — 2}. Let 2h be the length of
D;. Suppose that we traverse D; by starting at vertex oo, then visiting ¢, and proceeding along
the cycle until reaching vertex 0. This traversal should give the following ordering of the vertices
of Dl

00,1, —i, 31, —3i, 50, -+, —(2h — 3)i, (2h — 1)1

where (2 — 1)i = 0 (mod 2¢ — 1) because vertex 0 is the last one in the traversal. Note that for
every odd = € {1,2,...,2h — 1}, xi is a vertex of D;,.

Since (2h — 1)i =0 (mod 2¢ — 1), (2h — 1)i is a common multiple of integers 2¢ — 1 and 4, and
hence there exists an integer a > 1 such that

(2h — 1)i = alem (20 — 1,7) = (a . gcd(22€€_—111)> i (4.1)

The last equality follows from the fact that (20—1)i = ged(2¢—1,7) lem(2¢—1,4). By Equation 4.1,
2h—1=a«- %. Therefore, « is an odd integer because % is an integer and 2h — 1
is odd.

We claim that a = 1. For a contradiction, assume that « is an odd integer greater than 1.
Then, by Equation 4.1, (2h — 1)i — (o — 1) lem(2¢ — 1,4) = lem(2¢ — 1,4) and hence

20—-1 ~ lem(20 - 1,4)

% —1— (a—1)- -
h (a=1) ged(20 — 1,1) i

(4.2)
Since a — 1 is a possitive even integer, the left side of Equation 4.2 is an odd integer less than
2h — 1. Moreover, recall that 2h — 1 = « - %. So, the left side of Equation 4.2 is a positive
odd integer less than 2h — 1. Hence, (2h—1—(av—1)- %)i is an integer in the subsequence
i, 3i, 51, ..., (2h — 3)i, and is a multiple of 2¢ — 1 by Equation 4.2. However, this implies that
vertex 0 of D; is in the subsequence i, 3i, 5, ..., (2h — 3)i, a contradiction. Thus, the claim holds.

By the claim, 2h — 1 = % and so the length of D; is 2h = % + 1. O

Corollary 4.8 If gcd(2¢ — 1,i) = 1, then D; is a tour of H;.
We next show that if D; is not a tour of H;, then D; is the shortest cycle in H;.

Lemma 4.9 Fiz ani such that 1 <1i <20 —2 and ged(20—1,1) # 1. Then, each cycle of H; other

than D; is of length %.
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PrOOF. Fix a cycle D of H; other than D;. Let 2h be the length of D. Consider an arbitrary
vertex j of D. As in the proof of Lemma 4.7, a traversal of D started at vertex j and ended at
vertex —j produces the following ordering of the vertices of D:

Go—j 42,5 — 2 —j+4i,j—4i,—j+6i,...,5 — 2(h— 1)i,—j + 2hi

where —j 4+ 2hi = —j (mod 2¢ — 1). Note that for every even x € {2,3,...,2h}, —j + i is a vertex
of D.

Since 2hi = 0 (mod 2¢ —1), 2hi is a common multiple of integers 2¢ —1 and 4, hence there exists
an integer o > 1 such that

20 -1
2hi = alem(2¢ — 1,1) = — | i 4.3
i = alem( ,1) <a gcd(%—l,i))Z (4.3)
By Equation 4.3, 2h = « - %. Therefore, « is an even integer.

We claim that a = 2. For a contradiction, assume that o is an even number greater than 2.
Then, by Equation 4.3, 2hi — (o — 2)lem(2¢ — 1,7) = 21lem(2¢ — 1,4) and hence

20—-1  2lem(20 — 1,49)

2% — (a—2) - —
h=(a=2) ged(20 —1,1) i

(4.4)

Since o — 2 is a possitive even integer, the left side of Equation 4.4 is an even integer less than 2h.

Moreover, recall that 2h = « - %. So, the left side of Equation 4.4 is a positive even integer

less than 2h. Hence, —j + (2h — (o — 2) - %)i is an integer in the subsequence —j + 24,

—j +4i, ..., —j + 2(h — 1)i, and is congruent to —j modulo 2¢ — 1 by Equation 4.4. However,
this implies that vertex —j of D; is in the subsequence —j + 2i, —j +4i, ..., —j + 2(h — 1)i, a
contradiction. Thus, the claim holds.
. 2(20—1 . 2(20—1
By the claim, 2h = M and so the length of D; is 2h = m O

Corollary 4.10 For everyi € {1,2,...,20 — 2}, D; is the shortest cycle in H;.

ProOOF. Fixanie€ {1,2,...,20—2}. If ged(2¢ — 1,4) = 1, then D; is the unique cycle (and hence
the shortest cycle) in H; by Corollary 4.8. Otherwise, by Lemmas 4.7 and 4.9, D; is shorter than
the other cycles in H;. a

Now, we are ready to prove Lemma 4.5:

PROOF OF LEMMA 4.5: Fix a natural number ¢q. By Corollary 4.10, it suffices to show that there
are at most ¢> — q integers i € {1,2,...,2¢ — 2} such that D; is of length at most 2q.
Consider a natural number p < q. For each i € {1,2,...,2¢ — 2}, if the length of D; is exactly

2p, then by Lemma 4.7, % 4+ 1 =2p and so

20 -1

ged(20 —1,1) = 51"
p_

Since each integer i satisfying the above equality has to be a multiple of %
2p — 2 such integers in {1,2,...,2¢ — 2}.
Hence, there can be at most Zgzl(Qp —2) = ¢ — q integers i € {1,2,...,2¢ — 2} such that H;

has a cycle of length at most 2q. |

, there can be at most
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Proposal of Asynchronous Distributed Branch and
Bound(Abstract)

1 Atsushi SASAKI ! Tadashi ARARAGI 2 Shigeru MASUYAMA
INTT CSL 2 Toyohashi University of Technology

This talk proposes new asyncronous distributed branch and bound. This is the first algorithm
to provide the exact optimum solution, not an approximation, for NP-hard distributed system in a
distributed context without any centralized control. Moreover, this algorithm has more flexibility and
greater robustness than the conventional distributed algorithms without any centralized control. The
idea behind the algorithm is a complex consisting of branch and bound, divide and conquer, and A-opt
neighborhood in local search. This algorithm is promising for wide-range of applications in an actual
huge dynamic distributed system.

Load balancing, resource allocation, and location problems are essential for robust, flexible, and
efficient operations in distributed systems. Many of these discrete optimization problems are NP-hard
and a number of studies have investigated these problems in both sequential and distributed contexts.
As regards optimization, only a few studies have been conducted on distributed systems, whereas
sequential systems have been studied extensively. We think that this is due to the difficulty involved
in optimizing actual huge distributed systems. Almost all distributed approximation schemes can be
recognized as a kind of local search. This is because only local information, not global information, is
available in the scheme. In such a scheme, if the initial state is a local minimum or it reaches a local
minimum, the system performance cannot be further improved. Therefore, optimization is required
even though the problem is NP-hard and it must also be used as an approximation schemes. Moreover,
in geographically distributed systems, fault tolerance, adaptation for dynamics (e.g., dynamic task
arrival), and usability in huge systems are also required and are sometimes more important than
efficiency from the viewpoint of flexibility and robustness. A new distributed branch and bound
algorithm we propose here has the potential to satisfy all of these requirements. In this talk, we propose
only the most fundamental framework of asynchronous distributed branch and bound. Therefore,
further work on this framwork will make it more useful.

Although branch and bound is a fundamental framework for solving discrete optimization problems
by enumeration in sequential contexts, there have only been two studies, as far as we know, branch
and bound in distributed contexts, namely, synchronous branch and bound and distributed branch
and bound. The former simply simulates the sequential branch and bound in a distributed context.
The latter is summarized as follows: A host gathers all the information about a problem and then
begins the execution of branch and bound. Basically, the algorithm works so that the host assigns each
subproblem to another host. That is, the latter is a simple distributed version of sequential branch
and bound. These algorithms do not consider fault tolerance or adaptation for dynamics, and so lack
robustness and flexibility. Moreover, these algorithms need some kind of centralized control, which
also results in a lack of robustness and flexibility.

The algorithm proposed in this talk, called asynchronous distributed branch and bound, is another
distributed version of branch and bound. However, this also incorporates ideas from other schemes.
In fact, this algorithm includes the idea of divide and conquer and that of optimization with respect
to local search (A-opt neighborhood). That is, at a first glance the proposed algorithm looks very
different from the sequential branch and bound. The main difference is that sequential branch and
bound is based on exactly one branching tree, while the proposed algorithm maintains more than one
branching tree, that is, each host has a branching tree maintained independently (asynchronously).

We first discuss the features of the target problmes, especially for the load balancing. We then sum-
marize the requirements for algorithms designed to solve the problems in a geographically distributed
system. We propose a new asynchronous distributed framework and then prove its correctness.
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Energy-Optimal Online Algorithms for Broadcasting

in Wireless Networks

Shay Kutten® Hirotaka Ono! David Peleg?
Kunihiko Sadakane! and Masafumi Yamashita'

We consider problems related to the design of energy-efficient online message broadcasting
protocols in ad-hoc wireless networks. Recent developments in portable wireless devices
with limited power resources have led to considerable interest in problems involving the
construction of energy-efficient multicast trees in the network. Wireless devices can control
their transmission power in order to save power consumption whenever the distance to the
intended destination of the transmission is known. The attenuation of a signal with power
P, is P, = d(f—;)ﬁv where d(s,t) is the distance between hosts s and t, and § > 1 is the
distance-power gradient [3]. A message can be successfully decoded if P, is no less than a
constant . Therefore the transmission range of a host s, namely, the maximum distance
to which a message can be successfully delivered from s, is (P,/)?. Power control also
has a positive effect on reducing the number of transmission collisions between nearby
senders.

The problem studied here concerns a single sender which has to transmit a message
to a given collection of receivers in an online setting, namely, when the hosts do not
know each other’s locations. The goal is to specify a protocol for the sender allowing it
to directly broadcast the message to the recipients and receive acknowledgements, while
minimizing the total transmission costs. By direct broadcast we mean that the sender is
required to transmit the message itself to every recipient, namely, multi-hop delivery is
not allowed. This restriction may be relevant in situations when the battery resources of
the receivers is severely limited and it is desired to minimize their transmissions, or when
when the reliability of the hosts is uncertain and only direct messages from the source
can be trusted.

Using varying levels of transmission power is important for energy-efficient communi-
cation. As far as the authors are aware, there has been no online algorithms with provable
worst-case guarantees for energy-efficient broadcasting in ad-hoc wireless networks.

The protocols proposed in this study are based on computing or estimating the dis-
tances from the sender host to the receiver hosts in an energy-efficient way. The most
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basic case is that of a single sender and a single receiver. The generic doubling protocol
employed by the sender is based on repeatedly transmitting the messages to increasingly
larger distances, until reaching the receiver. The behavior of this protocol depends on
the choice of the sequence of distances, and the problem is to determine them so as to
minimize the overall power consumption. If a specific probability distribution may be
assumed on the hosts, the algorithm can be optimized [4]. However we assume an online
setting in which no a priori information is given about the distance from the sender to
the receiver. Therefore the worst-case scenario should be considered. This motivation
leads us to apply a competitive analysis to the algorithm (cf. [2]). We compare the power
consumption of an algorithm with that of the optimal (infeasible) offline algorithm that
knows the distance d. We show that the optimal competitive ratio for this problem is
3/2+ V2, i.e., there exists an online algorithm for the problem with this competitive ratio,
and no online algorithm has smaller competitive ratio. The problem is somewhat similar
to the famous cow path online problem [1], but setting the parameter of the algorithm is
not obvious.

Furthermore, we study the generalization of this problem where there is more than
one receiver. This is a propoer extension of the cow path problem. For this problem we
also propose a competitive online algorithm and prove its optimality. Interestingly, the
competitive ratio of the generalized problem is the same, namely, 3/2 + /2.

References

[1] R. Baeza-Yates, J. Culberson and G. Rawlins, Searching in the plane. Information
and Computation 106:234-252, 1993.

[2] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge Univ. Press, 1998.

[3] G.S. Lauer. Packet radio routing, Chapt. 11, Routing in communication networks,
M. Streenstrup (ed.), pages 351-396. Prentice-Hall, 1995.

[4] R. Mathar and J. Mattfeldt. Optimal Transmission Ranges for Mobile Communi-
cation in Linear Multihop Packet Radio Networks. Wireless Networks, 2:329-342,
1996.

- 376 —



Site-oriented Framework for
Mining Communities on the Web

Yasuhito Asano

Graduate School of Information Sciences, Tohoku University.
Aza-Aoba 6-6-05, Aramaki, Aoba-ku, Sendai, Japan 980-8579.

asano@nishizeki.ecei.tohoku.ac. jp

The World Wide Web has evolved at a surprisingly high speed both in its size and in the
variety of its contents. There are several methods for mining communities, a set of related pages
or sites, on the Web using hyperlinks. Well-known examples of such methods include Kleinberg’s
HITS [4], trawling proposed by Kumar et al. [5], and the max-flow based method proposed by
Flake et al. [3]. These methods adopt a page-oriented framework, that is, it uses a page on the
Web as a unit of information. However, not a page but a site is frequently considered as a unit
of information in the Web.

In this talk, we introduce a site-oriented framework for mining communities and our imple-
mentation of the site-oriented framework; for the implementation, we propose a new model of
sites, called directory-based sites, and establish a method of identifying directory-based sites
from data of URLs and links. We explain why our site-oriented framework is more suitable
for mining communities than the page-oriented framework, by presenting several theoretical evi-
dences and the results of computational experiments using trawling, the max-flow based method,
and our new method which enumerates maximal cliques of mutual-links.

This talk is primarily based on the contents of the references [1] and [2].
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We consider the problem of assigning edge labels to a simple connected graph satisfying
the following three conditions: (1) Each edge has two integer labels, one for each end.
(2) For each vertex v of the graph, the labels around it are distinct and between 1 and
d, where d, is the degree of v. (3) There exists a cycle visiting all the vertices which
starts from an edge with label 1 around a vertex, and each time we arrive a vertex v
from an edge with label ¢, we go to the edge with label i + 1 (mod v4). This problem has
applications of efficient broadcasting in networks using less memory. We first show that
for any graph, there exists an assignment of labels satisfying the above conditions. Then

we consider lower and upper bounds of the length of cycles.
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A semimagic square is an n x n matrix filled with the numbers 0,...,n? — 1 in such a way that the sum of the
numbers in each row and each column are the same. Magic squares and related classes of integer matrices have been
studied extensively.

In this talk we generalize the notion of a semimagic square by replacing the requirement that all row and column
sums be the same by the analogous requirement for all k x k contiguous square submatrices; we call such nx n
matrices zero k x k-discrepancy matrices of order (k,n). Let N(k,n) be the set of all such matrices. In this talk we
show that N(k, n) is non-empty if k and n are both even, and empty if they are relatively prime. Further, we show by
an explicit construction that N (k, k™) # @ for any integers k,m > 2.

It is known that it is impossible to achieve zero discrepancy when nis odd and Kk is 2, but it is hot known how
small the discrepancy can be for such n and k. In this talk, we present a scheme for achieving a new discrepancy
bound 2n for the case. This is an improvement from the previous bound 4n.

Our investigation is motivated by an application described below, but intuitively we seek a matrix filled with
distinct integers in an as uniform a manner as possible. The analogous geometric problem of distributing n points
uniformly in a unit square has been studied extensively in the literature [2, 3]. Usually, a family of regions is intro-
duced to evaluate the uniformity of a point distribution. If the points of an n-point set P are uniformly distributed,
for any region R in the family the number of points in R should be close to %area(R), where % is the point density
of P in the entire square. Thus, the discrepancy of P in a region R is defined as the difference between this value
and the actual number of points of P in R The discrepancy of the point distribution P with respect to the family of
regions is defined by the maximum such difference, over all regions. In the context of digital halftoning, a family
of axis-parallel squares (contiguous square submatrices) over a matrix is appropriate for measuring the uniformity
since human eye perception is usually modeled using weighted sum of intensity levels with Gaussian coefficients
over square regions around each pixel [1]. Thus, the matrices discussed in this paper can be used as dither matrices
in which integers are arranged in an apparently random manner to be used as variable thresholds.
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for Pricing European-Asian Options

Akiyoshi Shioura (Tohoku University) Takeshi Tokuyama (Tohoku University)

We consider the pricing of European-Asian option which is a kind of path-dependent options. The
payoff of a European-Asian option is given as (A — X)*, where A is the average stock price during
the time from the purchase date to the expiration date of the option and X is the strike price. It is
known to be #P-hard in general to compute the exact price of path-dependent options on the binomial
tree model. Therefore, it is desired to design an efficient approximation algorithm with provable high
accuracy, and various pricing techniques have been developed so far.

A naive method for computing the exact price of European-Asian options, called the full-path
method, enumerates all paths in the binomial tree model. Unfortunately, the full-path method requires
exponential time since there are exponential number of paths in the binomial tree.

Aingworth, Motwani, and Oldham (AMO) (2000) proposed the first polynomial-time approxima-
tion algorithm with guaranteed worst-case error bound, which enables us to avoid the influence of
volatility to the theoretical error bound. The idea is to prune exponential number of high-payoff
paths by using mathematical formulae during the run of an aggregation algorithm based on dynamic
programming and bucketing. In each of n aggregation steps the algorithm produces the error bounded
by X/k, where k denotes the number of buckets used at each node of the binomial tree. Hence, the
error bound of the AMO algorithm is n.X/k, and the algorithm runs in O(kn?) time.

The error bound is improved by Dai et al. (2002) and by Ohta et al. (2002). While the AMO
algorithm uses the same number of buckets at each node of the binomial tree, Dai et al. use different
number of buckets at each node. By adjusting the number of buckets at each node appropriately while
keeping the time complexity O(kn?), they achieved the error bound O(y/nX/k), where k is the average
number of buckets used at each node. On the other hand, Ohta et al. use the idea of randomized
rounding in the aggregation steps of the algorithm, and achieves the error bound O(nl/ AX/E).

In this talk, we further reduce the error bound by giving a randomized approximation algorithm
with an O(kn?) time complexity and an O(X/k) error bound. The error bound of our algorithm
is independent of the depth n of the binomial tree, although those of the AMO algorithm and its
previous variants are dependent on n. Our algorithm uses the ideas in Dai et al. (2002) and Ohta et
al. (2002). As in Ohta et al. (2002), we regard the aggregation steps of the algorithm as a Martingale
process with O(n?) random steps by using novel random variables. It can be shown that the expected
value of the output by our algorithm equals the exact price, and that the error in each single step
is bounded by a function of the number of buckets at a node of the binomial tree. Thus, we can
apply Azuma’s inequality to the Martingale process to obtain the error bound. If we choose k as the
number of buckets at each node, the algorithm coincides with the one by Ohta et al. To reduce the
error bound as much as possible, we adjust the number of buckets at each node and obtain the error
bound O(X/k), where k is the average number of buckets used at each node. Since the value X/k can
be seen as the “average” of the absolute error produced at each node of the binomial tree, the error
bound of our algorithm is the best possible within the framework of the AMO algorithm. We also
show the practical quality of the approximate value computed by our algorithm by some numerical
experiments.
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For indexing large external-memory (“on disk”) data, B-trees and their variants [1, 4] have been
the data structures of choice for over three decades, primarily because B-trees minimize the
number of disk-block accesses during a search. B-trees, however, are known to be empirically
suboptimal because they exploit data locality at only one level of granularity (typically disk
blocks), but not at courser or finer granularities.

Traditionally, external-memory algorithms have been analyzed in the so-called Disk Access
Machine (DAM) Model [6], an idealized two-level memory model in which all block transfers
have unit cost, the block size is B, and the main-memory size is M. The choice of B defines the
single granularity of data locality of such data structures. For example, a B-tree has a branching
factor of B, and thus performs O(logz N) memory transfers for queries and updates, which is
optimal within the DAM model. Although B is often thought of as a disk-block size, the DAM
model applies equally well to optimizing cache-misses, in which case B is taken to be the cache-
line size. The widespread use of B-trees suggests that the DAM model is used implicitly as a
simplifying approximation for writing memory-oriented code.

The cache-oblivious (CO) model [5] is a parameter-free alternative to the disk-access machine
(DAM) model. As with the DAM model, the objective is to minimize the number of data
transfers between two levels. However, unlike the DAM model, the parameters B, the block
size, and M, the main-memory size, are unknown to the coder or the algorithm. The main
idea of the CO model is that if it can be proved that some algorithm performs a nearly optimal
number of memory transfers in a two-level model with unknown parameters, then the algorithm
also performs a nearly optimal number of memory transfers on any unknown, multilevel memory
hierarchy. Thus, for example, an optimal Cache-oblivious B-trees [3] simultaneously optimizes
for both cache misses and page faults. Note, however, that CO algorithms are not self-adjusting.
Rather, they are optimized for every level of granularity throughout their execution without any
tuning.

Cache obliviousness has been considered a theoretical curiosity. The standard reasoning

is that one must loose some performance by ignoring memory parameters, though it has been
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shown that many problems can be solved with only a loss of a small constant compared to the
best cache-aware algorithm.

In this talk, we suggest the opposite. There are good reasons to believe that cache-oblivious
algorithms can outperform cache-aware algorithms. We show theoretical and experimental [2]

justification for this claim.
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Data Stream Algorithms and Applications
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In the data stream scenario, input arrives very rapidly and there is limited memory to
store the input. In the past few years, researchers in Theoretical Computer Science,
Databases, IP Networking and Computer Systems have developed new algorithms that
work within these space and time constraints. The methods rely on metric embeddings,
pseudo-random computations and sparse approximation theory. The applications include
IP network traffic analysis, mining text message streams for Homeland Security and pro-
cessing massive data sets in general.

I will present an overview of the principles, one or two key technical results and
discuss issues in building data stream systems that work at the speed of IP routers. I will
also discuss open problems. This talk is based on an updated version of the survey at

http://www.cs.rutgers.edu/ "muthu/stream-1-1.ps
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On Computing all Abductive Explanations

from a Propositional Horn Theory
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Abduction is a fundamental mode of reasoning, which has applications in many areas of
ATl and Computer Science. The computation of abductive explanations is an important
computational problem, which is at the core of early systems such as the ATMS and
Clause Management Systems, and is intimately related to prime implicate generation in
propositional logic. In this talk, we consider the problem of computing multiple expla-
nations, and in particular all explanations for an abductive query from a propositional
Horn theory. Our study pays particular attention to the form of the query, ranging from
a literal to a compound formula, to whether explanations are based on a set of abducible
literals, and to the representation of the Horn theory, either by a Horn CNF or model-
based in terms of its characteristic models. For all these combinations, we present either
tractability results in terms of polynomial total-time algorithms, intractability results in
terms of nonexistence of such algorithms (unless P=NP), or semi-tractability results in
terms of solvability in quasi-polynomial time, established by polynomial- time equivalence
to the problem of dualizing a monotone conjunctive normal form expression. Our results
complement previous results in the literature, and refute a longstanding conjecture by
Selman and Levesque. They elucidate the complexity of generating all abductive expla-
nations, and shed light on the related problems such as generating sets of restricted prime
implicates of a Horn theory. The algorithms for tractable cases can be readily applied
for generating a polynomial subset of explanations in polynomial time. (Joint work with
Thomas Eiter)
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How to Influence Noncooperative, Selfish Agents
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The societal value of a distribution of finite resources is frequently measured in terms of of
aggregate utility. Decisions, however, are frequently controlled by noncooperative agents
who try to maximize their own private utility. Papadimitriou coined the term “price of
anarchy” to refer to the ratio of social utility achieved by selfish agents versus the social
optimal.

In network routing games, the price of anarchy can be arbitrarily bad. We review
these results, and then describe some solutions to prevent this bad outcome. These
include charging users for network use; and managing a small portion of traffic wisely.

Some of these results carry over to more general congestion games.

— 385 —



Metric Labeling: Upper and Lower Bounds
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The Metric Labeling problem is an elegant and powerful mathematical model capturing
a wide range of classification problems that arise in computer vision and related fields. In
a typical classification problem, one wishes to assign labels to a set of objects to optimize
some measure of the quality of the labeling. The metric labeling problem captures a
broad range of classification problems where the quality of a labeling depends on the
pairwise relations between the underlying set of objects, as described by a weighted graph.
Additionally, a metric distance function on the labels is defined, and for each label and
each vertex, an assignment cost is given. The goal is to find a minimum-cost assignment
of the vertices to the labels. The cost of the solution consists of two parts: the assignment
costs of the vertices and the separation costs of the edges (each edge pays its weight times
the distance between the two labels to which its endpoints are assigned). Note that if the
distance function d is not a metric, then determining whether a graph can be colored by
k colors is a special case of the labeling problem.

Metric labeling has many applications as well as rich connections to some well known
problems in combinatorial optimization. It is related to the quadratic assignment problem,
an extensively studied problem in Operations Research. A special case of metric labeling
is the 0-extension problem. There are no assignment costs in this problem, however, the
graph contains a set of terminals, ¢,...,%;, where the label of terminal ¢; is fixed in
advance to ¢, and the non-terminals are free to be assigned to any of the labels. As in the
metric labeling problem, a metric is defined on the set of labels. Clearly, the 0-extension
problem generalizes the well-studied multi-way cut problem in which the metric on the
label set is the uniform metric.

In the talk I will discuss the rich body of work in approximation algorithms, as well as
lower bounds on approximability, that has been developed in recent years for the metric

labeling problem and its variants.
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Approximate distance oracles and
spanners with sublinear error terms

Speaker: Uri Zwick *

Abstract

Several years ago, Thorup and Zwick obtained the following result: Let G = (V, E) be an undirected
weighted graph with |[V| = n and |E| = m. Let k > 1 be an integer. Then, G = (V, E) can be
preprocessed in O(kmn'/*) expected time, constructing a data structure of size O(kn'*1/*), such that
any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance
returned of stretch at most 2k — 1, i.e., it is at most 2k — 1 times the actual distance, and it is never
too small. A girth conjecture of Erdés implies that Q(n't1/*) space is needed in the worst case for
any stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, hence, essentially
optimal.

We now show that the techniques used to construct approximate distance oracles mentioned above for
weighted graphs, can be used to obtain very simple constructions of spanners with sublinear error terms
for unweighted graphs. These constructions extend, improve and simplify results of Elkin, Elkin and
Peleg, and Bollobéas, Coppersmith and Elkin.

More specifically, we show that for any integer k > 1, any undirected and unweighted graph G = (V, E)
on n vertices has a subgraph G’ = (V, E') with O(kn'*'/*) edges such that for any two vertices u,v € V,
if dg(u,v) = d, then dg/(u,v) = d + O(d*~/ =), (Here, dg(u,v) is the distance from u to v in G.)
We also show that there is a weighted graph G” = (V, E") with O(kn'*1/""' =1 edges such that for
every u,v € V, if dg(u,v) = d, then d < dgn (u,v) = d+O(d*~*/*=1). The interesting feature of these
new spanners is that the relative error decreases with the distance.

Joint work with Mikkel Thorup.

*School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: zwick@cs.tau.ac.il.
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The walkers problem: On the cycle and the grid

J. Diaz* X. Pérez*t M.J. Serna*t N.C. Wormald?

Consider a setting in which a large number of mobile agents can perform concurrent basic
movements: ahead/behind/left/right, determining a grid pattern, or left/right, describing a
line. Each agent can communicate directly with any other agents which are within a given
distance d. This enables communications with agents at a further distance using several
intermediate agents. At each step in time there is an ad-hoc network defined by the dynamic
graph whose vertex set consists of the agents, with an edge between any two agents iff they
are within the distance d of each other.

Various aspects agents of such networks have been studied in the static case [AGE(2,
KMM99]. Algorithms for computing connectivity properties of such a network have been
studied [MKPS01], and simulation results for randomly placed agents were reported there and
in [HGPC99, JBAS03, RMMO01], among other references. The context of these studies was
a set of agents which may communicate to each other when within a given distance of each
other. The networks are ad-hoc: the spatial locations of the agents determine the network.
Furthermore, several of the abovementioned studies mention the dynamic situation in which
the agents are mobile: connections in the network are created and destroyed as the agents
move further apart or closer together. To our knowledge, ours is the first study in which the
dynamic features of such a network are studied. Moreover, we obtain much sharper results
on the static properties than previously obtained except for the case d = 1. We believe that
the study of the behaviour of multiple, simultaneous random walks has its owns merits as
an important open problem which could have further applications in other fields of computer
science. The paper [GHSZ] also deals with the problem of maintaining connectivity of mobile
agents communicating by radio frequency, but from an orthogonal prespective to the one in
the present paper. It describes a kinetic data structure to mantain the connected components
of the union of unit-radius disks moving in the plane.

We propose what we call the walkers model, defined as follows. A connected graph G =
(V, E) with |V| = N is given, and a number w of walkers (agents). Also given is a “distance” d.
A set W of walkers, with |W| = w, are placed randomly and independently on the vertices of
G (a vertex may contain more than one walker). Each walker has a range d for communication;
that is, two walkers w1 and ws can communicate in one hop if the distance, in G, between
the position of the walkers is at most d. Two walkers can communicate if they can reach each
other by a sequence of such hops. In addition, each walker takes an independent standard
random walk on G, i.e. moves at each time step to a neighbouring vertex, each neighbour
chosen with equal probability.

The interesting features of the walkers model are encapsulated by the graph of walkers,
G¢[W]. Here f is an a random assignment f : W — V of walkers into the vertices of G. The
vertices of G y[W] are the vertices in G that contain at least one walker, two vertices in G y[W]

*UPC
TDepartment of Combinatorics and Optimization, U. of Waterloo, Canada.
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being joined by an edge iff they are at distance at most d in G. We refer to components of
G¢[W] in the usual sense, and call a component simple if it is formed by only one isolated
vertex. We are interested in the probability of G;[W] being connected, or in the number of
components and their sizes, with certain mild asymptotic restrictions on w and d.

Our primary goal with the walkers model is to characterise the dynamics of the connectivity
of the network. To obtain enough information to do this, we first examine a variation of the
model called the static model. This is a snapshot of the model at one point in time: there
is merely a random assignment f : W — V of walkers into the vertices of G, and we are
interested in the distribution of the number of components, as well as other information which
helps to answer the dynamic questions.

In the dynamic situation, there is an initial placement of walkers as in the static case,
and at each time step, every walker simultaneously moves one step to a randomly selected
neighbour vertex in G. This gives rise to a random graph process, where G,[W] denotes the
graph of walkers at time ¢t = 0,1,.... We are interested in studying the birth and death of
components, and the sudden connection and disconnection of G, [W] in a dynamic setting.

We consider a sequence of graphs G with increasing numbers of vertices IV, for NV tending to
inifinity. The parameters w and d are functions of N. We restrict to the case w — oo in order
to avoid considering small-case effects. Of course we take d > 1. We make further restrictions
on w and d in order to rule out noninteresting cases, such as values of the parameters in which
the network is a.a.s. disconnected or a.a.s. connected. In this paper. we study the walkers
model for two particular sequences of graphs G: the cycle of length N and the n x n toroidal
grid. (In the case of the grid, we use the # distance, for any 1 < p < 00.)

We study the problem for the toroidal grid Ty with N = n? nodes, where we consider
any normed /P distance, for 1 < p < oco. Although the most interesting is the euclidian
distance £P. In the static case, we sprinkle uniformly at random w walkers on Tx. We
determine the connectivity treshold of the graph of walkers and the limiting distribution of
the amount of components at the phase transition, in terms of N, w and d. We need to
prove a geometric lemma bounding the size of the set of non-occupied vertices at distance
at most d from the boundary of any connected component in Ty, [W]. After, we turn to
the dynamic setting where, at each time ¢, each walker is forced to move with probability
1/4 to one of its neighbors, and we study the dynamic behaviour of T, [W]. We provide
characterisations of the probability of creation and destruction of connected components, and
use it to give estimations of the expected lifespan of connected components and the expected
time the graph of walkers remains connected (or disconnected).

We also will mention, similar results on other topologies, as the cycle Cy with NV vertices
or the hypercube H,, of dimension n.
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Connectivity and information transfer

in social networks

Richard Cole
New York University

Due in part to the growth of the Internet and the World Wide Web, the last 5-10 years has
seen the emergence of a new style of question in computer science. There are descriptive
questions; for example, what is the form of the Internet graph? There are explanatory
questions; why does it work?

This genre of questions and explanations is by no means limited to the Internet.
The widely known notion of “six degrees of separation” arose as a result of the following
experiment. People in Nebraska were asked to mail letters to recipients in Massachusetts,
by using intermediaries they knew, these intermediaries being asked to behave in the same
way. Not only did a high proportion of the letters arrive, they did so by short routes of six
or fewer edges. The question, of course, is why did this work? Kleinberg addressed this by
demonstrating a class of augmented grid graphs which exhibited analogous behavior. Not
only did his graphs have short paths between pairs of nodes, such short paths could be
found by local decisions, at least with high probability. A striking feature of his routing
algorithm is its simplicity.

In an analogous vein, one can ask what are the procedures that drive price adjust-
ment in markets for goods? This was formalized long ago by economists as the problem
of finding market equilibria. An early solution approach, called tatonnement, proposed
the natural procedure of reducing prices of goods with insufficient demand and increasing
those of goods with excess demand. Over fifty years ago, this was formalized as a dif-
ferential equation, which was shown to converge to equilibrium at least when the Gross
Substitutes property applied. Recently, polynomial time algorithms for finding approxi-
mate market equilibria have been found. While encouraging, these algorithms do not seem
to indicate why markets might tend to be equilibrium (of course, sometimes they may
not). This would appear to call for non-centralized, indeed highly distributed algorithms.
Are there such algorithms?

This talk will have more questions than answers.
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Approximation Algorithms for Network Problems

Susanne Albers
University of Freiburg
Germany

In this presentation we study various algorithmic problems that arise in large networks and design approximate
solutions to them.

Buffer management in network switches: In the first part of the talk we investigate a basic buffer management
problem. Consider a network switch with m input ports, each of which is equipped with a buffer (queue) of
limited capacity. Data packets arrive online and can be stored in the buffers if space permits; otherwise packet
loss occurs. In each time step the switch can transmit one packet from one of the buffers to the output port.
The goal is to maximize the number of transmitted packets. We settle the competitive performance of the entire
family of greedy strategies, which always serve the longest queue. We prove that greedy algorithms are not
better than 2-competitive no matter how ties are broken. We then present the first deterministic online algorithm
that is better than 2-competitive. We develop a modified greedy algorithm, called Semi-Greedy, and prove that
it achieves a competitive ratio of 17/9 ~ 1.89. Additionally we study scenarios where online algorithms are
granted additional resources in terms of extra memory or higher transmission rates.

Web caching with request reorderung: In the second part of the presentation we study web caching with
request reordering. The goal is to maintain a cache of web documents so that a sequence of requests can
be served at low cost. To improve cache hit rates, a limited reordering of requests is allowed. We present a
deterministic online algorithm that achieves an optimal competitiveness, for the most general cost model and
all cache sizes. We then investigate the offline problem, which is NP-hard in general. We develop the first
polynomial time algorithms that can manage arbitrary cache sizes. Our strategies achieve small constant factor
approximation ratios. The algorithms are based on a general technique that reduces web caching with request
reordering to a problem of computing batched service schedules.

The price of anarchy in network design: In the third part of the talk we study a network design problem in
which n selfish agents have to build a network so that the resulting graph is connected. The cost of an agent
consists of (a) its edge building cost and (b) its connection cost. An agent pays a non-negative cost of a for
each edge it builds. The connection cost is the sum of the shortest path distances to other agents. We consider
Nash equilibria for this game and analyze the price of anarchy, which is the worst-case ratio of the cost of any
equilibrium to the cost of the best equilibrium. We show that, for large ranges of «, the price of anarchy is
constant. We also prove that, in any case, the price of anarchy is bounded by O(nl/ 3), improving the previous
best bound of O(n). Additionally we develop structural properties of weak Nash equilibria and study the effect
of cost sharing where agent can split the cost of building edges.
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Generalized linear programming

Jiri Matousek

Charles University, Prague

Linear programming is concerned with optimizing linear functions over convex polytopes.
Attempts to analyze the running time of the simplex method, as well as other motivations,
have led to the notion of abstract objective functions on convex polytopes, which are linear
orderings of the vertices that share some simple propeties of orderings induced by generic
linear functions. Several other axiomatic frameworks generalizing linear programming
have been introduced as well. In addition to linear programming they encompass many
other important geometric optimization problems. Some of the algorithms for linear
programming can be expressed and analyzed in these frameworks.

The talk is meant as an introduction to the concepts mentioned above, and on the
more technical side, it will outline a recent result of Szab6 and the speaker on bad worst-
case performance of the simplex method with a certain randomized pivot rule on cubes

with abstract objective functions.
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My Favorite Ten Complexity Theorems of the
Past Decade 11

Lance Fortnow
University of Chicago

At the end of 1994 I presented my favorite ten theorems from the previous
decade [1] and using them as a platform to survey the research in many areas
of computational complexity during that time.

Ten years later I will present a new list of my favorite ten theorems
from the decade since the original list. Once again we will use the list as
a starting point to survey recent research in computational complexity. We
will cover many topics including derandomization, probabilistically checkable
proofs, coding theory, quantum computing and some algorithms results with
complexity implications.

References

[1] L. Fortnow. My favorite ten complexity theorems of the past decade. In
Proceedings of the 14th Conference on the Foundations of Software Tech-
nology and Theoretical Computer Science, volume 880 of Lecture Notes in
Computer Science, pages 256-275. Springer, Berlin, 1994. Invited lecture.
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Some Heuristic Analysis of
Average Behavior of Local Search Algorithms

— Short Abstract —

Osamu Watanabe*
Dept. of Math. and Computing Sciences, Tokyo Institute of Technology
(watanabe@is.titech.ac.jp)

It has been known that local search algorithms (even simple ones) sometimes work rea-
sonably well on average for solving NP-hard problems. Unfortunately, however, due to
the difficulty of investigating the (randomized) execution of a given algorithm on random
instances, our theoretical analysis on average behavior of such local search algorithms has
been limited. For obtaining better understanding of local search algorithms and their
average behavior, we proposed [1] the following heuristic approach: First consider some
relatively simple Markov process simulating algorithm’s execution, and then analyze this
simple Markov process.
In this talk, we consider the following variation of 3SAT problem.

3-CNF-SAT (from some nice initial assignment)
Input. A 3-CNF formula F' on n variables and an initial assignment a.
Task. Find a sat. assignment for F.
Promise. I is satisfiable with some sat. assignment
whose Ham. distance from a is pn for some p > 0.

We also consider 3-@-SAT, which is defined in the same way except that each clause of
F' consisits of the parity of three literals.

For these problems, we analyze variations of local search algorithms by our approach,
and discuss how small algorithmic changes affect their average performance.

[1] O. Watanabe, T. Sawai, and H. Takahashi, Analysis of a randomized local search
algorithm for LDPCC decoding problem, in Proc. SAGA’03, Lecture Notes in Comp. Sci.
2827,50-60, 2003.

*Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “Statical-Mechanical
Approach to Probabilistic Information Processing” 2002-2005.
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Faster and More Sensitive
Homology Search

Ming Li
Visiting Professor

City University of Hong Kong

Canada Research Chair in Bioinformatics
Professor

University of Waterloo

Joint work with Bin Ma, John Tromp

I will present one simple idea
which is directly benefiting thousands of people daily

A gigantic gold mine

= The trend of genetic data growth

Nucleotides billion)

caNwbaON®

1980 1985 1990 1995 2000

Years

= 400 Eukaryote genome projects underway
= GenBank doubles every 18 months
= Comparative genomics  all-against-all search

Comparing to internet search

= Internet search

Size limit: 5 billion people x homepage size
Supercomputing power used: V- million CPU-hours/day
Query frequency: Google --- 112 million/day
Query type: exact keyword search --- easy to do
= Homology search

= Size limit: 5 billion peoPIe x 3 billion basepairs +
millions of species x billion bases

= 10% (?) of world’s supercomputing power

= Query frequency: NCBI BLAST -- 150,000/day,
15% increase/month

= Query type: approximate search --- topics today

Tremendous Cost

= Bioinformatics Companies living on BLAST:
= Paracel (Celera)
= Timelogic
= TurboGenomics (TurboWorx)

= NSF, NIH, pharmaceuticals proudly support many
supercomputing centers for homology search

= However: hardware become obsolete in 2-3 years.

Software solution is indispensable.

i Outline

= What is homology search
= A simple (but profound) idea
= Its theory

= Its practical success
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i What is homology search

= Given two DNA sequences, find all local

similar regions, using “edit distance”
(match=1, mismatch=-1, gapopen=-5, gapext=-1).

= Example. Input:
= E. coli genome: 5 million base pairs
« H. influenza genome: 1.8 million base pairs
Output: all local alignments.

i Time Flies

= Dynamic programming (1970-1980)

= Human vs mouse genomes: 104 CPU-years
= BLAST, FASTA heuristics (1980-1990)

= Human vs mouse genomes: 19 CPU-years

= BLAST paper was referenced 100000 times
= PatternHunter

= Human vs mouse genomes: 20 CPU-days

i Outline

= What is homology search

= A simple (but profound) idea
= Its theory

= Its practical success

BLAST Algorithm & Example

= Find seeded matches of 11 base pairs

= Extend each match to right and left, until the
scores drop too much, to form an alignment

= Report all local alignments

Example:

0001110111111111110011011110
AGCGATGTCAGGCGCCCGTATTTCCGTA

RERERE IR
TCGGATCTCACGCGCCCGGCTTACCGTG

i BLAST Dilemma:

= If you want to speed up, have to use a
longer seed. However, we now face a
dilemma:
= increasing seed size speeds up, but loses

sensitivity;
= decreasing seed size gains sensitivity, but
loses speed.

= How do we increase sensitivity & speed
simultaneously? For 20 years, many
tried: suffix tree, better programming ..

i New Idea: Spaced Seed

= Spaced Seed: nonconsecutive matches and
optimize match positions.

= Represent BLAST seed by 11111111111
m Spaced seed: 111*1**1*1**11%111

= 1 means a required match

= * means “don't care” position

= This seemingly simple change makes a huge
difference: significantly increases hit to
homologous region while reducing bad hits.
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Sensitivity: PH weight 11 seed vs BLAST 11 & 10
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i Outline

= What is homology search

= A simple (but profound) idea
= Its theory

= Its practical success

i Formalize

= Given i.i.d. sequence (homology region)
with Pr(1)=p and Pr(0)=1-p for each bit:

1100111011101101011101101011111011101
111*PR*1*16*11*111
= Which seed is more likely to hit this region:
= BLAST seed: 11111111111
= Spaced seed: 111*1**1*1**11*111

Expect Less, Get More

= Lemma: The expected number of hits of a
weight W length M seed model within a
length L region with homology level p is

(L-M+1)pW
Proof. E(#hits) = > _; |_ms1 PV [ |

= Example: In a region of length 64 with p=0.7
= Pr(BLAST seed hits)=0.3
E(# of hits by BLAST seed)=1.07
= Pr(optimal spaced seed hits)=0.466, 50% more
E(# of hits by spaced seed)=0.93, 14% less

Why Is Spaced Seed Better?

A wrong, but intuitive, proof: seed s, interval I, similarity p
E(#hits) = Pr(s hits) E(#hits | s hits)

Thus:
Pr(s hits) = Lp" / E(#hits | s hits)

For optimized spaced seed, E(#hits | s hits)
111*1x*1*¥1**11%111 Non overlap Prob

111*1Rk1*F1**11*%111 6 pé
111*1RF1I*1¥*11%111 6 pé
111*1RF1*14%11*111 6 pé
111*1RF1*1*4*11*111 7 p’

= For spaced seed: the divisor is 1+p6+pS+pé+p7+ ...
= For BLAST seed: the divisor is bigger: 1+ p + p2 + p3+ ...

Complexity of finding the optimal
spaced seed w, wa, manuscript)

Theorem 1. Given a seed and it is NP-hard to find its
sensitivity, even in a uniform region.

Theorem 2. The sensitivity of a given seed can be
efficiently approximated with arbitrary accuracy,
with high probability.

Theorem 3. Optimal seeds can be found in
exponential time deterministically. Near optimal
seed can be found in O(n'o9n) time probabilistically.
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Computing Spaced Seeds

(Keich, Li, Ma, Tromp, Discrete Appl. Math)

Let 7(7,b) be the probability that seed s hits the
length /7 prefix of R that ends with 5.

Thus, if smatches b, then
fib) = 1,
otherwise we have the recursive relationship:
f,6)= (1-p)f(i-1,0b') + pf(i-1,1b’)
where b'is b deleting the last bit.
Then the probability of s hitting Ris

i Prior Literature

= Random or multiple spaced g-grams
were used in the following work:
= FLASH by Califano & Rigoutsos
= Multiple filtration by Pevzner & Waterman
= LSH of Buhler
= Praparata et al

i Outline

= What is homology search

= A simple (but profound) idea
= Its theory

= Its practical success

‘ PatternHunter
(Ma, Tromp, Li: Bioinformatics, 18:3, 2002, 440-445)

= PH used optimal spaced seeds, novel
usage of data structures: red-black
tree, queues, stacks, hashtables, new
gapped alignment algorithm.

= Written in Java.

= Used in Mouse Genome Consortium
(Nature, Dec. 5, 2002), as well as in
hundreds of institutions and industry.

Comparison with BLAST

= On Pentium III 700MH, 1GB

BLAST PatternHunter
E.coli vs H.inf 7165 14s/68M
Arabidopsis 2 vs 4 -- 498s/280M
Human 21 vs 22 -- 5250s/417M
Human(3G) vs Mouse(x3=9G)* 19 years 20 days

= All with filter off and identical parameters
= 16M reads of Mouse genome against Human genome for MIT

Whitehead. Best BLAST program takes 19 years at the same
sensitivity

Quality Comparison:

x-axis: alignment rank

y-axis: alignment score §
both axes in logarithmic scale BT

T . N
RN

A. thaliana chr 2 vs 4 T e
E. Coli vs H. influenza
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PattternHunter 1I:
-- Smith-Waterman Sensitivity, BLAST Speed

(Li, Ma, Kisman, Tromp, J. Bioinfo Comput. Biol. 2004)

= The biggest problem for BLAST was low sensitivity
(and low speed). Massive parallel machines are built
to do S-W exhaustive dynamic programming.

= Spaced seeds give PH a unigue opportunity of using
several optimal seeds to achieve optimal sensitivity,
this was not possible by BLAST technology.

= We have designed PH II, with multiple optimal seeds.

= PH II approaches Smith-Waterman sensitivity, and
3000 times faster.

= Experiment: 29715 mouse EST, 4407 human EST.

Sensitivity Comparison with Smith-Waterman (at 100%)

The thick dashed curve is the sensitivity of BLAST, seed weight 11.

From low to high, the solid curves are the sensitivity of PH II using

1, 2, 4, 8 weight 11 coding region seeds, and the thin dashed curves

are the sensitivity 1, 2, 4, 8 weight 11 general purpose seeds, respectively

sensitivity

0.94

092

0.9 20

30

- D] I 50
alignment score

‘ Speed Comparison with Smith-Waterman

= Smith-Waterman (SSearch): 20 CPU-
days.

= PatternHunter II with 4 seeds: 475
CPU-seconds. 3638 times faster than
Smith-Waterman dynamic programming
at the same sensitivity.
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i Translated PatternHunter

= Has all the functionalities of

= Blastp

= tBlastx — with gapped alignments

= tBlastn, Blastx — with gapped alignments
= More sensitive and faster — new

algorithm replacing 6-frame translation

Alignment comparison: tBLASTx vs tPH

tPH: 253 seconds
tBLASTx: 807 seconds

sjuswubije Jo JaquinN
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1600 - \
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1200 - \\
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400 -
200 +

— BLAST
—PH
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Alignment score

Unique Alignments: tBLASTx vs tPH

]

Unique
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N W wd
oo OO

B

160
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—BLAST
—FPH

Alignment score

Old field, new trend

= Research trend

= Over 30 papers on spaced seeds have appeared
since our original paper, in 2 years.

= Many more have used PH in their work.

= Most modern alignment programs (including
BLAST) have now adopted spaced seeds

= Spaced seeds are serving thousands of users/day
= PatternHunter direct users

= Pharmaceutical/biotech firms.

= Mouse Genome Consortium, Nature, Dec. 5, 2002.

= Hundreds of academic institutions.

Running PH

Available at: www.BioinformaticsSolutions.com
Java —-Xmx512m —jar ph.jar —i query.fna —j subject.fna —o out.txt

-Xmx512m --- for large files

-j missing: query.fna self-comparison
-db: multiple sequence input, 0,1,2,3 (no, query, subject, both)
-W: seed weight

-G: open gap penalty (default 5)

-E: gap extension (default 1)

-q: mismatch penalty (default 1)

-r: reward for match (default 1)
-model: specify model in binary

-H: hits before extension

-P: show progress

-multi 4: use 4 seeds

Conclusion

Best ideas are simple ones. I hope I have
presented one such idea today.

Open questions:

= Polynomial time probabilistic algorithm for
finding (near) optimal seed, multiple seeds.

= Tighter bounds on why spaced seeds are
better.

= Applications to other areas.
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Conclusion — continued

Another simple idea applied to data mining: from
irreversibly computing 1 bit requires 1kT energy
(von Neumann, Landauer), W& derlve(_:l shared information
d(x,y) between x,y, to classify

= Species & genomes, Li et a/, in Bioinformatics, 2001
Chain letters, Bennett, Li, Ma, Scientific American, 2003
Languages, Benedeto,Caglioti,Loreto, Phy. Rev. Let."02
Music, Cilibrasi, Vitanyi, de Wolf, New Scientist, 2003
Time series/anomaly detection, Keogh, Lonardi,
Ratanamahatana, KDD'04. They compared d(x,y) with
51 methods/measures from SIGKDD, SIGMOD, ICDM,
ICDE, SSDB, VLDB, PKDD, PAKDD and concluded our
method the simplest & best --- Keogh tutorial ICDM'04.

PH 2-hit sensitivity vs BLAST 11, 12 1-hit

menstdly

1

aa

a.ar

'2h|m|u|u'u|umuyc""_—

MU —

allgrment msare

10daa

10aa

a
a

FH —

1 —

B
WEZ2] ——

100 100 1000

algnmesm rark

Natura enim simplex est,
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Dynamic graph
algorithms with
applications

Mikkel Thorup
AT&T Labs—Research

Dynamic data structures in static
problems

Standard example: priority queue in greedy al-
gorithm such as Dijkstra’s single source short-
est path algorithm.

Here we consider dynamic graph algorithms
maintaining properties and objects in a chang-
ing graph.

Dynamic graph algorithms

Updates
w
delete (v,w)
—————— el
nsert (vw)
Connectivity disconnected? connected (v,w)

OJONG=>

2-edge-connectivity bridge? 2-edge-connected (v,w)

) C==o

articulatiion point?

X0 &=

Minimum spanning tree (MST)

Biconnectivity biconnectied (v,w)

Update MST during insertion and deletion

Applications

e Constructing tree from homeomorphic sub-

trees
//\ /\\\
K/ N/ N . // \
/\ c b /\ /
/ \ /N
\ /
a b c d a b ¢ d

e Unique perfect matching

We shall also talk about dynamic shortest paths
and their applications.
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Connectivity of G = (V, E), |V| =n,
during m updates, starting E = 0.

Maintain spanning forest F

(for dynamic forest F' “everything" takes O(logn)
time)

insert((v,w)) if v and w disconnected in F,
F:=FU{(v,w)}

delete((v,w)) if (v,w) € F, seek replacement
edge from E reconnecting F \ {(v,w)}

5
D

Introduce levels £ : E — {0, ..., |logan|}

Gi=(Vi{ee E:l(e) >1i})

(i) F ¢-maximal spanning forest
= F; = F'NG; spanning forest of G;

T

(ii) Components of G; contain < n/2% vertices.

Idea: amortize over level increases

Insert((v,w)): £((v,w)) := 0.
If v and w disconnected in F, F U {(v,w)}

Delete(e): If e € F, F := (F\ {e}) UReplace(e)
6

Replace(e)

For i := £(e) downto 0 do
> no replacement edge on level > ¢

L :

mI<I7

> level i replacement connect Ty and T
> |T1] < /21
For all level i edges f € Ty: £(f) :=1i+1.
Consider level ; edges (v,w), v € Ty, one
by one:

If w¢ Ty, return {(v,w)}.

Else ¢((v,w)) :=1i+ 1.

Return 0

Each statement iterated < mlogsn times
A each statement supported in O(logn) time
= O(mlog?n) total time.

Decremental MST of G = (V,E), |V| = n,
|E| = m.

Maintain minimum spanning forest F

delete((v,w)) if (v,w) € F, seek lightest re-
placement from E reconnecting F\ {(v,w)}

Introduce levels £: E — {0, ..., [logan|}

Gi=(Vi{ee E:l(e) 214})

(i) F ¢-maximal spanning forest
= F; = F'NG; spanning forest of G;

ii) Components of G; contain <n 2t vertices.
k2

Initially F minimum spanning forest
and Ve € E : £(e) =0

Delete(e): if e € F, F := (F\ {e}) UReplace(e)
8

406 —




Replace(e)
For i := £(e) downto O do
n )

Ml <17

For all level i edges f € T1: £(f) :=i+1.
Consider level i edges (v,w), v € T1, one
by one, in order of increasing weight:
If w g Ty, return {(v,w)}.
Else £((v,w)) :=14+ 1.
Return 0

— fully-dynamic polylogarimic MST using gen-
eral reduction of Henzinger and King (ICALP'97).

2-edge-connectivity of G = (V, E), |V| =n,
during m updates, starting with E = 0.

Maintain spanning forest F

(v,w) € E covers path v---w from » to w in F

Lem z and y 2-edge connected <= z---y
covered.

10

Introduce levels £: E\ F — {0, ..., [logon]}

G;=(V,Fu{e€ E: £(e) >1})

(i) 2-edge connected components of G; con-
tain < n/2* vertices.

For each f € F maintain highest level of cover-
ing edge, denoted c(f). If f bridge, c(f) = —1.

Connected(z,y): Ye€z---y :c(e) > 0.

Insert((v,w))
If v and w disconnected in F,
FU{(v,w)}.
c((v,w)) := —1.
Else
£((v,w)) :=0
call Covert((v,w))

Cover((v,w))
For all f € v---w with c¢(f) < £((v,w)),
c(f) = (v,0).

11

Delete(e)
ifecF,
swap e in F with covering edge f on
highest level
(c(f), €e)) == (€(f), c(e))
e:=f

Cover only called O(mlogn) times, each at
polylogarithmic cost using data structures for
dynamic forests.

12
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Applications

13

Constructing tree from homeomorphic subtrees

Reduction to decremental connectivity by Hen-
zinger, King, and Warnow (SODA'96)

Small trees represented as triples ((a,b),c) € T'
with a,b,c € A.

Obs If ((a,b),c) € T, a and b must descend
from same child of root.

Make child for each component of G = (4, {(a,b) :
((a,b),c) €T})

This resolves all triples ((a,b),c) with ¢ discon-
nected from b (and a) in G.

Grandchildren found by removing edge (a,b)
for each resolved triple ((a,b),c).
14

Unique perfect matchings

Reduction to decremental 2-edge connectivity
by Gabow, Kaplan, and Tarjan (STOC'99)

Lem (Kotzig 1959) A unique perfect matching
has a bridge.

Constructing unique perfect matching, if any
M =0
While component C of G has bridge (v, w)
If components of C \ {(v,w)} both have
odd number of vertices,
M := MU {(v,w)}.
Delete all edges incident to v and w
from G.
Elseif components of C \ {(v,w)} both
have even number of vertices,
Delete (v,w) from G.
Else G has no perfect matching. EXIT.
If G empty, return M;
Else G has no perfect matching.

15

...another application

Thm (Petersen 1891) Every bridgeless 3-
regular graph has a perfect matching.

Biedl, Bose, Demaine, and Lubiw (SODA'99)
have used dynamic 2-edge connectivity to con-
struct such a perfect matching in O(n) time,
improving over the bound the O(n3/2) obtained
using the general time bound for matching when
m = O(n).

16
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Shortest paths: some techniques

Ramalingam and Reps suggested lazy Dijkstra
for single source shortest paths.

e Running time proportional to # edges in-
cident to vertices changing distance from
source.

e Works great in practice.

Recent break-through by Demetrescu and Ital-
iano on all pairs-shortest path:

e Each vertex update supported in O(n?2) time.
e Works even better in practice.

e Current best has update time
O(n2(log n 4 log?(m/n)) and works for ar-
bitrary weights [Thorup].

17

Internet traffic engineering
Demand of 1 for (s,t) and (u,v)

General routing: max load 2/3

S T
u \2
Shortest path routing: max load 1 or 3/4
s L t
1 1
1 1 1
1 1
u L v
s S t
10 10
1 1 1
1 1
u 3 v

18

Optimizing shortest path routing with
dynamic shortest paths [Fortz Thorup]

Finding weights minimizing max utilization
(load/capacity) within factor 3/2 is NP-hard.

Cisco default: link weight inverse of capacity.
Local search heuristics

Iteratively change a weight that reduces max-
utilization.

When inner loop tries a weight change, new
shortest path routes are found and evaluated.

Ramalingam and Reps gave speed-up by factor
15 with 100 nodes and 300 edges.

Gained 50% over Cisco default on AT&T IP
backbone.

Got within few percent of optimal general rout-
ing.
19

Concluding remarks

Talked about dynamic graph algorithms and
their applications in solving static problems

Similar to priority queues in greedy algorithms
Challenge: dynamic reachability between fixed

s and t for sparse graphs
— better augmenting paths max-flow algorithms.

20
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Joint worle with:
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arn Gupta, CMU
Pal, DIMACS
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The caple company problerr)

s Future demzand
unknowr, yet cable
compzany neeads to
build now

s Where should cable
cormnpzny install
canlas?
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s Future dernand
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cormpany neads to

build now N
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Tne caple company problerr)

= Future dermand
unknowr, yet cabl
cornpany neads to
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» Forecasts of ¢ ;o::]bl@ e ]
future dernzands exist

s Where should caz)le
cormparny install a
cables?

Kenan-Flagler, 1/26/04 Boosted Sampling 8

Tne caple cornpany proolerm

= Future dernand

unknowrn, yet caole @ 8 »
cormnparny needs to L]
build now ) @
s Forecasts of possible ﬁﬁ 8 @
future dernancds 2st )
o
= Where should cable
company install @
cables? T
Kenan-Flagler, 1/26/04 Boosted Sampling )

Tne cable cornpany proolerr)

s Future dermarnd
unknown, yet cable @ @
cormnpany neads to
builc now )

= Forecasts of gossule & & g
future dernancds 2st

s Where < 'noulrl cable ]
cormparny install @
cables?
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Tne caple cornpany proolerm

® FUture dem:mrl

@&
unknowr, yet cable 8 o ® %,
cornparny needs to
ouild now @ L)

s Forecasts of possible g @
future dernands exist @

s Where should cable
company install @&

cables? e
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Outline Stochastic optirmnization
s Votivation: Thne cal)le cornpzny proolerr) Classical optirnization assurnad
s Model and literature review deterministic inputs
s Solution to the a'JJe cornparly problern
s General covering or OJJ@m
s Scenario dependent cost rnodel
Kenan-Flagler, 1/26/04 Boosted Sampling 13 Kenan-Flagler, 1/26/04 Boosted Sampling 14
r L= ﬂ' .t by = ~F " 1
Stocrastic Or)l‘Jm ization Stocnastic Or)l’Jml <Itior)

= CJass‘,aJ optirmization assurned

rrninistic inputs

= J\Jee cl for rmodeling data un
uickly realized [Dantzig 'S

[
L'L‘
LD

ertainty

ce
5, Bealz 61

Kenan-Flagler, 1/26/04 Boosted Sampling

m Classical optirnization assurnes
deterministic inputs

s lNead for modeling data uncertainty
quickly realized [Dantzig 'S5, Beale '61]

m [Birge, Louvezux ‘97, lein Haneveld, van

der Vierk "99]
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Moclel

Two-stage stochzstic opt, with recourse
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Mode]

Two-stage stochastic opt, with recourse

s Two stages of decision rmaking, with
limited inforrmation in first stage
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Two-stage stochastic

Moclel

opt. wWith recourse

Two stages of dacision rmalking
Probability
stage data

distribution governing
and costs given in 1st

Two-stage stocnastic opt, with recourse
Two stages of dacision rnalking
Probapility dist. governing data and costs
Solution can always be made feasible in
econd stage

()]

Kenan-Flagler, 1/26/04 Boosted Sampling 19 Kenan-Flagler, 1/26/04 Boosted Sampling 20!
Matnernatical rmocde] Martnarmartical rmoclel
ctrigrrizitical rmoce dtrerrietical mo

= ()2 probability space of 27 stage datz = ()2 probability space of 27 stage data
m Extensive forrm: Enurmnerzte over all w e Q)
22

Kenan-Flagler, 1/26/04

Boosted Sampling

Kenan-Flagler, 1/26/04 Boosted Sampling

Kenan-Flagler, 1/26/04

cenario models

U)

Enurnerating over all w e O may lead to

very large problern size

Enurneration (or 2ven approsimation) may
not be possible for continuous dornains

Boosted Sampling
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New rmocdel: Sarnpling Access
"Black box” available wnicn generataes a
sample of 27 stage data with same
distribution a5 actual 27 stage

quirarment on rmodel of
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nzis cess
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Cornputational cornplexity

m Stochzstic optirmization problerns solved
using Mixed Inte J’:‘ Program forrnulations

m Solutiorn tirnes prof
s NP-hardness inherent to problem,
forrnulation: E.g., 2-stage stochast
veuons of MST, Snortest paths are NP-
narcl,

I‘J Ve

Kenan-Flagler, 1/26/04 Boosted Sampling 25

Our gozll

s Approxirmation algorithr using
access

sarmpling

o cable company problern

a General model — axtensions to other problerns

Kenan-Flagler, 1/26/04 Boosted Sampling 26

Our goal

m r\IJI)J’C)/(JJ'J'J"JrJOI' rJUOJ’Jrl'JJ'l'J LJ_)IJ'JJ
cJCCessS

arnpling

a cable cornpany J_)J‘OJIF‘J'J'I

a (General model —
problems)

equences

a Provable guarantzes on soJutiorJ quality

stensions to other

= Conseq

a Minirnal requirements of stochastic process

Kenan-Flagler, 1/26/04 Boosted Sampling 27

Prev]ous Work

1eduling with s
ubstantial work on exact algorithrns [P medr ~5]
Sorme recert :J,)gro/lrrmrlom algorithrms [Ge
Indyl '99; Monring, Schulz, Ustz '99]

s Approximation algorithrs for stochastic models

s Pasource provisioning with polynormial scenarios [Dye,
Stougie, Tormasgard Nav. Peas, Qtrly ‘03]
“Maybecast” St C(log 1) approdimation

_‘_

ochastic d

G

1U7

S
m SC
a
o

=

Steiner trae:
when terminals activate independently [Trnrmorlica,
farger, Minkoff, Mirrokni ‘04]
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Our work

= Approximation algorithms for two-stage stochastic

cormbinatorial optimization

a Polynormial Scenarios mod~J
incl. Vertex Cover, Facil Jr/ Loc
July ‘03, appeared [PCO 04

s Black-boyx modsl: Boosted sampling algorithrm for covering
grongJ vwrn subadditivity — Jen#ml approsirnation algorithrn
[Gupta, Pal, P., Sinha STOC ‘04]

ner trees and netyork design problems: Polynormial

rJoJ moclel, Cornbination of LP rounding and Primal-Duzl

[Gupta, R, Sinha FOCS '04]

rall ¢ ,JJ’D.)J—'J’J’JL \uru \H m\mdm g,
r Shortest paths Sinha,

s Stochastic MSTs under scenario modsl and B »W"uo/ rnodel with)
oJ\/rJorrMHy voundad cost Inflations [Dharndhere, £, Singn, To
appear, [PCO ‘05]
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Palztec

Work

s Approximation algorithms for Stochas
Problems
a Vertex cover and Stelner trees in restricted models studied by
[Irnmorlica, Karger, Minkoff, Mirrokni SODA ‘04
”ourulru for Jrom,ulr Je‘r Cov#r rPPAJ for #P hard Stochastic

tic Cornbinatorial

S

=

Swarny,

stage Stochastic Set Cover [Shrmoys, S

iz script ‘04

o Mu ge b blaclk box model — Extension of Boosted sarmpling
with rejection [Gupta, Pal, ., Sinha manuscript ‘05]

5

Swarny,
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Outline

u lVotivation: The cable compzny proolerr)

aviaw

= Solution to the cable cormpany problem

s General covering oroblern
Scenario dependent cost rmodel

m MVodel and literature r
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Tne caple company problerr)

s Cablz company wants
to install cables to )
serve future dermancd
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Tne caple cornpany proolerm

[

w Cable company wants o » Graph G=(V,£5c)
to install cables to & s Terminals 9, root res
serve future demand s @ = Stelner tres: Vin cost
free spanning 5
L e ®
s Future dermnancd o L) u NP-hard, MST is 2 2-
stochastic, cables get @ appro,‘{, Current best
Ll & : 0 (Pot
expensive next year @ .55 ,I,Jr)rJ; f JJJI'J,
Wit e @& /HJJ/ovJ/\/ 99)
= I/‘/‘rmc ccple; to install w Primal-dual 2-approx
this year? @ (Agrawval, ¥lein, . '91;
ik Gozmans, Williarmnson '92)
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o [T VT cu a L = o -,N" A\ o ==
Stocnastic Mirn. Steiner Tree Stocnastic Mir. Steiner Tree

= Given 2 metric space © . ¢ = Given a metric space R

of points, distarnices c, o of points, distances ¢ o
= Points: possible . o s 15t stage: buy adges
locations of futuire 2t costs ¢,
dernand .
u s « e a e
s Wlog, simplifying
assurnption: no 15t o
stage dernand o o
@ < <
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» Given a metric ,)ace

of points, distances c, . :
s 15t stage: buy edges
at costs ¢,
= 2" stage: Some . R
clients "realized”, buy
adges at cost u.c, to
serve them (o > 1) .

Qo
Pt

» Given a metric space °
of points, distarnces c, o
s 15f stage: buy adges
£ costs c,
s 2" stage: Some .
lients “realized”, buy
dges at cost o.c, to
erve them (o > 1)

U O aN

'y by =)~ QU] ~ iy ~r At (= ~rr _= -
Stocnastic Mir. Steiner Tree Algoritnrn Boosted-Sarriple
» Given a metric space ° . ¢ s Sample frorn the distribution of clients o
of points, distances ¢, times (samplad szt 9)
s 1% stage: buy edgas . 2
at costs ¢,
w 20 stzage: Sorme "
o ]
clients “realized”, buy
adges gt cost 0.c, to o
serve them (o > 1) o
. 2 el
s Minimize exp. cost °
Kenan-Flagler, 1/26/04 Boosted Sampling 39 Kenan-Flagler, 1/26/04 Boosted Sampling 40
P ] re ( - [ rr = -
Algoritnrn Boostad-Sarmple Algoritnrn Boosted-Sample
s Sarnple frormn the distribution of clients o m Sarnple from the distribution of clients o
tirnes (sarnpled set 9) tirnes (sarnpled sat 9)
s Build rinirmurn spanning tree 7,0n S s Build rinimurn spanning tree 7,0n 5
a Pecall: Minirurn spanning tree is g 2- m 20 stage: actuzl client set realized (X)
aporodirnation to Minirurn Steiner tree =
P 7 - Extend 7, to span R
Boosted Sampling 41 Kenan-Flagler, 1/26/04 Boosted Sampling 42
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Algoritnrn Boosted-Sarmple

RN . [
Algoritnrn: Tlustration
s Sarnple from the distribution of cliznts o = Input, with o=3 @ o °
tirnes (sarnpled set 9) o
. P . ' - —~ @
s Build rninirmurn spanning tree 7,0n 5 o
m 2™ stage: actuzl client set realized (7) n
—. el
- Extend fJ to span £
s Theorem: 4-approximation! °
o]
- o
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' e AN _— 1 o
Algoritnrn: Tlustration Algorithirn: Tllustration
s Input, with o=3 d . @ s Input, with =3 & Y *
s Sample o times from o s Sample o tirmes from )
cliznt distribution . i cliznt distribution . °
u u
el el
o o
@ *
el *
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Alcjorit Tustratic Alcoritnen: Tlustrartic
r JJF] nren: 1 ISTreItior) ~Algoritnrms HIUSTreltion
s Input, with =3 e . * s Input, with o=37 & . *
s Sample o tirmes fror * s Sample o times frorn *
cliznt distribution . cliznt distrinution .
u u
el el
O &
L] *
L] *
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Algoritnrn;

s Input, with o=37

s Sample o times frorn
cliznt distribution

= Build MST 7,0n 5

IHustration

Algoritnrn: Tl

Input, with =37
Sample o times frormn
client distribution
Build MST 7,0n 5
When actual scenario
(R)is realized ...

—~

2

)

r

-
\

|

£

s

orl
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Algoritnirm: Tllustratic Analysis of 15t stage cost
Algoritnrms HIUStreltiorn Arlelysls or 1= stalge cost
= Input, with =3 w Let
s Sarmple o times frorm
client distribution
s Bulld MST 7,0n 5
s When actual scenario
(R) 15 rezlized ...
s Extend 7,to span ~
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Az f 15t stage cost \nalvsis of 15t stace cost
el /J 17 stege cost Arlelysls or 1= stelge cost
s let s let
= Claim: = Claim
s Our o samples: 5={5,,
5 s Tt
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U
&

Anzlysis of 15 stage cost
w Let
s Claim:
s Our o samples: 5={5, 9, ..., 5.}

Kenan-Flagler, 1/26/04 Boosted Sampling

e Our o samples: 5=79,

'y e

9

o
7

Kenan-Flagler, 1/26/04 Boosted Sampling

Analysis of 27 stage cost
u Intuition:
o 15t stage: o samples at cost ¢,
w27 stage: 1 sample at cost o.c,

Kenan-Flagler, 1/26/04

Boosted Sampling

q
Q
()]

Analysis of 27 stag

s Intuitior:
‘ o samples at cost ¢,

1 sample at cost o.c,

Kenan-Flagler, 1/26/04

Boosted Sampling

-

Analysis of 279 stz

[Gm'y

Ste

-

cos

Q
@

s Intuition:

o 1% stage: o samples at cost ¢,
a2 stage: 4 sample @t cost o.¢
I expectation,

@

u 2nd scage cost <

r)

m BUE
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w Claimn: Efoc(T,)] < E[c(T,)]
s Proof using an auxiliary
structure
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Analysis of 2

Clairn: Eloc(T,)] 5 Ec(T,)]

beanMSTon U S

Boosted Sampling Kenan-Flagler, 1/26/04

Analysis of 27

Clairn: ,—[jr(/‘)/_ Ec(T,)]
Let Toobzan MSTon R U S
Associate each node ve 7,
with its parent edge ,J/'(/),

ClTrs)=C(PH(R)) + c(pH(S))

Kenan-Flagler, 1/26/04

Associate each node ve /',(/
with its parent edge pi(v);

(1) =C(pif7) + c(oH(5)

o(Tp) < c(pt(R)), since 7,
was the cheapest possible
way to connect # to 7,

Boosted Sampling Kenan-Flagler, 1/26/04

Analysis of 2nd

Clairn: Efoc(T,)] < £c(T,)]

Let Tobzan MSTon R UG
Associate each node ve 7,

with its parent edge pi(v);
A(Tpe)=c(pi(R)) + c(pi(5))
(1) = c(pi(i)

E[c(pi(R))] < E[c(pH(S))I/o,
since Xlis 1 sample and 5
is o samples from same
process

Kenan-Flagler, 1/26/04

Analysis of 20d

Clairn: Eoc(T,)] 5 Ec(T,)]

Let 7obzan MSTon KU S
ich node ve 7,

Associate
with its parent edge pi(v);
A Ty)=C(pi(R)) + c(pil5))
(1) < clpi(i)

E[e(pi(R))] = Eelpi(Z)))fo

Api(S) < ATy,
since pi(5) U pi(R) is @
MST while adding pi#) to
Ty spans R US

(Gl

Boosted Sampling Kenan-Flagler, 1/26/04

Analysis of 2nd

T < ET(T,)]

nMsTon % J_J

with its parzent eclge pf(v),:'
o(The)=c(Di(R)) + c(Di(5))
(1) = c(pi(R))
E[c(pi(R))] = Elc(pi(S)) /o
o(pi(5)) < o(71y)

Chain inequalities and claim
follows

Boosted Sampling
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recap

PUFEAS

s Algorithrn for Stocnastic Steiner Tree:
a 15t stage: Sample o times, build MST

a 2 stage: Extend VST to realized clients

recap
iner Tree:
build MST
rezlized clients
AND-SAMPLE

faistic Steiner

= Algorithirn for Stochastic S
a 15t stage: Sample o times,

e: Extend MST to

= I’neorem, Algorithirn "’OFSJ‘
is 2 4-approsimation to Stoc
Tre

[

Kenan-Flagler, 1/26/04 Boosted Sampling 67 Kenan-Flagler, 1/26/04 Boosted Sampling 68
T ryem i ith shori
recap Copirg witn snortcornings
s Algorithrn for Stochastic MST: Specific problem, in a specific model
o 1% stage: Sample o tmes, build MST a Boosted Sampling works for more general covering problerms
1= stagerl e =2

a2 scage; Exter JrJ MST to recILed clients
= Theorem: A L
(J,J,JJ‘OAJJ’J’J(JFJJH to Stochnastic Steiner Trez
u DJ’JOJ’ECOJ’J’JJJ’J_,JJ)
Specific problern, in 2 spacific model

2
o Cannot adapt to scenario rmodel with non-correlzted
cost changes across scenarios

a

Kenan-Flagler, 1/26/04 Boosted Sampling 69

with subadditivity - Solves Facility location, vertex cover

Skip general model (details in STOC 04 paper)
Cannot adapt to scenario model with scenario-
dependent cost inflations
o A comnbination of LP-rounding and prirmal-dual methods solves
the scenario model with scenario-dependent cost Inflations; Also
nandles risk-bounds on more general network desigr,
Skip scenario model (details in FOCS 04 paper)

Skip both

Kenan-Flagler, 1/26/04 Boosted Sampling 70!

Outline
u lVotivation: The cable compzny proolerr)
s Model and literature review

m Solution to the cable cornpany problern
» General covering problem

s Scenario dependent cost rmodel

Kenan-Flagler, 1/26/04 Boosted Sampling 71
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General Mocle

~

s U/ universe of potential clients (2.9,

terrminals)

m (: elements which provide service, witn
elernent costs ¢, (2.9., edges)

s Given 5 < U, set of feasivle sol'ns |
Sols(5) = 2f

s Deterministic pro oblern: Giver 9, find
rinirnurn cost A= Sols(9)
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s Element costs are ¢, in first stage and o.c,
in second stage
m In second stage, clientset 5 < U s

realized with probaibility o(5)
s Objective: Cormpute 7, and 7~ to rminirmize
c(Fy) + Elo c(F)]

wriere /), U Fr e Sols(9) forall 9

Ih
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Sarnpling access rmoclel

m Szcond stage: Client set
orobavility o(5)

e We only require sarmpling access

a Oracle, whern queried, gives us a sample
scenario D
I

S appears withn

Identically distributad to actual

second stage

Kenan-Flagler, 1/26/04 Boosted Sampling 74
V=in roclFe Deavie r) e~ Tre A ! ISR
Main result: Preview Pequirerment: Sup-additivity
s Given stochastic optimization problerm with cost s IfS rmrJ 57 are legal sets of clients, then:
inflation factor o : a5 U 5 isalso a legal client set
Generate o samoles: 0, 0., ..., D, — - -
o 7 vy e ‘ u Forany Fe Sols(9) and A e Sols(57), we
a Use deterministic approdmation algorithrn to cormpute e b £ e o sy
= - Sols also have £ U A = Sols(50 57)
Fye Sols(ul)) -
s Whern zcc ual second stage 5 is realized, augmeant by
selecting 7
s Theorerm: Good apoprodimation for stochastic
problem!

Kenan-Flagler, 1/26/04 Boosted Sampling 75 Kenan-Flagler, 1/26/04 Boosted Sampling 76
I‘f T Ar)yr [ Vi = 1= A r 4 ~r b e~
Lacuirernent: Approximation) Crucial ingradiznt: Cost snares

s There is an a-approdmation algorithrn for » Pecall Stochastic

de errr“r“_)r]p J_)rD_)J'_']T] a rJO\JJ'](JIJ'J_J 2nd 5 d alloca i']J'J the COSt
- P of an MST to i inc surniening U
Given any 5 < U, can find F= Sols(5) in carefully (ausdliary structure)
polynornial tirne such that: P—
’)J/: = o ] s Cost sharing function: way of distributing
c(F) < curmin {c(F): 7= S0ls(5) solution cost to clients
s Originated in darnez theory [Young, ‘94, adaptad
to approdimation algorithms [Gupta, Kumar, Pal,
Poughgarden FOCS ‘03]
Kenan-Flagler, 1/26/04 Boosted Sampling 77 Kenan-Flagler, 1/26/04 Boosted Sampling 78
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Pequirernant: Cost-snaring
wc: YU — Pisa f-strict cost sharing
function for £{~:JI),)J”O/JJ'J'Jrl|’JJJ'l \ if:
aé(5j) > 0onlyif j=
8 2jesS(5)) < c(OF fb))
alf 57 = 50U 7, A(5) s an a-approg. for 5 an

~

Aug( ) providas a solution for augmenting
r\(J) also serve 7, then

(o
ZyrS(57)) = (B ) c(Aug(5 7))

d

Main theorerm: Formzl

s Given a sub-additive problerm with o-
approdrnation algorithm A and B-strict cost
sharing function, the following is an (a-+f8 )-
approdrnation algorithm for stochastic variant:
o Generate o samples: D), D, ..., D,

o First stage: Use algorithrn A to cormpute 7, 25 an
c~approdmation forw L,

u Second stage: Wher)
algorithm Aug(u 0, 5') to compute

actual set 5

=

Kenan-Flagler, 1/26/04 Boosted Sampling 79 Kenan-Flagler, 1/26/04 Boosted Sampling 80!
First-stage cost Second-stage cost
s Samples 0, Algo A generates £, € Sols(u D)) s [ samples, 5 actual 279 stage, define 57= 5 U 2,
s Define optimurn: 27 = c(F,7) -+ 2 p(5)o.c(F) s c(F) < B.E(575), by cost-sharing function defr,
s By sub- erJ(J]'r]v"r// w 2(5,0D,)+ .. +E(5,0,)+¢(5,5) < c(OPT(SY))
FO Ay o u Ayt e Sols(u D) 8 57 has o+ client sets, identically distributad:
s Since Als a-approdimation, E[£(57,5) < F[F(OHJ‘(; )/ (o+1)
LR W < o)+ 2ol o C(OPT(S) < ofF)) + o) # o+ clF) + <lFS),
o Elc(F) )llu < oF))+ 2 ELc(F)] by sub-additivity
< o) o ZpE) AR = 2 o ELC(OPT(S))] < o)+ 5+ ELLlF)) < (0+1)2 /5
s Therefore, first-stage cost E[c(F))] < 2" s E[o.c(F)] < B.Z°, bounding szcond-stage cost
Kenan-Flagler, 1/26/04 Boosted Sampling 81 Kenan-Flagler, 1/26/04 Boosted Sampling 82
11 - t b=yt A Are T ~r
Outline Stochastic Steiner Tree
L e ) | | Cicob otz () e T
u lVotivation: The cable compzny proolerr) = Firststage: &, 7 given . .
Model d literature review s 2" stage: one of m
= Model and literature review scenarios occLrs: .
m Solution to the cable cornpany problern @ Terminals 5 . °
. o Probability o,
General covering problern o Edge cost inflation Factor o, .
= Scenario dependent cost model °
S L] ]
T Second stage edges
Kenan-Flagler, 1/26/04 Boosted Sampling 83 Kenan-Flagler, 1/26/04 Boosted Sampling 84
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i b g @M -
Stocnastic Steiner Tree
w First stage: G, rgiven . . .
= 2" stage: one of
scenarios occurs: o
s Terminals 5, R .
s Provabllity o,
s Edge cost mrlrmon factor o, . o
= f ‘ @
e ® *

— Second stage edges

TOUTE span 5,

Stochizistic Stelner Tree
s First stage: G, rgiven . . .
s 2" stage: one of m
scenarios occur
o Terminals 5, R &
o Probability g,
s Edge cost inflation factor o, o
s Objective; 1% stage tree e
79, 2 stage trees 7 st
L] »

First-stage edges

Kenan-Flagler, 1/26/04 Boosted Sampling 85 Kenan-Flagler, 1/26/04 Boosted Sampling 86
latt =)~ Cralmiar Troac r
Stocnastic Steiner Tree e

] e: G, ryivern : ®

L= o *
m 279 stage: one of m m
scenarios occurs:
o Terminals 3, . . L)
o Propability o,
o Edge cost inflation factor o, o
s O‘Jject]vﬁ‘ stage tree o =
77, 20 stage trees
. o
79T Jr)rm 5, TOUTE span 5,
Blue scenario realized Second stage for realized scenario

Kenan-Flagler, 1/26/04 Boosted Sampling 87 Kenan-Flagler, 1/26/04 Boosted Sampling 88
Stocrnastic Stainer Trea [ree solutions
DLOCESTIC otelner Iree ree solUtiors

s G, river ! Exarmnole with 4 scenarios &
G, rgive ~ o . B clarmple WITn 4 scenarios ®
" one of 7 and g=2 .
S OCCLUfS -
o Terminzls 5, ° * ¢
o Probability g, . . e @
s Edge cost inflation factor o, T ®
) L o @ LJ
= ¢ S
° o)
J— . [}
M a 0 r — _
= Minimize C(/)rr[ (7)] T o=2 A
Skip Algorithrm
89 Kenan-Flagler, 1/26/04 Boosted Sampling 90!

Kenan-Flagler, 1/26/04 Boosted Sampling
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w Eample with 4 scenarios

. e
and o=2
y g ®
s Opftimal solution rnay o
hzive lots of components! o © @
o—ea
T [ ]
@ * o
@
@

First-stage sol'n

s Example with 4 sce

Trea solutions

2

rnarios
and o=2

s Optirnal solution rmzy
have Io'rs of fom,)onents‘!

Near-optimal @
tree solution

Kenan-Flagler, 1/26/04 Boosted Sampling 91 Kenan-Flagler, 1/26/04 Boosted Sampling 92
IP forrnulation IP forrnulation
= Tree solution: Frorm any (27-stage)
terminal, path to root consists of xactly
two parts: strictly 27%-stage, followed by
strictly 1%-stage
s IP: Install edges to support unit flow alorg
such patns frorn each terminal to root
Kenan-Flagler, 1/26/04 Boosted Sampling 9 Kenan-Flagler, 1/26/04 Boosted Sampling 94
. o e . Ko e
[P formulation [P formulation
Boosted Sampling 95 Kenan-Flagler, 1/26/04 Boosted Sampling 96/

Kenan-Flagler, 1/26/04
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1P formulation

IP formulation

Kenan-Flagler, 1/26/04 Boosted Sampling 97 Kenan-Flagler, 1/26/04 Boosted Sampling 98
TE) B s TR E-. . L
IP forrnulation IP forrnulation
Kenan-Flagler, 1/26/04 Boosted Sampling 99 Kenan-Flagler, 1/26/04 Boosted Sampling (0]0)
ay . @ RN ~ .
Algoritnrn overview Algoritnrn overview
s (Lo r) % Optimal solution to LP relzasation s (o) & Optirnal solution to LP relasa@tion
s 1% stage solution:
o Obtain @ naw graph &7 where 247 forms 2
fractional Steiner tree
o Pound using prirnal-dual algorithrn; this is 77
Kenan-Flagler, 1/26/04 Boosted Sampling 101 Kenan-Flagler, 1/26/04 Boosted Sampling 102
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Algoritnrn overviey

w (o) & Optimnal solution to LP relaxation
s 1% stage solution:

1 Obtain 2 new graph G7 whare 27 forms 2
fractional Steiner tres
o Pound using prirnal-dual algorithrn; this is 77
= 2" stage solution:
Exarmine rernaining terrminals in 2ach scenar]o
u J biair 7%

Kenan-Flagler, 1/26/04

rmodifizd prirmal-dual memorl o

Boosted Sampling 103

~E e r
First stage
s Examine fractional paths .
for 2ach terrminz)
Terminal

Kenan-Flagler, 1/26/04

Boosted Sampling

Second stage

First
stage

104

First s

w Examineg fractional paths
for sach terrminal
s Critical radius: Flow

Q)
(-1~
o)
(G}
©

First
s Edamine fractional paths
for =ach terrminz)
s Critical radius: Flow

-

“transitions” frorm 2nd- First “transitions” frorn 209~
stage to 1-stage stage stage to 1%-stage
s Construct critical radii for
all terminals
T~ Critical radius
Kenan-Flagler, 1/26/04 Boosted Sampling 105 Kenan-Flagler, 1/26/04 Boosted Sampling 106
| PP » r | r
First stage First stage
s Critical radius: Fractional . @ = Critical radius: Fractional . @
flow “transitions” from : flow “transitions” frorm
2nd-stage to 1%-stage 2n-stage to 15-stage
<]
w Construct twice the s Construct tyice the c.r,

critical radii for all
terminals

Kenan-Flagler, 1/26/04 Boosted Sampling
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for all terminals

= Exarnine in increzsing
order of c.r.

s R« independent set
based on 2 % c.r.

Kenan-Flagler, 1/26/04 Boosted Sampling




Clomts e s
First stage
w Critical radius: Fractional . @
flow “transitions” frorm
2-stage to 19-stage
&

s Construct twice the c.r,
for all terminals

s Examine in increasing
order of c.r.

s R’ independent set
based on 2 % c.r.

= Critical racius: Fractional A

First stage

cl

(U]

-
v

—

flow “transitions” from

Y

2-stage to 1%-stage
s Construct tyice the cr

for zll terminzls

s Examine in increasing
order of c.r,

s RY< independent set
based on 2 * c.r.

Kenan-Flagler, 1/26/04 Boosted Sampling 109 Kenan-Flagler, 1/26/04 Boosted Sampling 110
e T T o
First stage First stage analysis
s Critical radius: Fractional r s Critical radius: Fractional :
flow “transitions” from floy “transitions” from
2M-stage to 1%-stage 2n-st:
s Construct tyice the cr ° s A% ind ¢
for all t2rminz based
s Examine in increasing m V&
order of cr. s G4
s /Y& independernt set o around ver o
vased on 2~ c.r, s 20is f
s 7Y & Steiner tree on &Y Stelner
Kenan-Flagler, 1/26/04 Boosted Sampling 111 Kenan-Flagler, 1/26/04 Boosted Sampling 112
First stage analysis Second stage
o A4 independent set ! 7V & .
vased on 2~ cr, s Consider scenario &
s 7Y & Steiner tree on £ ¢ ®
B 'L C °
arouncd
m 2705 f fractional R
Stelner tree for &21n 67
= Extension from vertex to . . '
c.r. charged to segment
from c.r.to 2 » c.r.
(cdisjoint from others
Boosted Sampling 114

Boosted Sampling

-Flagler, 1/26/04
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1ario &

s Corsider scer
Pun Steiner tree
orimzl-duzl on terminals,
stopping rmozat M wnen:

o Idea:

Kenan-Flagler, 1/26/04 Boosted Sampling

115

s /U<
s Consider scenario &

s

15t stage tree

Pun Steiner tre
orirmal-duzal on E:‘J’JTIJI'J:JJ;,

stopping moat /4 yihen:

o Mhits 77

u M hits a stopped moat

w For every terminal in /Y ®
less tha 11 Ve flow leaving M

BT

Kenan-Flagler, 1/26/04 Boosted Sampling

116

er scenario &
Pun Steiner tree
primzl-duzl on terminals
stopping rmoat M whnen:

= Corisic

o Idea:

o Mhits a stopped mozt
o For 'ewr\/ ‘mrminal i /‘//,
ving M

Kenan-Flagler, 1/26/04 Boosted Sampling

117

Second stage

=
(S}

EVCESRE .

s Consider scenario

g

stage
/

Pun Steiner tree
prirmal-dual on terminals,
stopping moat /4 yhen:

m Icez:

o M hits 2 stopped moat
u For every terminal in /Y
than Yz floyy leaving /4

®®

Kenan-Flagler, 1/26/04 Boosted Sampling

)
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1ario &

s Corsider scer
Pun Steiner tree
orimzl-duzl on terminals,
stopping rmoat M wnen:

o Idea:

o Mhits a stopped mozt
o For every terminal In
1) J// flows leaving /4

Kenan-Flagler, 1/26/04 Boosted Sampling

119
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s /7 & st

s Consider s

Pun Steiner tree
orirmal-dual on terminals,
stopping moat /4 yihen:

s Idez:

stopped rmoat
u For every terminal in /,
an Y2 flow leaving M

Kenan-Flagler, 1/26/04 Boosted Sampling

120




= o &~ e
Second stage Second stage
w Idea: Pun Steiner tree r w Idez: Pun Steiner tree H
prirmal-duzal on terminals, prirnal-dual on terminals, t
stopping rmoat /4 when: stopping moat /4 vinen:
a Mhits 77 o Mhits 77
a Mhits @ stopped mozt s Mhits a stopped moat
o For avery terminal in /4, o For avery terminal in /4,
@ lzss than Yz flow leaving M
g is 2M-stage
s If Mhits 77, add edge v s If Mhits M, connect teM
from teMto veR’ N with ¢eM” as in Steiner ¢
tree primal-dual
Kenan-Flagler, 1/26/04 Boosted Sampling 121 Kenan-Flagler, 1/26/04 Boosted Sampling 122
Secorid srace Seacond stage analysis
SECOrId Stege 2ECOrId stedge drlalysis

s Idea: Pun Steiner tree
primal-duzal on terminals,
stopping rmoat /4 when:

a Mhits 79
o Mhits 2 stopped mozt
= For every terminal in #,

less than V2 flow leaving M

is 2nd-stage

s There exists teMand
veR’ s.t. v within 4 % c.r.
of ¢; connect ¢ to v

Kenan-Flagler, 1/26/04

Bt

Boosted Sampling 123

= Primal-dual accounts for
edges inside moats

ot

Kenan-Flagler, 1/26/04 Boosted Sampling 124

Second stac

al accounts for
e de moats
s Connector edges paid by
carefully accounting:
o Primnal-dual bound
r

a For every terminal £ thers
;

is veR within 4 < c.r. of

Kenan-Flagler, 1/26/04

e analysis

~

Boosted Sampling 125

SST: main result

—

Stochastic Steiner Tree
(Irnproverment to 16-
approx possible)

s Method: Primzl-cuzl
overlaid on LP solution

s 24-approximation for

s Extensions to more
general natworl design
with routing costs

s Per-scenario risk-bounds

incorporated and rouncdead

Kenan-Flagler, 1/26/04 Boosted Sampling 126
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Main Techniques in otner resul

= Stochastic Facility Location — Pounding natural LP
rormuurlon using filter-and-round (Lin-Vitter, Shrmoys-

ts

lardos-Azrdal) carefully [Details in TPCO ’O’j
s Stochastic Minimurmn Spanning Tree — Both scenario and
blacl-box modeals - Pandornizad rounding of natural LP

formulation gives nearly best possible O(log [No, of
verticas] -+ log [rnax cost/min cost of 2n edge across
scenarios]) approdmation result [Details in IPCO ‘05
= Multi -stage general covering problems — Boosted
sarnpling with rejection b 1s2d on ra jtio of scenario’s
mrJ 1tion to rmandrmnurm r)o;: ble worls [rmzanuscript]

Kenan-Flagler, 1/26/04 Boosted Sampling

127
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surnrnary

= Matural boosted sarmpling algorithen yworis for 2 broad

class of stochastic problems in black-bos rmodel

= Boosted sampling with rejection extends to multi-stage
FO\/F'J’JTU r)ro.)JAmJ in the tlack-box model

w Existing techniques can be claverly adapted for the

scenario model (E.g., LP-rounding for Facility location,

orimal-dual for Vertex Covers, cormbination of both for

teiner trees)

= Pandornized rounding of LP formulations worlks for

blacik-box formulation of spanning trees

n

)

o

Kenan-Flagler, 1/26/04 Boosted Sampling
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More approximation algorithms for

Sochastic Optimization

W ay of modeling

chasti mi ams
sto C programming progr * Exact data is unavailable or expensive — data is
uncertain, specified by a probability distribution.
. W ant to make the best decisions given this
David B. Shmoys uncertainty in the data
. . . * Dates back to 1950’s and the work of
Jbint work with Chaitanya Svamy « Applications in logistics, transportation models,
Ca Tech financial instruments, network design, production
planning, ...

Two-Sage Recourse Model 2-Sage Sochastic Facility Location
Given : Probability distribution over inputs © ., © o o Digributionover dientsgves
Sage | : Make some — plan ahead ° u O - the set of dlients to serve.

o J . e o ® = Stage I: Open some facilities in
Observe the actual input scenario. © advance; pay cost f, for facility i.
Sage I1: Take . Can augment earlier [ facity W stagel faclity  Stage I cost = 2 ; gpeneq) fi-

solution paying a . © client set

Choose stage I decisions to minimize
(stage I cost) + (expected stage 11 recourse cost).

2-Sage Sochastic Facility Location

® 5 © o o Disributionover dientsgves
- O the set of clients to serve.
@ |
e O ® = Stage I: Open some facilities in

@ advance; pay cost f; for facility i.
O faciity W stagelfaciity  Stage 1 €0st = = eneq) fi-
@ dlient set

How is the probability distribution on clients specified?
« A short (polynomial) list of possibile scenarios;

« Independent probabilities that each client exists;

« A black box that can be sampled.

2-Sage Sochastic Facility Location

R 6

O facility W stage | facility

Distribution over clients gves
the et of clients to serve.
Sace [: Open some facilities in
advance; pay cost f; for facility i.
Sage [ cost = 2 jreneq) fi-

Actual scenario A = { @ clients to serve}, materidizes

Stace 11: Can open more facilities to serve dlientsin A; pay
cost f2 to open facility i. Assign clientsin A to facilities.
Saglicost= 2, i fA + (cost of serving clientsin A).

scenario A
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2-Sage Sochastic Facility Location

DODOK
N

O facility W stage | facility

Distribution over clients gves
the set of clients to serve.

Sace I: Open some facilities in
advance; pay cost f; for facility i.
Sage [ cost = 2 j peneq) fi-

Actua scenario A = { @ clients to serve}, materializes

W ant to decide which facilities to open in stage 1.
Goal: Minimize =
(stage I cost) + E, , [stage 1T cost for A].

We want to prove a guarantee.
Give an algorithm that “works well” on )
and for .

A isan o-approximation agorithm if -

- Arunsin
Sace I1: Can open more facilities to serve clients in A; pay - A(l) £ a.OPT(l) on all instances|.
cost fA to open facility i. Assign clientsin A to facilities
Saplicost=3 . f+ (cost of servingclientsin A). is called the approximation ratio of A.
scenario A
W hat is new here? Our Results
. “ ” * Give the for

* Previous “black box” results all assumed that, for each - .

2-stage discrete stochastic problems

element of the solution (facility opened, edge in Selner _ b?:k_éox el adal

tree) the costsin the two stages are
(stage Il cost) = A(stage | cost).

* Note: 1 in thistalk is the same as ¢ in previous one
* We alow independent stage | and stage Il costs

* Previous reaults rely on structure of underlying
stochastic LPs; we will provide algorithmsto
(approximately) solve those LPs

— no assumptions on costs

* Givea
for alarge class of 2-stage stochastic linear programs
(contrast to Kleywegt, Shapiro, & Homem-DeMillo 01,
Dyer, Kannan & Sougie 02, Nesterov & Vial 00)

* Give another way to “reduce” stochastic optimization
problems to their deterministic versions

Sochastic Set Cover (SC)

Universe U = {e,, ... ,§,€ U, set Shas

weight wg.

,€,}, subsets S, S, ...

: Pick a minimum weight collection of
sets that covers each element.

: Set of elements to be covered is given by
a probability distribution.
choose some sets initially paying wsfor set S
subset A < U to be covered is reveaed
can pick additional sets payingw¢” for set S

Minimize (w-cost of sets picked in stage I) +
Ep u [wA-cost of new sets picked for scenario A].

An LP formulation

For simplicity, consider w* = W g for every scenario A.
pa : probability of scenario A <= U.

Xg :indicatesif set Sis picked in stage I.

Yas - indicates if set Sis picked in scenario A.

Minimize > g ogXs+ 2 pcy Pa ZsWe¥as

subject to,

21 foreachAc U,ecA
for each § A.

exponential number

2 gecsXst ZgecsYas?
X Yas2 0

Exponential number of variables
of constraints.
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A Rounding Theorem

Sochastic Problem: LP can be solved in polynomial time.
Example: polynomial scenario setting

Deterministic problem: o-approximation algorithm A with
respect to s A(l) £ o- for each I.
Example: “the greedy algorithm” for set cover isa

log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an o-approx. algorithm to ¢et a
20-approximation algorithm for stochastic set cover.

Rounding the LP

Assume LP can be solved in polynomial time.

Suppose we have an o-approximation algorithm wrt. the LP
relaxation for the deterministic problem.

Let (x,y) : optimal solution with cost LP-OPT.
Z gecsXs+ ZgecsYas2 | for eachAc U, ecA
= for every element e, either
Zge.sXs2¥2 OR  ineachscenario A tecA, 2 g, sYas2 %2
Let E={e: > g gXg2 Y2}

So (2x) isa for the set E—= can “round” to get
an Stor Eof cost T ¢ qog< o g20ed -
Sisthe first stage decision.

Rounding (contd.)

O ODm O O O M OSts WStinS

o @) ® Hements @ HementinE

Consider any scenario A. Hementsin A N Eare covered.

For everye ¢ AYE it must be that > o, _sYas2 Y2

S (2y") isa for A¥E = canround to
et a set cover of W-cost < a(Zg2W gy, o -

Using this to augment Sin scenario A, expected cost

$ Zgggt 202 oy Pa(ZsWen9d < 20-LP
OPT.

A Rounding Theorem

Sochastic Problem: LP can be solved in polynomial time.
Example: polynomial scenario setting

Deterministic problem: o-approximation algorithm A with
respect to ,A(D) < o for each I.
Example: “the greedy algorithm” for set cover isa

log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an o-approx. algorithm to get a
20.-approximation algorithm for stochastic set cover.

A Rounding Technique

Assume LP can be solved in polynomial time.
Suppose we have an o-approximation algorithm w.r.t. the LP
relaxation for the deterministic problem.
Let (x,y) : optimal solution with cost OPT.
2 gecsXs* ZgecsVas2 1 for eachAc U,ecA
= for every element e, either
Zge.sXs2 2 OR ineachscenario A :ecA, Z g, gYas2 %2

| LtE={e: 3 g oXs> %} |

So (2x) isa for the set E—= can “round” to
et an Sof cost > qug < o Zg2meXd) -
Sisthe first stage decision.

A Compact Formulation

pa : probability of scenario A < U.
Xg :indicatesif set Sis picked in stage 1.

Minimize h(x) = >gogs+ f(x) st. x>0 for eachS
where, f(x) = >, pafa(X)
and fa(x) = min. Zs Wy, g

st.  >gsVas 2 1—2g.sXs foreach
ecA
Equivalent to earlier LVAs > 0 for each S
Each f,(x) is , o f(x) and h(x) are convex functions.
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The Algorithm

1. Get a(1+¢)-optimal solution (x) to corrpact
convex program using the

2. Round (x) using a log n-approx. agorithm
for the deterministic problem to decide
which setsto pick in stage 1.

Obtain a -approximation algorithm
for the stochastic set cover problem.

The Hlipsoid Method

Blipsoid = squashed sphere
Sart with ball containing polytope P.
y; = center of current ellipsoid.

If y, is infeasible, use

to chop off infeasible half-ellipsoid.

Min cx subject to xe P.

The Hlipsoid Method

Blipsoid = squashed sphere
Sart with ball containing polytope P.
y; = center of current ellipsoid.

If y; is infeasible, use

to chop off infeasible half-ellipsoid.

Min c-x subject to xe P.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

The Hiipsoid Method

Blipsoid = squashed sphere
Start with ball containing polytope P.
y; = center of current ellipsoid.
If y; is infeasible, use
to chop off infeasible half-ellipsoid.
Ify,eP,use
cx < ¢y, to chop off polytope, half-
ellipsoid.
New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Min cx subject to xe P.

The Blipsoid Method

Blipsoid = squashed sphere
Sart with ball containing polytope P.
y; = center of current ellipsoid.
Ify; isinfeasible, use
to chop off infeasible half-ellipsoid.
Ify, eP,use
cx < ¢, to chop off polytope, half-
ellipsoid.
New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Min c-x subject to xe P.

The Hlipsoid Method

Blipsoid = squashed sphere
Sart with ball containing polytope P.
y; = center of current ellipsoid.
If y, is infeasible, use
to chop off infeasible half-ellipsoid.
Ify,eP,use
cx < ¢, to chop off polytope, half-
ellipsoid.
New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

cX, isa close to optimal value.

Min cx subject to xe P.

., X, points lyingin P.

Xy Xgy =+
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Hlipsoid for Convex O ptimization

Sart with ball containing polytope P.

Min h(x) subject to xe P. ) PO
y; = center of current ellipsoid.

If y; isinfeasible, use violated inequality.
If y; € P — how to make progress?

add inequality h(x) < h(y,) ?Separation
becomes difficuit.

Hlipsoid for Convex O ptimization

Sart with ball containing polytope P.
y; = center of current ellipsoid.

Min h(x) subject to xe P.

If y; is infeasible, use violated inequality.
If y, € P — how to make progress?
add inequality h(x) < h(y;)?Separation
becomes difficult.
Let d = subgradient at ;.
use subgradient cut d-(x-y;) < 0.

Generate new min. volume ellipsoid.

d € R"isasubgradient of h(.) at u, if for every v, h(v)-h(u) > d-(v-u).

Hiipsoid for Convex O ptimization

Sart with ball containing polytope P.

Min h(x) subject to xe P. Lot
) y; = center of current ellipsoid.

If y; isinfeasible, use violated inequality.
If y; € P — how to make progress?
add inequality h(x) < h(y;)?Separation
becomes difficult.
Let d = subgradient at ;.
use subgradient cut d-(x-y;) < 0.

Generate new min. volume ellipsoid.

d € R"isasubgradient of h(.) at u, if for every v, h(v)-h(u) > d-(v-u).

Hlipsoid for Convex Optimization

Sart with ball containing polytope P.
y; = center of current ellipsoid.

Min h(x) subject to xeP.

If y; is infeasible, use violated inequality.
If y, € P — how to make progress?
add inequality h(x) < h(y)?Separation
becomes difficult.
subgradient is difficult to compute.
Let d = e-subgradient at ;.
use c-subgradient cut d(x-y;) < 0.

d e R"isac-subgradient of h(.) at u, if Vve P, h(v)-h(u) > d'-(v-u) — e-h(u).

Xis Xp5 -+, Xy POINSiN P, Can show, min,_; , h(x) < OPT+p. X Xp5 -oey X, OINtsin P Can show, min,_, , h(x) < OPT/(1-¢) + p.
Qubgradients and ¢-subgradients Gettinga “nice” subgradient
Vector d is a subgradient of h(.) at u, h(x) = oX+ 2 5y Pafa(X)
if for every v, h(v) - h(u) 2 d(v-u). fa(¥) = min. ZsWgypg

Vector d is an ¢-subgradient of h(.) at u,
if for everyve P, h(v) - h(u) 2 d"(v-u) — &-h(u).

P ={x:0<xg< 1for each set S}.
h(x) = Z g o+ 2 acy Pafa(X) = 0-X + 2 ooy Pafa(X)
Lemma: Let d be a subgradient at u, and d' be a vector

such that ds— cwg < d'g< ds for each set S Then,
d' is an e-subgradient at point u.

St 2 g0 sVas2 1~ ZgecsXs
VeeA

Yas20 VS
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Gettinga “nice” subgradient

h(x) = ox+ 2,y pafa(x)

fa() = min. 2 Wy, ¢ = max. >, p (1- ZgecsXd) Zae

st. Zg gVas21—Zg.sXs st
veeA vS

Yas20 VS 2,,20 VeecA

ZeeAr\SzA,e & WS

Getting a “nice” subgradient

h(x) = oX + 2 5.y Pafa(X)
fa() = min. > Woyps = max. 2., (1- 2 gecsXd Zae
St 2 g sVas® 1= ZsecsXs St ZeesZpe<Ws

veeA vS

Yas20 VS 2,,=0 VegA, 2,.,20 Ve

Consider point u € 9", Let z, = optimal dual solution for A at u.
Lemma: For any point v € R", we have h(v) — h(u) > d-(v-u) where
ds= 0= 2 pcy Pa ZecsZaer

= disa subgradient of h(.) at point u.

Computing an ¢-Qubgradient

Given point u € R".  z, = optimal dual solution for A at u.
Subgradientat u: [ ds= 05— Zpcy Pa ZecsZad-
Want: d' such that dy—eog< dg< dsfor each S

For each § -Wy< ds< g Let & = maxg W g/0g

Sample once from black box to get random scenario A.
Compute X with Xg= 05— 2, g2

E[Xd = dsand Var[XJ < W

Sample O ().%/c2log(1/5)) times to compute d' such that
Pr[vS ds—eng< dg< df 2 1-3.

= d' isan c-subgradient at u with probability > 1-5.

Putting it all together

Min h(x) subject to xeP.  v' Can compute c-subgradients.
Run ellipsoid algorithm.
Given y, = center of current ellipsoid.

If y, is infeasible, use violated
inequality as a cut.

If y, € P use e-subgradient cut.
Continue with smaller ellipsoid.
. X in P. ReturnX = argmin,_, _, h(x;).
Get that h(x) < OPT/(1-¢) + p.

P

Generate points X,, X,, ..

Finally,

Get solution x with h(x) close to OPT.

Sample initially to detect if OPT = Q(1/1) — this allows
one to cet a(1+¢)-OPT guarantee.

Theorem: Compact convex program can be solved to
within a factor of (1 +¢) in polynomial time, with high
probability.

Gives a (2log n+¢)-approximation algorithm for the
stochastic set cover problem.

A Solvable Class of Sochastic LPs

Minimize h(x) = w.X+ =,y pafa(X)
st. xe R, x>20,xeP
where f,(x) = min. wAy, + chr,
st. Br, > jA

Dry,+Ty,> [A-Tx

yae R, rae RMy,20,r,20.

Theorem: Can et a (1+¢)-optimal solution for this class of
stochastic programs in polynomial time.
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2-Sage Sochastic Facility Location

o Disgtribution over clients gives
o the set of clients to serve.
o o . Sace I: Open some facilities in

advance; pay cost f; for facility i.
O facility W stage @ faclity ~ Stage I cost = = ; jpeneq) fi-

Actual scenario A = { @ clients to serve}, materializes

Sace 11: Can open more facilities to serve clientsin A; pay
cost fA to open facility i. Assign clientsin A to facilities

Sagelicost=2 fA + (cost of serving clientsin A).

in
scenario A

A Convex Program

pa :probability of scenario A< D.

y; :indicates if facility i is opened in stage 1.

Ya; :indicatesif facility i is opened in scenario A.

Xpj; : Whether client j is assigned to facility i in scenario A.

Minimize h(y) = Xty +dy) st. >0 for
eachi
(SUR-P
where, dY) = Zacp Pat(y)
and () = min. Z; Ry, + =G Xy
st. ZiXpy 21 for each
jeA

Xpii £ Vi + Vaj for eachijj
>0 for each i.i

Xoo Vo

Moral of the Sory

¢ Bven though the Sochastic LP relaxation has an
exponential number of variables and constraints,
we can still obtain near-optimal solutions to
fractional first-stage decisions

 Fractional first-stage decisions are sufficient to
decouple the two stages near-optimally

e Many applications: multicommodity flows, vertex
cover, facility location, ...

* But we still have to solve convex program with
many, many samples (not just 1.)!

Sample Average Approximation

(SAA) method:
— Sample initially N times from scenario distribution
— Solve 2-stage problem estimating p, with frequency of occurrence
of scenario A

How large should N be?

Kleywegt, Shapiro & Homem De-Mello (KSHO1):
— bound N by variance of a certain quantity — need not be polynomially
bounded even for our class of programs.
SwvamyS:
— show using that for our class N can be poly-bounded.
Nemirovskii & Shapiro:
— show that for SSC with non-scenario dependent costs, KSHO1 gives
polynomia bound on N for algorithm.

Sample Average Approximation
(SAA) method:
— Sample N times from distribution
— Estimate p, by q, = frequency of occurrence of scenario A
() min, (h(X) = 0X + Z 5y Pafa(X)
(SAA-P) minp (W(X) = oX + Zpy dafa(X)
To show: With poly-bounded N, if X solves (SAA-P) then h(x) = OPT.
Let z, = optimal dual solution for scenario A at point u e R™.
= d, with d,s= 05— Z 5y Oy Z .52, iSasubgradient of h'(.) at u.
: With high probability, for “many” pointsu in P,
d, isa subgradient of h'(.) at u,
d, is an approximate subgradient of h(.) at u.
Establishes “closeness” of h(.) and h'(.) and suffices to prove result.
: Can run ellipsoid on both (P) and (SAA-P) using the same
vector d, at feasible point u.

Multi-stage Problems

Given :Distribution over inputs. k-stage problem

— Kk dedisi ;
Sage [ :Make some sion points
- stage |

Uncertainty evolves in various stages. e 0, stage 11
Learn new information in each stage.
Can take in each _ . o
- i i (@ . e
dag_p can augment earlier solution A R
payinga . T ceomaee" -
in stage k




Multi-stage Problems

Given :Distribution over inputs. k‘i‘g; problem
= ision points

Sage I :Make some i
- . o Sael

02 04
Uncertainty evolves in various stages. 0 0-96 O stage I
Learn new information in each stage. 09 o

. 00 o4 o
Can take ineach . o
- i i o .
saip can augment earlier solution © o @ ©
payinga :
in stage k

Choose stace I decisions to minimize
expected total cost =
(stage I cost) + E genaios [COSt Of stages 2 ... K].

Solving k-stage LPs

Consider 3-stage SSC. PA

TA
Want to get d' that is component-wise close to
subgradient d where ds = og— > , pa(dual solution to T,).

Problem: To compute d (even in expectation) need to solve

the of a 2-stage LP— dual has exponential size!

Fix:
— Formulate a new of polynomial size.
— Dual hasa — solve this

using earlier algorithm.
Recursively apply this idea to solve k-stage stochastic LPs

This s just the beginning!

* Multi-stage problems with a variable
number of stages

* [Dean, Goemans, Vondrak 04] Sochastic
knapsack problem — in each stage decide
whether to pack next item

¢ [Levi, Pal, Roundy, Shmoys 05] Sochastic
inventory control problems— in each stage
react to updated forecast of future demand

* Sochastic Dynamic Programming 77?

Thank You.
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* Outline
Efficient Haplotype Inference )

. . . Background
* on Ped'QreeS and Appllcat|ons = The I?/IRHC problem and complexity
= An exact algorithm for 0-recombinant data
» A heuristic algorithm (block-extension)
= Integer linear programming formulation and

Tao Jiang solution for MRHC with missing alleles
Dept of Computer Science = Experimental results and application in
University of California — Riverside disease gene association mapping
(joint work with Jing Li, CWRU) = Inference of haplotypes on population data

Mendelian Law of Inheritance
and Recombination

= Diploid

. Father ~ Mother Father
= Polymorphisms, marker, Al HB Cl |D alll
allele, and SNP e Cl HD
= Genotype, homozygous & o | .
heterozygous 5 a4 © G o Child:
g Al B| Al B
= Haplotype, paternal & &= Biallelic A"C A"D BHIC BHID Cl DH DH CH

maternal haplotypes Multialleliq

1

1

6

3
Maker locus

Paternal Maternal
3 4

* Pedigree * Pedigree

Pedigree, nuclear Pedigree, nuclear
family, founder u O family, founder

Founders
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Haplotyping from Genotypes:
The Problem & Methods

Problem:
Input: genotype data (possibly with missing alleles).
Output: haplotypes.
Input data: %‘é
Data with pedigree (dependent individuals). %ﬁ@
Data without pedigree info (independent individuals).
Statistical methods
Find the most likely haplotypes based on genotype data.
Adv: solid theoretical bases
35 Disadv: computation intensive
% Rule-based (i.e. combinatorial) methods
wE Define rules/objective functions based on some plausible assumptions
and find haplotypes consistent with the rules or optimizing the obj. fun.
Adv: usually simple thus very fast
Disadv: no numerical assessment of the reliability of the results

Motivations

= Haplotype is more biologically meaningful than genotype since
haplotypes are directly inherited from parents. Haplotype data is more
informative in the studies of association between diseases and genes,
and human history.

= The human genome project gives us the consensus genotype sequence
of humans, but in order to understand the genetic effects on many
complex diseases such as cancers, diabetes, osteoporoses, genetic
variations are more important, which is best refecledt in haplotypes.

= Current experimental techniques collect genotype data. Computational
methods deriving haplotypes from genotypes are highly demanded.

= The ongoing international HapMap project.

Motivations (cont'd)

= It is generally believed that with parents/pedigree information, we
could get more accurate haplotype and frequency estimations than
from data without such information (/.e. population data).

= Family-based association studies have been widely used. We would
expect more family-based gene mapping methods that assume
accurate haplotype information.

= Not only computation intensive, model-based statistical methods may
use assumptions that may not hold in real datasets.

Find a minimum recombinant

MRHC Problem

haplotype configuration from
a given pedigree with

11 (12)
genotype data. (12) (12)
(22) (12)

Assumptions:
= Mendelian law (no mutations) 8 g 8 3
= Recombination events are rare 22) 22

Inpu.t"(phase unknown)
10

The MRHC Problem

= PS: parental source of the
two alleles at the locus
(i.e. phase)

= Haplotype configuration =
assignment of PS values at
each locus of every

individual.
L]
1]2 11
2|2 2|1 PS = 1 (because the allele with the smaller
2 2|2 index is maternal)

" Output (phase known)

11

Previous Results

= Genotype elimination (O’Connell & Weeks'99).
= Can only find haplotype configurations requiring no
recombinant in the pedigree, exhaustive elimination.
= Genetic algorithm (Tapadar et a/.’00).
= Still time consuming, needs many iterations before
convergence.
= MRH (Qian & Beckmann'02).
= Six step rule-based algorithm.

= Locus by locus at every step, extremely slow for biallelic (e.g.
SNP) markers.
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i Thm. MRHC is NP-hard.

Al Bl A B
. 1 1”® e 17
=Idea: Reduction from a LN 2/
variant of set cover.
=First complexity result e o o .
concerning the problem. w\ /e n

mn 12 12 12
=Remains hard when there /O\
are only two loci. .‘/f \

[ ]
. C1 c2 3 4 83
=Remains hard when no loops  jn i ;a\\ ”
in a pedigree.

An Exact Algorithm for 0-Recombinant Data
* Based on Resolution of Constraints
= Assumptions:

= Zero recombinants.
= No missing alleles, no errors.

= Idea: finding all feasible (/.e. 0-recombinant)
haplotype configurations is equivalent to reducing the
degree of freedom in PS assignment.

= Steps:
= formulate all the constraints, as linear equations over GF(2)
= solve the equations by Gaussian elimination
= enumerate all feasible haplotype configurations

Four Levels of Constraints

Based on Mendelian law

(for single locus) :
= Level 1: GS (grantparental source) constraint
= Level 2: PS constraint

Based on 0-recombinant assumption
(for a pair of loci):

= Level 3: Haplotype constraint

= Level 4: Grouping constraint

* Level 3 and Level 4 Constraints

Level 3 and level 4 Constraints

*

Note: The variables represent PS values and the
equations are over GF(2) (in fact, addition mod 2).
17

i Constraint-Based Algorithm

Thm. Every solution consistent with the constraint
equations is a feasible solution and vice versa.

We can adapt the classical Gaussian elimination algorithm
to find all consistent solutions in O(n’m?) time.

Previously, only an exponential time algorithm is known
due to O’Connell and Weeks (1999).

The algorithm is useful for solving 0-recombinant data and
may serve as a subroutine in a general haplotyping algorithm.
18
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i Block-Extension Algorithm

Iterative, heuristic, five steps. Rules are derived
from Mendelian law, MR principle, block concept
and some greedy ideas based on the following
observations:

= Block structures are common in haplotypes.

= Double recombination events are rare.

= Common haplotype blocks shared in siblings.

19

Steps in the BE algorithm

Missing allele imputation by the Mendelian
Law of inheritance and allele frequency
PS assignment by Mendelian Law

= Locus by locus, member by member, in a top-down scan
Greedy assignment of PS

= Bottom-up, infer PS value from PS of adjacent loci.
Block-Extension

= Iteratively extend the longest block to the same region of
other members.

Finishing the gaps between blocks by
enumeration.

20

i Analysis of the BE Algorithm

= Advantage:
= Simple and efficient.

= Accurate when the number of
recombination events is small.

= Disadvantage:

= Potential errors in steps 3 and 4. Accuracy
could decrease with the increase of the
number of recombination events.

21

i More Exact Algorithms

= Integer linear programming (ILP) with branch-and-bound

Combines missing data imputation and haplotype inference together.
It also implicitly checks Mendelian consistency for pedigree genotype
data with missing alleles, which is also an NPC problem.

Effective for practical size problems, regardless of the pedigree
structure

22

i ILP for MRHC with Missing Data

1 Alleles are represented as binary variables.

2 Genotype info and the Mendelian law of inheritance are enforced by
linear constraints.

3 The objective of minimizing the total number of recombinants is
encoded as a linear function of the variables.

4 Effective preprocessing of constraints by taking advantage of special
properties in our ILP formulation to reduce the number of variables.

5 Branch-and-bound strategy to find solutions. The branch step guided
by a partial order relationship (and some other special relationships)
identified during the preprocessing step.

6 Non-trivial bounds are estimated to prune the search tree.

7 A maximum likelihood approach is used to select the best haplotype
configuration from multiple optimal solutions.

23

Formulation: variables

Possible alleles (totally #) at marker locus j: M = {m{,...,m] }

Define 2¢ (£ and m) vars and 2 g vars for each paternal
allele and maternal allele at locus j for individual 7

Siomiyy A<k<t)) gy g,

Var £, (or m)=1 iff the allele is m,. Var g, = 0 (or 1) iff
paternal allele is copied from father’s paternal (or
maternal) allele. Var g, defined similarly.

Define rvars: o .
rhorh A< j<m=1)

1 = 1iff g/,

j+

#&ii

24
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Formulation

= Objective function:

m-1

Z(r,:jl +1h)

Non-Founders j=1

Subject to
Genotype constraints: (0 means missing allele)

0.05= 0 fi=1.> m) =1}
k=1 k=1

{m] 0y = {f, +m], =1}

{m! m/y = {f7, =ml, =1}

imlmy =+ [ =mi, +mi = [ +my, = [ +mi =1}

25

Formulation

= Mendelian law of inheritance constraints (for a child /and
its father £):

f,//‘ 7f/’/‘/‘ 7g.{| <0
S—mp+gh <1
= Constraints for rvars:
rh-gl-gl'<0
7 +g,{, "’gr]fl <2
-~y gl —gl' <0

J J J+l
- —gh+g&l <0

26

A Partial Order Relationship

Denote: yy:{y r=1
I-y =0

Inequalities with 2 variables:
yi<y!

27

* Forced Variables

= Rulel:

»°,y" € S = Inconsistency

= Rule2: (7 <y A7 <y )=y =0
E<yDA<yH=yl =1

= Rule3: y* <yl = 7 =0

28

Lower and Upper Bounds

= Lower bounds
= Linear relaxation.

= Sum of minimum number of recombinants in
each nuclear family.

= Effective for data with a large number of
recombinants.

= Upper bound
= Obtained by the Block-Extension algorithm.
= Effective for data with a small nhumber of
recombinants.

29

* ILP

= Practical in terms of time efficiency
= Could find all possible optimal solutions

= Very effective in terms of missing allele
imputation.

30
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i Simulation Studies :_L Pedigree Structures

= The algorithms have been implemented in a program
called PedPhase in C++.

= Simulated data were generated to compare our
algorithms, and with MRH (Qian&Beckmann’02)

= Three different pedigree structures.
= Multiallelic and biallelic data.

= Numbers of loci: 10, 25 and 50.

= Number of recombinants: 0-4.

= 100 runs per data set.

31

Accuracy Results of Algrotihm

i Block-Extension i Efficiency Results

33 34

i More Results on ILP ‘ Real Data Analysis

= Data set (Gabriel et a/'02)
= 93 members, 12 pedigrees (each with 7-8 members);
= chromosome 3, 4 regions, each region 1-4 blocks.

35 36
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Reconstruction of Common Haplotypes
and Estimation of Their Frequencies

37

Results from ILP on the Whole
Dataset

38

Application of Haplotype Inference in

i Gene Association Mapping

= We have developed a new haplotype association mapping
method based on density-based clustering for case-control data.

= The method regards haplotype segments as data points in a
high dimensional space, and defines a new pairwise haplotype
distance measure.

= Clusters are then identified by a density-based clustering
algorithm.

= Z-scores based on the number of cases and controls in a cluster
can be used as an indicator of the degree of association
between a cluster and the disease under study.

= Results are very promising.
= But it needs haplotypes as input.

39

‘ An Application of Haplotype Inference

= Haplotypes are inferred by computational methods that we
mentioned earlier.

= For example: a real data set that we analyzed consists of 385
nuclear families of size 4 (2 parents with 2 affected children).

= We do haplotype inference first using our ILP algorithm. The
haplotypes transmitted to (affected) children are treated as
cases and un-transmitted haplotypes as controls. The haplotype
association method was applied then.

40

Inference of Haplotypes from Population

i Data: The Perfect Phylogeny Model

Loci 12345
Ancestral haplotype 00000

1 4
Locus mutations on edges (

3

10100 5
Each locus suffers from
at most one mutation. 10000 01011 01010

No recombination!
Extant haplotypes at the leaves
41

00010

Perfect Phylogeny Haplotype (PPH)

Given a set/poplation of genotypes S, find an explanatory
set of haplotypes that fits a perfect phylogeny.

Loci The genotype coding:
(11): 0 homozygous
1 (2 (22): 1 homozygous
al2 |2 (12): 2 heterozygous
S [b]0 |2 A haplotype pair explains a genotype if
c |1 |0 the merge of the haplotypes creates the

. genotype. E.g., merging haplotypes
Genotype matriX o1 and 100 results in genotype 202.

42
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’ Perfect Phylogeny Haplotype (PPH)

‘ An Alternative Haplotype Explanation

= Reduction to a graph realization problem (GPPH),
based on Bixby-Wagner or Fushishige solution to
graph realization (Gusfield’01).

= Reduction to graph realization, based on Tutte’s
graph realization method, in O(nm~2) time
(Gusfield'02).

= Direct combinatorial approach in O(nm~2) time.
Bafna et a/.'03

= Eskin, Halperin and Karp'03: Specialize the Tutte
solution to the PPH problem, in O(nm~2) time.

46

00
12 12 12
15 a [1]0 1 2 ; ; all (1 No perfect
a hylogen
I::>a 01|::> 777|::> phylogeny
b {02 b lolo b b |0 |2 alo |0 exists for this
10 00 c 11 1o bjo |0 explanation
b [0]1 blo [1
c 1110 a & b cjt |0
C
c [1]o] g 10 10 O1 01 c|1]o
43 45
Efficient Solutions to the PPH Problem
i with n Individuals and m Loci Summary

= Li, J. and T. Jiang. Efficient Rule-Based Haplotyping Algorithm for
Pedigree Data. RECOMB03
= NP-completeness proof for general pedigrees.
= An efficient heuristic algorithm: block-extension.
= An efficient exact algorithm for 0-recombinant data.
= Doi, K., J. Li and T. Jiang. Minimum Recombinant Haplotype
Configuration on Tree Pedigrees. WABI'03
= NP-completeness proof for loopless (or tree) pedigrees.
= Two dynamic programming algorithms
= Li, J. and T. Jiang. An Exact Solution for Finding Minimum Recombinant
Haplotype Configurations on Pedigrees with Missing Data by Integer
Linear Programming. RECOMB04.
= Li, J. and T. Jiang. Haplotype Association Mapping by Density-Based
Clustering in Case-Control Studies. RECOMB Satellite Workshop on
Computational Methods for SNPs and Haplotypes, CMU, 2004.

47

i Future Work

= Incorporating mutations and errors into MRHC.

= Incorporating the likelihood of recombination
into the objective function of ILP.

= Haplotype inference and missing allele
imputation without pedigree information.

= Approximation algorithms for MRHC, especially
MRHC on tree pedigrees.

» Efficient fixed-parameter (# of recombinants)
algorithms.

48
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New Horizons in Machine
Learning

Avrim Blum

This is mostly a survey, but portions near the end
are joint work with Nina Balcan and Santosh
Vempala

[Workshop on New Horizons in Computing, Kyoto 2005]

Plan for this talk

= Discuss some of current challenges and
"hot topics".

= Focus on topic of “kernel methods”, and
connections to random projection,
embeddings.

= Start with a quick orientation...

The concept learning setting
Eg.,

example

Given data, some reasonable rules might be:
*Predict SPAM if unknown AND (money OR pills)

*Predict SPAM if money + pills - known > 0.

What is Machine Learning?

= Design of programs that adapt from
experience, identify patterns in data.

» Used to:
- recognize speech, faces, images
- steer a car,
- play games,
- categorize documents, info retrieval, ...

. : develop models,
analyze algorithmic and statistical issues
involved.

The concept learning setting

= Imagine you want a computer program fo
help you decide which email messages are
spam and which are important.

= Might represent each message by n features.
(e.g., return address, keywords, spelling, etc.)

= Take sample S of data, labeled according to
whether they were/weren't spam.

* Goal of algorithm is to use data seen so far
to produce good prediction rule (a‘hypothesis")
h(x) for future data.

Big questions
(A) How to optimize?
= How might we automatically generate rules

like this that do well on observed data?
[Algorithm design]

(B) What to optimize?

= Our real goal is to do well on new data.

*  What kind of confidence do we have that
rules that do well on sample will do well in
the future?
= Statistics
= Sample complexity
= SRM

‘ for a given learning alg, how
much data do we need...




To be a little more formal... The issue of sample-complexity

PAC model setup: = We want to do well on D, but all we have is S.
= Alg is given sample S = {(x,)} drawn from - Are we in trouble?
some distribution D over examples x, - How big does S have to be so that low error on
labeled by some target function f. S = low error on D?
* Alg does optimization over S to produce = Luckily, simple sample-complexity bounds:
some hypothesis h € H. [eg. H = linear separators] - If ,
= Goal is for h to be close to f over D. [think of log|H| as the humber of bits to write down h]
- Prop(h(x)=f(x)) < <. then whp (1-8), all heH that agree with S have

Q . -~ <
* Allow failure with small prob 5 (to allow for Tnuejernor < &

chance that S is not representative) - In fact, with extra factor of O(1/¢), enough so
’ whp all have |true error - empirical error| < e.

The issue of sample-complexity Some current hot topics in ML

= We want to do well on D, but all we have is S. * More precise confidence bounds, as a
- Are we in trouble? function of observable quantities.
- How big does S have to be so that low error on - Replace log |H| with log(# ways of splitting S
S = low error on D? using functions in H).
- Bounds based on margins: how well-separated the
= Implication: data is.
- If we view cost of examples as comparable to - Bounds based on other observable properties of
cost of computation, then don't have to worry S and relation of S to H: other complexity
about data cost since just ~ 1/¢ per bit output. measures.

- But, in practice, costs of ten wildly different, so
sample-complexity issues are crucial.

Some current hot topics in ML Some current hot topics in ML
* More precise confidence bounds, as a * More precise confidence bounds, as a
function of observable quantities. function of observable quantities.
* Kernel methods. * Kernel methods.
- Allow to implicitly map data into higher- = Semi-supervised learning.

dimensional space, without paying for it if

algorithm can be “kernelized". unlabeled data is much more plentiful).

- Get back to this in a few minutes.. - Useful if have beliefs about not just form of

- Point is: if, say, data not linearly separable in target but also its relationship to underlying
original space, it could be in new space. distribution.

- Using labeled and unlabeled data together (often

- Co-training, graph-based methods, transductive
SVM,...
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Some current hot topics in ML Some current hot topics in ML

* More precise confidence bounds, as a = More precise confidence bounds, as a
function of observable quantities. function of observable quantities.

- Femich e G e

» Semi-supervised learning. = Semi-supervised learning.
* Online learning / adaptive game playing. = Online learning / adaptive game playing.
- Classic strategies with excellent regret bounds

- New work on strategies that can efficiently Genlel give il Talk on any ?ne o S
handle large implicit choice spaces. [KV][Z]... Focus on #2, with connection to random
- Connections to game-theoretic equilibria. projection and metric embeddings...

Kernel Methods Kernel Methods

= One of the most natural approaches to " A Kernel Function K(x.y) is a function on
learning is to try to learn a linear separator. pairs of examples, such that for some
implicit function ®(x) into a possibly high-
dimensional space, K(x,y) = ®(x) - ®(y).
" Eg., K(xy)=(1+x-y)m
- If x € R", then ®(x) € R"".
- K is easy to compute, even though you can't even
= But what if the data is not linearly efficiently write down @(x).
separable? Yet you still want to use the = The point: many linear-separator algorithms
same algorithm. can be kernelized - made to use K and act as

= One idea: Kernel functions. /f their input was the ®(x)'s.
- E.g., Perceptron, SVM.

Typical application for Kernels What about sample-complexity?

* Given a set of images: , represented =UseaKernelK( , )=o( )o( ) @
as pixels, want to distinguish men from is implicit, high-dimensional mapping.
WELER: = What about # of samples needed?

* But pixels not a great representation for - Don't have to pay for dimensionality of ®-space
image classification. if data is separable by a large margin y.

= Use a Kernel K( Y=( )o( ) @ - E.g., Perceptron, SVM need sample size only
is implicit, high-dimensional mapping.

Choose K appropriate for type of data. oG/ 1000 = 7, [wl=1
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Question

* Are kernels really allowing you to magically
) use power of implicit high-dimensional ®-
So, with that background... space without paying for it?
* What's going on?
= Claim: [BBV] Given a kernel [as a black-box
program K(x,y)] and access to typical inputs
[samples from D],
- Can run K and reverse-engineer an explicit
(small) set of features, such that if K is good
[3 large-margin separator in ®-space for f,D],
then this is a good feature set [3 almost-as-
good separator in this explicit space].

Why is this a plausible goal in principle?
contd
. P : = JL lemma: If data separable with margin y in ®-space,
Claim: [BBV] Given a ke‘r‘nel. [as a black-box program then with prob 1-8, a random linear projection down to
K(x.y)] & access to typical inputs [samples from D] space of dimension d = O((1/y2)log[1/(5¢)]) will have a
- Can run K and reverse-engineer an explicit (small) set of linear separator of error < ¢. N
features, such that if K is good [3 large-margin separator L . ¢
in ®-space], then this is a good feature set [3 almost-as- * If vectors are rir el then can view
good separator in this explicit space]. coords as features x; = ®(x)- r'.
* Eg, sample Z1,...,z4 from D. Given x, define x;=K(x,z').
= Implications:
- Practical: alternative to kernelizing the algorithm.

- Conceptual: View choosing a kernel like choosing a (distrib
dependent) set of features, rather than “magic power of
implicit high dimensional space”. [though argument needs
existence of ® functions]

3 methods (from simplest to best)

1. Draw d examples z.,...,.z¢ from D. Use:
F(x) = (K(x,zY), ..., K(x,29)). [So, "x" = K(x,Z)]
For d = (8/¢)[1/v% + In 1/8], if separable with margin y in ACTU(]I |y, The (]r'gumen'l' iS

®-space, then whp this will be separable with error e.

(but this method doesn't preserve margin). prCTTy easy...

2. Same d, but a little more complicated. Separable with
error ¢ at margin v/2.

3. Combine (2) with further projection as in JL lemma. ;
Get d with log dependence on 1/¢, rather than linear. So, (_Though we did Try (,] lot of
can set & < 1/d. things first that didn't work...)

)

NO
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Key fact

Claim: If 3 perfect wof marginy in ¢-space, then if draw
z!,...,24 € D for d > (8/¢)[1/v% + In 1/5], whp (1-8) exists w'
in span(®(zY),...,®(z9)) of error < ¢ at margin y/2.

Proof: Let S = examples drawn so far. Assume |w|=1,
|®(2)|=1V z.
* w;, = proj(w,span(S)), Wy = W - W,
* Say w,,, is large if Pr,(|w,,®(2)| > 7/2) > & else small.
* If small, then done: w' = wj,
* Else, next z has at least ¢ prob of improving S.

[Wout|? < |Wou|? = (v/2)2
+ Can happen at most 4/y2 times. O

What if we want to preserve margi

¢ Problem with last mapping is ®(z)'s might be highly
correlated. So, dot-product mapping doesn't preserve
margin.

* Instead, given a hew X, want to do an orthogonal
projection of ®(x) into that span. (preserves dot-
product, decreases |®(x)|, so only increases margin).

= Run K(Z',2)) for all i,j=1,...d. Get matrix M.
= Decompose M = UTU.

= (Mapping #2) = (mapping #1)U-1. O

So....

If draw z!,...,z4 € D for d = (8/¢)[1/72 + In 1/5], then whp
exists w' in span(®(zY),..., 0(z%)) of error < ¢ at margin

‘,’/2

+ So, for some w' = o, ®(2!) + ... + ay®(z9),
Pricy cp [sign(w' - ©(x)) = ] < e.

+ But notice that w'®(x) = a;K(x,z") + ... + agK(x,z9).
vector (oy,...04) is an e-good separator in the feature
space: x; = K(x,z').

+ But margin not preserved because length of target,
examples not preserved.

Use this to improve dimension

Current mapping gives d = (8/¢)[1/y? + In 1/8].
Johnson-Lindenstrauss gives d = O((1/y?) log 1/(8¢) ).
Nice because can have d< 1/s. [So can set & small
enough so that whp a sample of size O(d) is perfectly
separable]
Can we achieve that efficiently?
Answer: just combine the fwo...
= Run Mapping #2, then do random projection down
from that. (using fact that mapping #2 had a margin)
= Gives us desired dimension (# features), though
sample-complexity remains as in mapping #2.

Lower bound (on necessity of access to D)

For black-box kernel K, can't hope to convert
to small feature space without access to D.
Consider X={0,1}", random X'C X of size 22, D =
uniform over X'.
¢ = arbitrary function (so learning is hopeless).
But we have this magic kernel K(x,y) = ®(x)-®(y)
= O(x)=(1,0)if x ¢ X'
= O(x) = (-3, /3/2) if x € X, c(x)=pos.
s O(X) = (-3,-/3/2) if x € X, c(x)=neg.

* P is separable with margin \/3/2 in ®-
space.

+ But, without access to D, all attempts at
running K(x,y) will give answer of 1.
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Open Problems

* For specific natural kernels, like “polynomial”
kernel K(x)y) = (1 + x-y)™, is there an efficient
analog to JL, without needing access to D?

= Or, can one at least reduce the sample-complexity ?
(use fewer accesses to D)

= This would increase practicality of this approach

+ Can one extend results (e.g., mapping #1:
x — [K(x,2Y), ..., K(x,z9)]) to more general
similarity functions K?

= Not exactly clear what theorem statement would
look like.
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Rigorous analysis of heuristics
for NP-hard problems

Uriel Feige
Weizmann Institute
Microsoft Research

Computational problems

We would love to have algorithms that:
- Produce optimal results.
- Are efficient (polynomial time).

- Work on every input instance.

2

NP-hardness

For many combinatorial problems, the goal
of achieving all three properties
simultaneously is too ambitious (NP-hard).

We should set goals that are more modest.

Relaxing the desired properties

Optimality: approximation algorithms.

Efficiency: sub-exponential algorithms, fixed
parameter tractability.

Firm theoretical foundations. Both positive
and negative results.

Heuristics

Relax the universality property: need not
work on every input.

In this talk: heuristics are required to
produce optimal results in polynomial time,
on typical inputs.

Conceptual problem: the notion typical is not
well defined.

5

Some questions

Explain apparent success of known
heuristics.

Come up with good heuristic ideas.
Match heuristics to problems.
Investigate fundamental limitations.

Prove that a certain heuristic is good.
Prove that a certain heuristic is bad.

6
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In this talk

Some theoretical frameworks for studying
heuristics.

Some algorithmic ideas that are often used.

Heuristics is a huge subject. This talk
presents only a narrow view, and excludes
many important and relevant work.

The importance of modeling

For a rigorous treatment of heuristics, need
a rigorous definition for typical inputs.

Given a rigorous definition for typical inputs
(for example, planar graphs), one is no
longer dealing with a fuzzy notion of
heuristics, but rather with the familiar
notion of worst case analysis.

8

Probabilistic models

A typical input can be modeled as a random
input chosen from some well defined
distribution on inputs.

Again, design of heuristics often boils down
to worst case analysis:

* Most random inputs have property P.

« Algorithm works on all inputs with property
P.

Rigorous analysis

In this talk, limit ourselves to discussion
of heuristics in well defined models. In
these models, prove theorems.

To early to assess the relevance and
success of the methodology.

Some theoretical frameworks

Random inputs.

Planted solution models.

Semi-random models, monotone adversary.
Smoothed analysis.

Stable inputs.

Random inputs

Typical example: random graphs, n vertices,
m edges.

An algorithm for finding Hamiltonian cycles
in random graphs, even when the

minimum degree is 2 [Bollobas,Fenner,Frieze].

No algorithm known for max clique in
random graphs.

12
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Planted solution models

Useful when random model seems too difficult.

Example: plant in a uniform random graph a
clique of large size k. Can a polynomial time
algorithm find the k-clique?

. Yes, when k = Q(\/;) [Alon,Krivelevich,Sudakov].

+ Unknown when k = 0(\/;).

13

Semi random model
[Blum-Spencer]

Useful in order to overcome over-fitting of
algorithms to the random model. Adds
robustness to algorithms.

Example, when k >> /n log n , vertices of

planted k-clique have highest degree.

Algorithm may select the k highest degree
vertices and check if they form a clique.

Monotone adversary [Feige-Kilian]

Adversary may change the random input,
but only in one direction.

Planted clique: adversary may remove
arbitrarily many non-clique edges.

Degree based algorithm no longer works.

Semidefinite programming does work,
when k = Q(+/n) [Feige-Krauthgamer].

Smoothed analysis
[SpielIman-Teng]

Arbitrary input, random perturbation.
Typical input — low order bits are random.
Explain success of simplex algorithm [ST].

FPTAS implies easy smoothed instances
[Beier-Voecking].

16

Smoothed versus semirandom

Smoothed analysis:

« arbitrary instance — defines an arbitrary region.
* random input is chosen in this region.

» stronger when region is small.

Monotone adversary:

* random instance — defines a random region.
 arbitrary input is chosen in region.
 stronger when region is large.

17

Stable inputs [Bilu-Linial]

In some applications (clustering), the
interesting inputs are those that are stable
in the sense that a small perturbation in
the input does not change the
combinatorial solution.

An algorithm for (highly) stable instances of
cut problems [BL].

18
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Stable versus smooth

Consider regions induced by combinatorial
solution.

In both cases, must solve all instances that are far
from the boundary of their region.

For instances near the boundary:
» Smoothed analysis: solve a perturbed input.
+ Stable inputs: do nothing.

19

Running example: 3SAT

(x, VX, vx,)A(x,Vxivi)A:
n variables, m clauses, 3 literals per clause.

Clauses chosen independently at random.

Random formula f with m >> n.

20

Probabilistic estimates

The expected number of satisfying
assignments for f is:

(1-1/2%)" *2"

When m >> n, the formula f is unlikely to be
satisfiable.

21

Two tasks

Search: if the formula is satisfiable, then find a
satisfying assignment.

Refutation: if formula is not satisfiable, then find a
certificate for nonsatisfiability.

Firel

Simple case

When m >>n log n, then if formula is
satisfiable, the satisfying assignment is
likely to be unique.

Then distribution on random satisfiable
formulas can be approximated by planted
solution distribution.

23

Planted solution model

First pick at random an assignment a to the
variables.

Then choose at random clauses, discarding
clauses not satisfied by a, until m clauses
are reached.

When m>>n log n, a is likely to be a unique
satisfying assignment.

24
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Statistical properties

For every variable x, in every clause C that
contained x and was discarded, the
polarity of x in C disagreed with its polarity
in a.

Set x according to the polarity that agrees
with the majority of its occurrences in f.

When m >> n log n, it is likely that this
algorithm exactly recovers a.

25

Sparser formulas

m = d*n for some large constant d.

Distribution generated by planted model no
longer known to be statistically close to
that of random satisfiable formulas. Favors
formulas with many satisfying
assignments.

We present algorithm only for planted
model.

26

Majority vote

Majority vote assignment a(0).

For most variables, a(0) = a, and a(0)
satisfies most clauses.

Still, linear fraction of variables disagree with
a, and a linear fraction of clauses are not
satisfied.

This fraction is exponentially small in d.

27

Hill climbing

Moving towards satisfying assignment.
Alon-Kahale (for 3-coloring).

Flaxman (for planted 3SAT).
Feige-Vilenchik (for semirandom 3SAT).

Semirandom model: monotone adversary
can add arbitrary clauses in which all three
literals are set in agreement with a.

28

Conservative local search

a(j) is the assignment at iteration j, T(j) is the
set of clauses already satisfied.

a(0) is the majority vote.

Pick an arbitrary clause C not in T(j).

Find the assignment closest (in Hamming
distance) to a(j) that satisfies T(j) + C.

Increment j and repeat.

29

Time complexity

The algorithm obviously finds a
satisfying assignment. The only
question is how fast.

The number of iterations is at most m
(the number of satisfied clauses
increases in every iteration).

30
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Complexity per iteration

Let h be Hamming distance between a(j)
and a(j+1).

At least one of three variables in C needs
to be flipped.

In a clause that becomes not satisfied in
T(j), at least one of two variables needs
to be flipped.

Time proportional to

3 % 2h—1

31

32

Main technical lemma

Lemma: With high probability over the
choice of f, in all iterations h < O(log n).

Hence algorithm runs in polynomial time.

(True also for the semirandom model.)

33

Sketch of proof — the core

A variable x for which a(0) = ais a core
variable if flipping x ruins T(0), and T(0)
can then be satisfied only by flipping a
linear number of other variables.

The set of clauses not satisfied by the core
decomposes into sub-formulas of size
O(log n) not sharing non-core variables.

34

Main invariant

An iteration can be completed in O(log n)
flips, of non-core variables.

As long as h = O(log n), no core variable will
accidentally be flipped, and the invariant is
maintained.

The algorithm need not know the core.

35

Worst case analysis

Algorithm works on every input formula f
with property P (defined in terms of core).

Probabilistic analysis (much too complicated
to be shown here) shows that in the
planted model, input formula f is likely to
have property P.

36
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Open problems

Does the algorithm run in polynomial time on
random satisfiable formulas?

When m >> n? For arbitrary m?

Does the cavity method (survey propagation
[Braunstein, Mezard, Zecchina]) provably
work on random formulas?

Alternative algorithms?
More challenging models?

37

Refutation algorithms

If the formula is not satisfiable, the algorithm
presented takes exponential time to detect
this.

Heuristics for finding solutions are not the
same as heuristics for refutation (unlike
worst case algorithms).

Common refutation algorithms (resolution)
take exponential time on random formulas.

38

Refutation by approximation

When m >> n, every assignment satisfies
roughly 7m/8 clauses of a random formula.
An algorithm for approximating max 3sat
within a ratio strictly better than 7/8 would
refute most dense 3SAT formulas.
Unfortunately, approximating max 3sat (in
the worst case) beyond 7/8 is NP-hard
[Hastad].

39

Turning the argument around

What if refuting random 3sat is hard?

Would imply hardness of approximation:

* Max 3sat beyond 7/8 (PCP + Fourier).

* Min bisection, dense k-subgraph, bipartite
clique, 2-catalog segmentation, treewidth, etc.

A good rule of thumb. Most of its predictions (with
weaker constants) can be proved assuming NP
not in subexponential time [Khot].

40

A simple refutation algorithm

Assume m > n’.

There are 3n clauses that contain x1.
Suffices to refute this subformula 1.
Substitute x1 = 0. Simplify to a 2CNF formula.
Random 2CNF formula with 3n/2 clauses.
Unlikely to be satisfiable.

2SAT can be refuted in polynomial time.
Repeat with x1 = 1.

41

Best current bounds

Can refute random formulas with

m > cn’'?  [Feige-Ofek].
Based on pair-wise statistical irregularities,
and eigenvalue computations.
Can be run in practice on formulas with
n=50000, m = 2.5n'? ,if one trusts
standard software packages for the
eigenvalue computations.

42
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The basic idea [Goerdt-Krivelevich]

Will be shown for random 4SAT formula f
with m > cn’

In a satisfying assignment a, at least half
the variables are negative (w.l.o.g.).

Let S be the set of variables negative in a.

Then there is no positive clause in f whose
four variables are in S.

43

Reduction to graph problem

Every pair of variables [xi x| — a vertex.
Every positive clause (xi xj xk xI) —an
edge ([xi xj], [xk xI]).

S forms an independent set of size N/4.

44

xsxo\
X5X7

\)&xzxu(d

\xaxa

X1X2

XJX4

45

Random non-satisfiable f

Random graph with N vertices and much
more than N edges.

Unlikely to have an independent set of size
N/4.

Moreover, this can be certified efficiently,
by eigenvalue techniques (or by SDP,
computing the theta function of Lovasz).

Refutes random 4SAT with m > cn’

46

Extension to 3SAT

Trivially extends when m > cn2 is
With additional ideas, get down to m > ¢n

A certain natural SDP cannot get below

m < cn’’?  [Feige-Ofek].

Neither can resolution [Ben-Sasson and
Widgerson].

Goal: refute random 3SAT with m = O(n).

47

Summary

Several rigorous models in which to study
heuristics.

Rigorous results in these models, including
hardness results (not discussed in this
talk).

The heuristics may be quite sophisticated.

Wide open research area.

48
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Efficient Algorithms for
the Longest Path
Problem

Ryuhei UEHARA (JAIST) | e 0@ @

Yushi UNO (Osaka Prefecture University)

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

The Longest Path Problem

e Finding a longest (vertex disjoint) path in a
given graph

e Motivation (comparing to Hamiltonian path):
... Approx. Algorithm, Parameterized Complexity
... More practical/natural
... More difficult(?)

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf
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The Longest Path Problem

e Known (hardness) results;

o We cannot find a path of length n-n¢ in a given
Hamiltonian graph in poly-time unless P=NP [Karger,
Motwani, Ramkumar; 1997]

o We can find O(log n) length path [Alon, Yuster, Zwick;1995]
(=0O((log n/loglog n)?) [Bjorklund, Husfeldt; 2003])

o Approx. Alg. achieves O(n/log n) [AYZ95]
(=0(n(loglog n/log n)?)[BHO3])

« Exponential algorithm [Monien 1985]

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

The Longest Path Problem

e Known polynomial time algorithm;
Dijkstra’s Alg.(1967):Linear alg. for finding a longest path in a tree;
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The Longest Path Problem

e Known polynomial time algorithm;
Dijkstra’s Alg.(1967?):Linear alg. for finding a longest path in a tree;
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The Longest Path Problem

e Known polynomial time algorithm;
Dijkstra’s Alg.(1967?):Linear alg. for finding a longest path in a tree;
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— 475 —




The Longest Path Problem

e Known polynomial time algorithm;

Dijkstra’s Alg.(1967?):Linear alg. for finding a longest path in a tree;

20Ud/ 5/ 1 NAILWRYULO nup://www.jaist.ac.jp/~uehara/ps/longest.pdf

Approaches to the Efficient
Algs to Longest Path Problem

1. Extension of the Dijkstra’s algorithm
Weighted trees (linear), block graphs (linear), cacti (O(n?)).
(ISAAC 2004)
2. Graph classes s.t. Hamiltonian Path can be found
in poly time
Some graph classes having interval representations
(bipartite permutation, interval biconvex graphs)
(ISAAC 2004)
3. Dynamic programming to the graph classes that
have tree representations (on going)
Cacti(linear), ...
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Approaches to the Efficient
Algs to Longest Path Problem

1. Extension of the Dijkstra’s algorithm
Weighted trees (linear), block graphs (linear), cacti (O(n?)).
(ISAAC 2004)
2. Graph classes s.t. Hamiltonian Path can be found
in poly time
Some graph classes having interval representations
(bipartite permutation, interval biconvex graphs)
(ISAAC 2004)
3. Dynamic programming to the graph classes that
have tree representations (on going)
Cacti(linear), ...
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1. Ex of Dijkstra’s Alg

Bulterman et.al. (IPL,2002) showed that

the correctness of Dijkstra’s alg stands for;
1. Foreach u,v,
length of the shortest path between u and v
= length of the longest path between u and v
2. For each u,v,w,
d(u,v) = d(u,w) + d(w,v)
3. For each u,v,w,
d(u,v) = d(u,w) + d(w,v) if and only if
w is on the unique path between u and v

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra’s Alg

Construct G’=(V’,E’) from G=(V,E) s.t.:
vev’
For each u,veV,
length of the shortest path between u,von G’
= length of the longest path between u,von G
For each u,veV,
the shortest path between u,v on G’ is unique

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra’s Alg

Theorem: ExDijkstra finds a longest path if G
and G’ satisfy the conditions.

ExDijkstra: G=(V,E) and G’=(V’,E’)
1. pick any vertex win V;
2. find x€ V with max{d(w,x)} on G’;
3. find y€ V with max{d(x,y)} on G
4. xand y are the endpoints of the longest path in
G, and d(x,y) on G’is its length.

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf
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1. Ex of Dijkstra’s Alg (Summary)

Theorem: Vertex/edge weighted tree (linear)
Theorem: Block graph (O(|V|+|E]))

Theorem: Cactus (O(]V]?))

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra’s Alg (Cacti)
Cactus:

Each block is a cycle
Two cycle share at most one vertex which is a separator

Q@

cactus

The longest path The shortest path
between = between
uandvonG uandvonG’

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

1. Ex of Dijkstra’s Alg (Cacti)

Sample
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1. Ex of Dijkstra’s Alg (Cacti)
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1. Ex of Dijkstra’s Alg (Cacti)

Sample

R 4!
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1. Ex of Dijkstra’s Alg (Cacti)

Sample
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1. Ex of Dijkstra’s Alg (Cacti)

Sample
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1. Ex of Dijkstra’s Alg (Cacti)

Sample

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Graph classes s.t. Hamiltonian
Path can be found in poly time

Fact 1:

Hamiltonian Path is NP-hard on a chordal graph.
(In fact, strongly chordal split graph[Muller,1997].)

Fact 2:

Hamiltonian Path is solvable on an interval graph in
linear time. [Damaschke, 1993].

Our goal:
Poly-time algorithm for Longest Path on an interval
graph.

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Interval Graphs

e Aninterval graph G=(V,E) has an interval
representation s.t. {u,V}€Eiff |, NI, # &

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Interval Graphs

e Aninterval graph G=(V,E) has an interval
representation s.t. {u,V}€Eiff |,N ], # &

ly v

[}

u

Hamiltonian Path: linear time solvable.

= Restricted interval graphs...

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf
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Restricted Interval Graphs

e An interval biconvex graph G=(SUY,E) has
an interval representation s.t...

I AAAAAAAALALL A

Y: biconvex

S: integer points
http://www.jaist.ac.jp/~uehara/ps/longest.pdf

2005/3/1 NHC@Kyoto

Restricted Interval Graphs

e Interval biconvex graph G=(SUY,E) is
introduced [Uehara, Uno; 2004] from graph
theoretical viewpoints;

Natural analogy of biconvex graphs (bipartite graph class)
Generalization of proper interval graphs

Generalization of threshold graphs

Best possible class longest path can be found in poly time...

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf

Poly-time alg for longest path on
an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];
Embed the vertices in S into P as possible;
Adjust endpoints if necessary.

A A A A A 4 4 a4 2

343719238 830
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Poly-time alg for longest path on
an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];
Embed the vertices in S into P as possible;
Adjust endpoints if necessary.

A A A A A A A A & & 2

343719 238 830
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Poly-time alg for longest path on
an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];
Embed the vertices in S into P as possible;
Adjust endpoints if necessary.

A A 4 4 a2 4 4

——

0 00O NP W

T

3dBM@19 2 3@1MB@30
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Poly-time alg for longest path on
an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];
Embed the vertices in S into P as possible;
Adjust endpoints if necessary.

A 4 4 a A 4 a4 a

o © N8 W

=

3dBM@19 2 3@ 80

:30
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Poly-time alg for longest path on
an interval biconvex graph (idea)

Find the trivial longest path P on G[Y];
Embed the vertices in S into P as possible;
Adjust endpoints if necessary.

A A A 4 4 a2

3dBM@109 2 3@ 80

v" How can we determine the
vertices in S?
v" Where do we embed them?

?30

http://www.jaist.ac.jp/~uehara/ps/longest.pdf

2005/3/1 NHC@Kyoto

Poly-time alg for longest path on 2
an interval biconvex graph (idea) | :

Embed the vertices in S into P as possible;

w(e) is the number
at the right-endpoint

A A A a4 a4 A 4 a4

.WO [}
Soowhoa~NwAw

XX XX X1l

343719 238 830
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Poly-time alg for longest path on
an interval biconvex graph (idea)

Embed the vertices in S into P as possible;

w(e) is the number
at the right-endpoint
[ J

4 A A A A A A 4 a

XX XXX
MW
OWNO-_-2NWhW

3dBM@1M9 23 30 | Find the maximum
weighted matching!!
http://www.jaist.ac.jp/~uehara/ps/longest.pdf

I
w
o
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Open Problems

e Longest Path on an interval graph??

Combination of DP/Dijkstra and weighted
maximum matching on MPQ-tree representation?

Related to the following open problem?

Hamiltonian Path with a start point on an interval graph?
[Damaschke, 1993].

e Extension to
Longest cycle on some graph classes
Hamiltonian cycle/path on some graph classes

2005/3/1 NHC@Kyoto http://www.jaist.ac.jp/~uehara/ps/longest.pdf
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Proposal of
Asynchronous Distributed
Branch and Bound

Atsushi Sasakit, Tadashi Araragit,
Shigeru Masuyamaj

FNTT Communication Science Laboratories,

NTT Corporation,
Kyoto, Japan
iDept. of Knowledge-based Information Eng.,
Toyohashi University of Technology.

Toyohashi, Japan

Outline

* Proposal of a new framework of
asynchronous branch and bound to obtain
optimal solutions for discrete optimization
problems where each variable denotes a host,
e.g., load balancing.

* This framework is promising as it has more
flexibility and robustness than conventional
ones with some centralized control.

Load Balancing

» Fundamental problem to affect the performance of
distributed systems

» NP-hard(e.g., Multiprocessor Scheduling [Garey,
Johnson 79], Mobile Agent Allocation [Sasaki et al
05])

* Most conventional solution methods for discrete
optimization are kinds of local search [Shiragi et al, 95]
— Further improvement from a local optimum is difficult

» Few studies focus on optimization

Desirable Properties

» Exact optimal solution is obtained
(from any state, non-optimal solution can be
improved)

» Fully distributed control

» Can be used as an approximation algorithm
(especially in a large-scale system)

» Asynchronous operation
* Fault tolerance and adaptation to dynamic changes
* High performance

Conventional Branch and Bound under

Distributed Environment
» Synchronous branch and bound [Yokoo, 01]

— Simulating the sequential branch and bound

« Assigning an agent to each variable and execute just like sequential
branch and bound

— Exactly one agent operates at a time (e.g., when branching
is executed) so that a unique branching tree is maintained
* Distributed branch and bound[Barta et al, 02]

— Assigning each partial problem obtained by branching
operation to a different host (natural way in a distributed
environment)

— Essentially the same as the parallel branch and bound

131234} £
1233

An Example of Branching Tree in a
Conventional Distributed Branch and Bound
with Central Control

{1} 3} 2 3

1213} 12 23
oA 23

) 2B 32 23 2L (23
ZHSG GH omiesy 2o B2 H2H3)

X The case where both the number of tasks and that of hosts are 3.
2 Both of them maintain a unique branching tree.
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Synchronous Distributed Branch and
Bound

23 @) (132

2 Both the number of tasks and that of hosts are 3.

Distributed Branch and Bound

{13423} 1203y {13312} VZWUM 20y 32
230G 430142} W23 23 BH2E G

S0 203 234
241

} |
2180 321 {23

Host 2 a Host 1
¢ Both the number of tasks and hosts are 3.

Host 3

Drawback of the Conventional
Distributed Branch and Bound

* Fragile to fault and dynamic changes
* Essentially centralized control

—Difficult to apply to large-scale
systems (as an approximation
algorithm)

Strategy of Our Research

» Each host operates asynchronously and
cooperate to enumerate (implicitly) all the
feasible solutions

* Each host processes only information relevant
to the host

« Utilize the fact that the initial state is feasible

Definition of Geographical Optimization

s 0
Mlanmlze miaX Vi (x",x) Notations for static version of Mobile

r Agent Allocation [Sasaki et al, 05]

st.x=(x x,---x,)

x:positions of agents (described by host
D)

¥ (xn ,X) = fi(x)+ g, (x)+k, (xn ,x) x" initial positions of agents

. y: finishing time
fi)=p, ) wlx, =i
J

X 1<x,<n

f: CPU cost
p: CPU power of a host
&) =2, ¢, Lx; =il[x, %] »:load of an agent
I g: communication cost between agents
0 N ..o, .9- communication speed of a link
ki(x",x) = qu?x,b;[x,- =1][x; # il communication amount between
7 agents
k: migration cost of an agent
b: size of an agent at migration]

1 z:true

[=1= {0 otherwize

Asynchronous Distributed Branch
and Bound (Asynchronous DBB)

Host 1 Host 2 Host 3

Undirected edges denote thosgrz):f%ﬁénrie%%ork, and (1)(2) (3): initial state

@ :terminated as

its lower bound >yo ({1}{2}{3})
| : a state with migration to an adjacent host (7) : feasible solution left{when yo unchanged

initial state is deleted.
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Basic Operations of the Proposed
Asynchronous Distributed Branch and
Bound(Asynchronous DBB)

» Update of the incumbent value:
— New value is spread in the system by flooding
» Branching Operation:
— Generate a new state by combining at least two states
— Notify adjacent hosts of the state with migration
— Compute cooperatively the objective function of each state
* Bounding Operation:
— Terminate a state from which no optimal solution is derived
— Notify adjacent hosts of the terminated state, if necessary

2 State: combination of variable values that is a candidate of a
solution where migration is also considered

Messages used in the
Asynchronous DBB

+ Update of the incumbent value: update(y’,a’)
 Branch operation:
— Branch: migrate(x;,s), local improve(s,y’)
— Computation of objective function:/ocal max(s,y’,a’),
local _max_fix(s,y’,a’)
* Bound operation: hound(s,a’)
s:state (represented by the difference from the initial
state), y”: objective function value of s, a’: host
from which the message was sent (source host of the
message)

Outline of the Operation at initial state

e Incumbent value < the current value of the
objective function

* Generate a state where variables are migrated to
adjacent hosts from the current hosts

* Notify adjacent hosts of the state s and variable x;
to be migrated using message migrate(x;,s)

Other operations are triggered by some message

An Example of Operations at the
Initial State

* The case where /1 (adjacent host:A2) has only variable
X1
— Initialization of the incumbent value :;y=yo, a=ao
— Generate a state where variable x; is to be migrated to /2, then
send migrate(x,, xo) to /2

* The generated state is put into /
Set S:set of enumerated states at present:
S has only x° at the initial state.

Set S’:a terminated state whose descendants may yield a better
value than the incumbent value: ®  at the initial state

Operation when Update is
Received

 If the value v carried by the message is smaller than
the incumbent value z, update the incumbent value to
v and send it to hosts other than the source of the
message.
— If there is a state terminated by the update of the
incumbent value, then bounding operation is executed.
e If v > z, then do nothing.

— If v = z, then tie breaking is done according to ID of each
host.

Operation when bound is
Received

 If the bound has been received previously, ignore it.
* Remove the state attached to the message from S

— If further branching may yield a good solution, then
append the state to S’

— If migration of a variable from some other host becomes
impossible by the removal of the state, then send bound
to the host.

« Ifthe attached state does not have migration, then
send it to hosts excluding the source of the message.
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Operation when Migrate is
received

Generate a state where variables to be migrated are
set in it and combine the state and states in S, S’ to
generate a new state. (enumeration)

Assign its objective function value to v of the
generated state. If v>z where z is the incumbent
value, then terminate the state.

If the non-terminated generated state has
migration, then notify the destination of the
migration by sending migration.

If all the variables in the non-terminated generated
state is fixed, then send local_max to compute its
objective function value.

Computation of the Objective
Function Value

* local_max(s,y’,a’)
— Spread the object function value y of state s at host / ,
* local max_fix(s,y’,a’)
— Used for fixing the objective function value spread by the
above operation.
— The objective function value is fixed to y’ when host %,
receives this message from all the adjacent hosts.
» Computation is done only at hosts that is changed from
the initial state.
— If this is not the case of }; , then local improve is sentto }
* Multicast, instead, can be appl‘icable. °
X :h,,U host that gives the objective function value at the initial state.

How to Obtain the Value of the
Objective Function

— local_max(s,y’,a’)
— local_max_fix(s,y’,a’)

Termination

* Terminate when no message is in the distributed
system

= incumbent values at different hosts are the same

* A state which gives the incumbent value exists in
S at some host = the incumbent value is the
optimal solution

2 S:set of states currently enumerated

Correctness

* The incumbent value is integer and
monotonically decreasing=>it reaches to the
optimal value if enumeration is realized

+ Enumeration (excluding terminated states) :
realized by message migrate and message
local _improve

Discussion on Properties and
Future Prospects

* Approximation

» Combining some other approximation
methods

» Coping with large-scale systems
* Asynchronous operation

+ Fault tolerance and flexibility for the
dynamic change

» Efficiency
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Approximation

* The solution corresponding to the
incumbent value provide an approximation
solution as is the case of sequential branch
and bound

+ If migration costs are high, optimal solution
may be obtained earlier.

Using Some Other Approximation
Method to Obtain an Upper Bound

* Introducing an upper bound computed by
some approximation algorithm may helpful
for cutting the branching tree

* Thus, developing an efficient distributed
approximation algorithm may help

Coping with Large-scale Systems

» Seamless decomposition is realized by
restricting the length of movement for each
variable.

* By this restriction, the number of messages
may be reduced drastically from
O(m)

» However, the incumbent value should be
carefully treated.

Asynchronous Operation

* Proposed asynchronous DBB is highly
asynchronous as operations at each host are
triggered by messages and relation among
processing of different hosts are not strong.

 This property may help improve the efficiency, e.g.,
by assigning priority of processing for each message

— This is one of the important topics for future
research

Fault Tolerance and Coping with
dynamic change

» Asynchronous DBB can partialy cope with them.

— Failure at a host where the objective function at initial
state is not maximal and different from the current
incumbent value can be torelated

— Appending a new host
— Appending a new variable (only when the value of the
objective function does not exceed the incumbent value).
* Other cases are left for future research

— Including the modeling issues, e.g., how to treat variables
on the failure host

Efficiency

Searching strategy used in sequential branch
and bound cannot be straightforwardly
applied to asynchronous DBB — searching
strategies fit for asynchronous DBB should
be developed.

The number of messages and that of
memories required is very large

— Some reduction method of messages and
memories is required
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Conclusion

* A new framework of asynchronous
distributed branch and bound (asynchronous
DBB) was proposed.

* Asynchronous DBB is promising from the
viewpoint of fault tolerance and flexibility

 This may become an infrastructure for
future large-scale distributed system

Future Research Topics

Considering fault tolerance and adaptaion to dynamic
changes (including modeling)
Considering how to improve efficiency

— Examination of detailed operations (e.g., whether a message
can be sent or not)

(e.g., message reduction)
— Considering branching order
— Reduction of space complexity
Considering good distributed approximation algorithm
for obtaining upper bound
Experiments for evaluation
Coping with mixed integer programming
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Energy-Optimal Online Algorithms for
Broadcasting in Wireless Network

Shay Kutten

Hirotaka ono

David Peleg
Kunihiko Sadakane
Masafumi Yamashita

Outline

» Background
* Model
* Problems and Results

Algorithms and Analyses
— Single Receiver Case

— Multiple Receivers Case
+ Conclusion

Background

» Design energy-efficient online message
broadcasting protocols in ad-hoc wireless
networks

— energy-efficiency :
« save the battery-resource

—online property: --- ad-hoc network
* non-static network

Problem

receiver

» The sender does not know the distances to receivers
« Broadcast a message to nearest n-1 hosts
« Receiving ack from the n-1 hosts

Problem: Design a good online algorithm

Problem

« Communication requires energy consumption.

» The energy consumption depends on
the distance between the sender and receivers.
(The distance is longer, the energy must be larger.)
» The sender/receiver have no distance information.
* s sends some message (e.g., beacon) tor.
with some energy consumption.
* If r receives the beacon, he needs to send “ack”
to s with the same amount of energy consumption.

— 487 —




Model

The attenuation of signal power P is P, = Lﬂ
where d(s,r) is the distance d(s,t)
between sand r, and § =1is
the distance-power gradient.
v is the minimum power to decode a message.
— The maximum distance to which a message can
derivered fromsis (P./y)"°

Only a direct broadcast is allowed.
(No multi-hop delivery is allowed.)

Synchronous Communication - -+
(We can utilize a global clock and unique IDs of nodes )

Collision-free and Failure-free

Related Works

* Range Assignment Problem
— offline : The distances between any pair of hosts are
given.
— Minimizing the total energy consumption
to broadcast a message to a set of recipients

— Constructing energy-efficient multicast tree
with several properties:

« connectivity from a source, strong connectivity,
small radius, and so on

“On the Complexity of Computing Minimum Energy Consumption
Broadcast Subgraphs”, [CCPRV 2001]

“Power Consumption in Packet Radio Networks”, [KKKP 2000]

Problems and Results

Algorithms and its Performance

Minimize the total energy consumption
Our model is “online”, i.e., no a-priori information.
Use competitive analysis:
The performance of algorithm A (competitive ratio)
1S cost(4, 1)
supy—————
cost* (/)

I: instance}

cost* : the minimum value of the total energy
consumption with complete information

Problems and Results (1)

* Problem BA2 (Broadcast+Ack-2)
— one sender s and one receiver r
— s sends a message to r.
— rsends an ack to s after receiving the message.

message
s@® r O
ack
. .
- cost*=2p =2y-d°

* Theorem

The optimal competitive ratio of problem BA2
is 3/2++2

(No online algorithm whose competitive ratio is smaller than3/2 + «/5 )
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Problems and Results (2)

* Problem BAn (Broadcast+Ack-n)
— one sender s and n-1 receivers, ri.ra, ... ,f
— s sends a message to r.rz, ... 1.
— Each r sends an ack to s after receiving the message.

niregeivers nz2receivers nsreceivers

Problems and Results (3)

Theorem

The optimal competitive ratio of problem
BAnis 3/2+42

Algorithms and Analyses

Generic Protocol (Algorithm)

Procedure SendMessage(t,msg)
1.i:=1, f:=true
2.while f
3. do Transmit(msg,pi) with power pi.
wait.
if received ack from t
f .= false;
1:=i+l;

R

Procedure SendMessage(t,msg)

1. i:=1,f:=true

s 2. while f

3. do Transmit(msg,pi) with power pi.

4 wait.

5 if received ack from t
6. f:= false;

7 i:=itl;

——

/

/fhe total cost (energy consumption)
of the procedure is

J
cost()=3" p.+p,

R(BIWE )"

Single Receiver Case (1)

« Algorithm: DA[ B8] (Doubling Algorithm)
—In SendMessage,

Set p, =y and p,,, = B-p,- p=r
p,=r B
py=7-p

B=2 :
r=1 A
g |
1 2 4
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Single Receiver Case (2)

* Proposition:
DA[ 3] algorithm achieves the competitive
ratiois p@ep-1) for problem BA2.

£-1
The value 222D is minimized when ﬂ:1+i,
B-1 V2

and itis %+\/§ :

Single Receiver Case (3)

* Theorem
The optimal competitive ratio of problem BA2
is 3/2+2

Sketch of Proof:

1. Assume an optimal online algorithm with competitive ratio
¢ = 3/2+{ 2 and its output, say x,x,xs ....

2. From the competitive ratio property, we have the following
inequality, 1 e
<a;x, o, =ct————0
2 a,

xi+l

Sketch of Proof: (continued)

3. The parameter sequences ¢; is a Cauchy sequence,
so «a,; converges to a real value ¢, and we have the
following quadratic equation:

1 ¢
a=c+———
2 «a

4. From the condition of the existence of « is
cz %Jr V2

5. The algorithm achieves the competitive ratio;
i.e., it gives the upper bound.

Q.E.D

Multiple Receivers Case(0)

* Problem BAn (Broadcast+Ack-n)
— one sender s and n-1 receivers, r.rz, ...
— s sends a message tor.rz, .
— Each r sends an ack to s after receiving the message.

,Mn-1

. ,rn-1.

nireceivers nzreceivers nsreceivers

s @
. d1 d2 ds
« Offline case:

A simple Dynamic Programming can solve this
in liner time.

Multiple Receivers Case (1)

Consider a simple special case:

* Problem UBAnR (Broadcast+Ack-n)

— one sender s and n-1 receivers, r.r, ...
all at the same distance d from s.

— s sends a message to r.r, ..
— Each r sends an ack to s after receiving the message.

,In1

.,

n-1receivers

Multiple Receivers Case (2)

* Proposition
The competitive ratio of DA[ 8 ] algorithm

fixing 5_1._L ,for UBAnis atmost 14+ 2 41
IXing ’8_1+ﬁ [ 1+\/;+n

* Theorem

The optimal competitive ratio of problem UBAN

1S 1+i+l

Nnon

The previous proofs can be extended to this case.
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Dynamic Doubling Algorithm

To solve the general case, we propose
the following online algorithm:

Procedure DDA(n,msg)

Results of Multiple Receivers (1)

Theorem

The optimal competitive ratio of problem
BAnis 3/2+42 .

l.p=vy
2.while n>1 Sketch of Proof:
3. do Transmit(msg,p) with power p. ) L
4 . » Lower bound : Consider the following situation (instance):
wait. 1 receiver
5. n:=n—#(received ack) n-2 receivers
6 p:=p- B ﬁ’k:1+L =0
\/E This dominates the total energy consumption.
Sketch of Proof: COnC|USIOn

» Upper bound : DDA algorithm achieves the
competitive ratio 3/2++/2.

1. The problem instance can be considered
the union of UBAn, and BA(n—n,)

2. In the UBAn, part, DDA algorithm achieves
competitive ratio “%*%%“ﬁ
3. By applying this discussion repeatedly,
the competitive ratio of each part is
atmost 3/2++/2 , so in total the competitive
ratiois 3/2++/2.
Q.E.D

* Direct broadcast on online setting
» Single receiver and multiple receivers

» Energy-optimal online algorithms

— doubling algorithm and
dynamic doubling algorithm

— The optimal competitive ratios are
both 3/2+42

Future Work

* Not only energy-efficient
but also time-efficient online algorithm

» Considering failure, collision, and so on
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Ultimate Implementation and Analysis
of the AMO Algorithm

for Approximate Pricing

of European-Asian Options

Akiyoshi Shioura
(Tohoku University)

joint work with T. Tokuyama

Summary of This Talk

e optiontypicalfinancialderivative
e pricinguropean—-Asianoptionon binomialmodel
——difficulttocomputeaccurately
=a pproxination

e Aingworth, Motwani&0|dham(SODA0O)
time:0(kr?), absoluteerror0(nX/k)

e OurAlgorithm:
time:0(kr?), absoluteerror 0(X/k)

n,X:problemparameters, k:time—errortradeoffparam.

Option

e optionrighttosel | (orbuy)
somefinancialasset(e.g.,stock)
atsomepointinthefuture( expirationdate
foraspecifiedpricedtrikeprice

e gainmorebenefitbyinvestment
e hedger iskfromthefluctuationofstockprice

Payoff of Option

Example:optiontobuyastockofGooglelnc.
attheyear—endat$200

stockpr icegoesupto$220 attheyear—end
=exerciseopt iontobuythestockat$200
=sellitfor$220= gain$20 fayof)
stockpr icegoesdownto$170
=donotexerciseoption= payoff=$0

GOLJSIE

PayoffofEuropeanOption:
(S X)t=max{S X,0}
G:stockpriceat expirationdate, Xstrikeprice)

European-Asian Option

e payoffofEuropean—Asianoption
dependson averageofstockpriceA
dur ingvholeperiod

H payoff:(A X)' =max{A

Lol |

=L — %~ (S-X)r=0

@er;g% (A-X)D0
stockprice time

[ safeagainstfluctuationofstockpr ic%

strike
price

Computation of Option Price

® priceofoption=discountedexpectedvalueofpayoff
—-—— needto model themovementofstockprice

® OQurmodel: binomialmodel(discretemodel)
H proposedby Cox,Ross&Rubinstein(1979)
B representstockpr icemovement
byabinomialtree
B cancomputeexactoption priceby DP
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n—thper iod

Binomial Model éirationdate Our Problem
e Z"dpsezriOd computetheexpectedpayof f s's )
_ K ‘ ofEuropean-Asianoption £ [“”—X]
e onthebinomialmodel n+l
withprob.p

init.sto
priceS

pr icegoesdown
todS

payoffisdependentonthepath P=($,S,,S,,...,3
Rath-dependentopt ion
Pros payoffisnonlinearw.r.t.therunningtota$,
] = needenumerat ionofal | thepaths
® apath P=($,S;,S,,... Jfromtherootto e LIy P
. eafrepresentsthemovementofstocnkpr ee . computat ionofthepr iceofpath-dependentoption
® payoffofEuropean-Asianoption= (ZOSX} isftP-hard

n+l1

withprob.1-p

Approximation Algorithms AMO Algorithm and its Variants

for Pricing European-Asian Option Dai . HuangdLyuu

®MonteCar |oMethod f,f,goi,).r o[@]
basedonpathsamp! ing T k
errorbounddependsonthevolatilityofstockprice

R Y=

adjustfofbuckets | ghioyragTokuyama

Aingworth,Motwani

&01dham(2000) (2004)
®0thermethods time:0(kif) abs.err.o(ij
basedonheur istics abs.err.:0(nX/k) | [ Ohta,Sadakane, - k
notheoret icalerrorbound DP+bucket ik ShiouragTokuyama | \ usebothig/}

(2002) 5)(
abs.err.Q f;;— ndisappears!

independent
ofvolatilit randomizat ion

i depthofbinomialtree, X:stkeprice, k:positévnteger)

Exact Algorithm by DP AMO Algorithm (1)

ateachnodeofbinomialtree, compute e # of running subtotals can be exponential

al Ipossiblmnningsubtotalif,f S, . . .
gtheir probabilities"" = approximate running subtotals by bucketing

. running subtotal
(813,1/8) interval &prob%bility r.()undubpt 2 [0
runningsupbtotalis 400, 0.05
(625,1/8) as0 | @10,0.05) ‘i 300 | )
(500, 1/8) 300
: 300 | (205,0.15) Sumup (300, 0.47)
(417,1/8) 240, 0.12 P | 200
200 (285’ 0'20) probabilities— )
(417,1/8) 200 2170’ 0'10; ineachbucket | 7o | (200, 0.30)
(334,1/8) (150, 0.10) 100
(278,1/8) 100 | (110.0.10) o |(100,0.06)
100 (80, 0.05)
Go) (241,1/8) 0 | (30,001
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AMO Algorithm (2)
® k:ftofbucketsateachnode

= errorbound = max.valueofrunningsubtotal/k

Proposition:
runningsubtotalis S, = (nt1)X
n atthet-thperiod

optionwil Ibeexercisedattheexpirationdate
conditionalexpectationofthepayoff
canbecomputedeasi ly

= errorboundofAMOalgorithm= (nt+1)X/k

Algorithm by Dai et al. (2002)

AMOalgor ithm :usethesamenumber k
ofbucketsateachnode

@‘ setthe numberofbucketsk ;;
atthenode(i, j)flexibly
errorbound Zn“iiw(/, { koo

/=0 j=0 k/]
probabi | ityof
. reachingnode(i, j
® adjustffofbucketsk ;;

tominimizeerrorbound
underthecondition k =kn?

|:> errorbound O[

kH

ﬁxj‘
k

Algorithm by Ohta et al. (2002)

AMOalgor ithm approximaterunningsubtotals
inabucketby rounding-up

:

choosearunningsubtotal random|y ‘
asapproximatevalue ggg (())g(())))
interval | RS BERT® | [ pronli/2 ]
200 | (170, 0.30) (150, 0.60)

(150, 0.10) prob.1/6

100
119, 0.20) (110,0.60)

Analysis of Ohta et al. (2002)

regardthebehaviorofrandomizedalgorithm
as stochast icprocess> Martingale
expectationoftheerrorbyrandomchoice
ofrunningtotalsatanode=0
= applyAzuma sinequal i ty(1967)

1
mx| .
errorbound O E (with high probability)

EJanalysisisdifficEt

Our Algorithm

® setthe numberofbucketsk
atnode(i, j)flexibly
® randomchoiceofrunningsubtotal

|:> errorbound O[

® adjustifofbucketsk ;
tominimizeerrorbound |:>
underthecondition k =kn 2

ij

X
ol £
errorbound [k j‘

Enalysisisquit@

Open Problems

e derandomization of our algorithm with the same
error bound

e approximation of American-Asian option
e analysis of error bound compared to exact price
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On Computing all Abductive Explanations
from a Propositional Horn Theory

Kaz Makino
(Graduate School of Engineering Science, Osaka Univ.)

Joint work with Thomas Eiter
(Technische Universitat Wien)

Outline

1. 3 reasoning mechanisms
2. Abduction from Horn theories

3. Generating abductive explanations from
Horn theories

4. Model-based representation for Horn
theories

3 Reasoning Mechanisms
Deduction: fact | knowledge base \: ?
Induction: fact U ? = observation

Abduction: ? U knowledge base = observation

Fact: battery is down

knowledge: if the battery is down, the car will not start

——> The car will not start

3 Reasoning Mechanisms
Deduction: fact | knowledge base |= ?
Induction: fact U ? = observation

Abduction: ? U knowledge base = observation

Fact: battery is down
Observation: The car will not start

—> Rule: if the battery is down, the car will not start

3 Reasoning Mechanisms
Deduction: fact U knowledge base = 7
Induction: fact U ? = observation

Abduction: ? U knowledge base \: observation

knowledge: if the battery is down, the car will not start

Observation: The car will not start

> Fact: battery is down

(formulated by C.S. Peirce ' 31-" 58)
Widely used in Computer Science and Al

Basis for

Truth Maintenance Systems (TMS, ATMS)
Clause management Systems (CMS)
Diagnosis

Database Update, ...
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Propositional Horn Knowledge Base

Propositional variables: 1, x2, - - -
Knowledge f : {0,1}" — {0, 1}

CNF (conjunctive normal form): E.g.,

»xn E {Oa 1}

e=(T2V T3V 24)(ZT3VTsV22)(T2V 21)

Horn CNF: at most 1 positive literal in each clause

Propositional Horn Knowledge Base

Horn CNF: at most 1 positive literal in each clause
e=(T2VZT3V124)(T3VTaVx2)(T2V 1)

Horn clause:(z;, vV, V---VT; V x;,)

Horn rule: Ti, N\ Tip, N\ -+ A\ X4, — X4,
(antecedent/consequent: may be empty)

o = (x2r3 = x4) (23224 — T2) (T2 — T1)

Core language in Al and logic programming

Horn CNF representation is not unique
E.g.,
p1= (.731 —).TQ)(.Q?Q —>x3)(m3—>x1)
= (:131 —)CCQ)(:CQ—)xl)(x2—>:133)(:133—>332)

IT1 3 z1 x2 3
" RS

mod(p1) = mod(p>) = {(111),(000)}
I

{ve{0,1}" [p1(v) =1}

Explanations
©:aHorn CNF
q : a propositional variable

An explanation for ¢ from ¢: a minimal set [F s.t.
‘(1) pUE[Eq
(2) o U E is satisfiable

PUE = oA \,cp

¢ E1:p(v)=1implies ¢»(v) =1forallv € {0, 1}"

My E Negz — @)
(2) v € mod(p) st. (Ngepr)(v) =1

Explanations
®:aHorn CNF
q : a propositional variable
An explanation for ¢ from ¢: a minimal set E s.t.
MeUE E=q
(2) [p U E is satisfiable

Abduction: ? U knowledge base E observation
E P q

E.g., Explanations for 21 from

o= (z2x3—14) (2374 — 22) (T203—T1)
pU{z1} = =1 MeUE = 21
eU{z2, 23} F 21 (2) o U E is satisfiable ‘
pU{z3, 24} = 21

B ={z1},{z2, z3}, {23, 74}
E = {z1}: trivial explanation for z1

“Well-known:

Finding a nontrivial explanation F is poly. time.
Finding an explanation | C A is NP-hard.
(Selman & Levesque '90)
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Abduction: ? (U knowledge base |: observation

E @ q
Car diagnosis

7(,0: if the battery is down, the car will not start
if the gas tank is empty, the car will not start

q: The car will not start

Q> E: {battery is down}, {gas tank is empty}, ...

1. Generate all possible explanations
2. Find a real one from them

Can we generate all (poly. many) explanations
efficiently ?
Conjecture by Selman & Levesque ('90)

Generating O(n) explanations is NP-hard,
even if there are only few explanations overall.

Eiter & Makino (2002) disproved it

Note: Exponentially many explanations might exist.

n

o= N\(@i—=y)A@yz...90n = ) .
i=1 2" explanations
E={{en,e2,...,en} | & € {mi,yi}}

Complexity of generating problem

start 1 @2 ... Op—1 O . gst  halt
For b —
—
total Slow

Output P: ¢, = poly(input +output)

Incremental P: t, = poly(input +Z|az|)
=1

Pdelay: t, = poly(Input)

Prime implicate ¢ of f
fECc fEC forany d Cec
Ex. f = (x1 = x2)(z2 — z3) (23 — x1)
(mod(f) ={(111),(000)})
. Tl\/xQ(E 1 —)mg)

fEZ1Vr, fFE 7,

-52V$1(5$2—>w1)

fEZ2Vz, fFET, [FE .

I~ z2.

Explanations and prime implicates

Explanation: minimal E s.t.

MeUEEq o pENepr—a)
(2) ¢ U E is satisfiable

nontrivial explanation for q

i

prime implicate containing g

How to generate all prime implicates
c1 = (Vierpe) TV Vien(e) T)
2= (Vuep(e) TV Vaen(en @)
(P(e1) N N(e2) = {z},N(c1) N P(c2) =0)

resolvent

c3 = ( \/ z V \/ T)
z€(P(e)\{z})UP(c2) z€N(er) U(N(e2)\{2})
(z2 VT3V T4): resolvent of

(1 VT3V Tq) & (T1 Va2 VZI3)

E.g.,

fEc,cc = fEc3
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Procedure Resolution

Input: ACNF p = /\Z":1 c; representing f.

Output: All prime implicates of f.

Step1:|S :={c; |i=1,2,--- ,m}.

Step 2: Repeat (s) simplification and (r) resolution.
(s) Remove ¢ from Sif 3c* € Sst.c* =c. ¢ C
(r) Add a resolvent of two clauses in 5.

Step 3: Output all clauses in S.

Ex.p= (5177!754)(54 vV z3)(T1 V xg)(@ VTs V 1)

So = {1V Ta\Ta V T3,71 V 22(T3 V Ts V 21}
\Sl = Spo U {53\]%51\7/54 3V ZTsV xQ}
So =851\ {Z3VTsVZIa}

C

Prop. [Blake ('37), Brown ('68), Quine ('55), Samson-mills ('54)]
Resolution procedure generates all prime implicates.

Prop. Even if ¢ is Horn, resolution procedure
may require exponential time.

Prop. There is no output P algorithm for generating
all prime implicates, unless P=NP.

Procedure Resolution
Input: A CNF p = /\Z"=1 c; representing f.
Output: All prime implicates of f.
Step1:|S :={c;|i=1,2,--- ,m}.
Step 2: Repeat (s) simplification and (r) resolution.
(s) Remove c from Sif 3c* € Ss.t.c* = c.
(r) Add a resolvent c3 of two clauses c1,c2in S.
Step 3: Output all clauses in S.
Modification
(1) Input resolution: c1 € ¢
(2) Add a prime implicate ¢’ s.t. ¢/ =
(3) Output ¢’ in (r) immediately, if ¢’ is new.

Th. [Boros, Crama, Hammer ('90)]

If ¢ is Horn, then input-resolution procedure

generates all prime implicates in incremental
P time.

nontrivial explanation for q

Ik

prime implicate containing |g

Procedure Resolution

Input: ACNF p = /\Z":1 c; representing f.

Output: All prime implicates of f.

Step 1: IS :={c; | i =1,2,--- ,m}.

Step 2: Repeat (s) simplification and (r) resolution.
(s) Remove ¢ from Sif 3c* € Ss.t.c* = c.
(r) Add a resolvent c3 of two clauses c1,¢c2 in S.

Step 3: Output all clauses in S.

Modification

(1) Input resolution: c1 € @

2) Add a prime implicate ¢’ s.it. ¢/ =

) Output ¢’ in (r) immediately, if ¢’ is new.

)

(
(3
4)c2>q

Th. [Eiter, Makino (2002, 2003)]
All explanations for ¢ from a Horn CNF can
be computed with P delay.

Sketch: P> |

Cor. P many explanations for g from a Horn CNF
can be computed in (input) P time.
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Explanations for a negative literal

nontrivial explanation for a negative literal g

prime implicate containing g

Procedure Resolution
Input: A CNF p = /\;”:1 c; representing f.
Output: All prime implicates of f.
Step1: S i={¢i|i=1,2,--- ,m}.
Step 2: Repeat (s) simplification and (r) resolution.
(s) Remove ¢ from Sif 3c* € Ss.t.c* = c.
(r) Add a resolvent ¢ of two clauses c1,¢c2in S.
Step 3: Output all clauses in S.
Modification
(1) Input resolution: ¢1 € @
(2) Add a prime implicate ¢’ s.t. ¢/ =
(3) Output ¢’ in (r) immediately, if ¢’ is new.
A cx2q ) 237

Explanations for a negative literal

Prop. [Eiter, Makino (2003)]
Our resolution procedure does not generate all
explanations for g from a Horn CNF.

Th. [Eiter, Makino (2003)]
There exists no output P algorithm for generating all
explanations for g from a Horn CNF, unless P=NP.

Th. [Eiter, Makino (2003)]

All explanations for |g from an acyclic Horn CNF
can be computed in incremental P time.

Summary

Explanations E w.r.t. A=Ljt
Knowlege query @ query q
Horn CNF P delay no output P
Acyclic Horn CNF | P delay incremental P
Characteristic set MDual MDual

Explanations E w.r.t. A CLijt
Knowlege query q query a
Horn CNF coNPc coNPc
Acyclic Horn CNF |  coNPc coNPc
Characteristic set MDual MDual

Model-based reasoning
Deduction ¢ = v

kb(v) =1 implies ¥(v) =1
Eg.o=(T2VT3Vz4)(T3VTaV22)(T2V7Z3V 1)
mod(¢)={(0000), (0001), (0010), (0100), (0101),

(1000), (1001), (1010), (1100), (1101), (1111)}
All models v € mod () satisfy (z3z4 — 1)

= ¢ = (z3zs — x1)
(0101) € mod(y) does not satisfy (xoxa — x1)

= ¢ = (v2z4 = 1)

[mod(p)|: large ==—"> inefficient

[P. N. Johnson-Laird ('83)].

Humans typically argue by just looking at
some examples.

Some models v € mod () satisfy ¢¥(v) =1
——> conclude ¢ |= 1; otherwise, ¢ &= 9
Of course, incorrect !
3S(C mod(p)) s.t.
YoeS: p(w)=1

Vo € mod(p): ¢¥(v) =1 (i.e., ¢ =)
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w A w: intersection of v, w € {0,1}"
(vAw); =vjAwj, j=1,2,---,n
E.g., v = (1100), v = (0110)
v Aw = (0100)
Prop. [McKinsey ('43)]

Lf: a Horn function
<= [mod(f) is closed under A Bl

Semantic, model theoretic characterization

Horn CNF: syntactic characterization

Intersection closure
CINT) = {A\yesw | 0 # S C T}
E.g.. CI,({(0101), (1001), (1000)})

={(0101), (1001), (1000), (0001), }
(0101)  (1001)
(00013/7 (1000)

Characteristic set
char(T)={v €T |v & ClA(T—{v})}
v € char(T) for maximal modellv € T
Relational Database: generating set
Model-based representation of a Horn function

Given Characteristic set char(T)

Dedution: poly. time

Finding a nontrivial explanation F is poly. time.

Finding an explanation [ C A is poly. time.

Horn CNFs

Finding a nontrivial explanation [ is poly. time.
Finding an explanation ¥ C A is NP-hard.

Summary

Explanations £ w.r.t. A=Ljt
Knowlege query @ query ‘q
Horn CNF P delay no output P
Acyclic Horn CNF | P delay incremental P
Characteristic set MDual MDual

Explanations E w.r.t. A CLjt
Knowlege query q query @
Horn CNF coNPc coNPc
Acyclic Horn CNF coNPc coNPc
Characteristic set MDual MDual

Monotone Dualization

Input: A CNF ¢ of (a monotone function) f.

Output: Prime DNF 1) of f.

RN
Ex.lp = (z1V x2) (22

EWV@%@V

=x123V X223V T2Tga = Y

N
V x3)(z3V 24)

\/><\/...

Monotone Dualization
Input: A CNF ¢ of (a monotone function) f.
Output: Prime DNF 1) of f.

Many P equivalent problems >
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Polynomial ? OPEN

Bioch, Boros, Crama, Domingo, Eiter,
Elbassioni, Fredman, Gaur, Gogic,Gottlob,
Gunopulos, Gurvich, Hammer, Ibaraki,
Johnson, Kameda, Kavvadias, Khachiyan,
Khardon, Kogan, Krishnamurti, Lawler,
Lenstra, Lovasz, Mannila, Mishra,
Papadimitriou, Pitt, Rinnoy Kan, Sideri,
Stavropoulos, Tamaki, Toinonen, Uno,
Yannakakis, ...

Polynomial ? OPEN

ZAREF. HIAREEROREHBEEEDEHS,
HEEEL 7 LTURX L L, EBE—#GR) ERE 2,

pp. 1--33, 1994. Toshihide Ibaraki

Johnson. Open and closed problems in NP-completeness.
Lecture given at the International School of Mathematics
""G. Stampacchia": Summer School “"NP-Completeness:
The First 20 Years", Erice, Italy, June 20-27, 1991.
Lovasz. Combinatorial optimization: Some problems

and trends, DIMACS Technical Report 92-53, 1992.

Papadimitriou. NP-completeness: A retrospective,
In: Proc. 24th International Colloquium on Automata,
Languages and Programming (ICALP), pp.2--6,
Springer LNCS 1256, 1997.

Mannila. Local and Global Methods in Data Mining:
Basic Techniques and Open Problems In: Proc. 29th
ICALP, pp.57--68, Springer LNCS 2380, 2002.

Eiter, Gottlob. Hypergraph Transversal Computation
and Related Problems in Logic and Al, In: Proc. European
Conference on Logics in Atrtificial Intelligence (JELIA),

pp. 549-564, Springer LNCS 2224, 2002

Best known
[Fredman, Khachiyan, 94]
Neo(o9N) time where N = || + |¢/]

[Eiter, Gottlob, Makino, 02]
o(log? N) guessed bits

Explanations £ w.r.t. A=Lit

query

clause term

Knowlege general | DNF |CNF | pos Horn general | pos neg general

Horn CNF |coNPc nOP coNPc Pd coNPc coNPc Pd nOP nOP
char(X) |coNPc nOP coNPc nOP MD  nOP  MD nOP nOP

Explanations E w.r.t. A CLit

Summary

Explanations E w.r.t. A=Lit
Knowlege query q query a
Horn CNF P delay no output P
Acyclic Horn CNF | P delay incremental P
Characteristic set MDual MDual

Explanations E w.r.t. A CLijt
Knowlege query @ query q
Horn CNF coNPc coNPc
Acyclic Horn CNF | coNPc coNPc
Characteristic set MDual MDual

query clause term
Knowlege general | DNF |CNF | pos Horn general | pos neg general
Horn CNF | mZ N coNPc coNPc coNPc

char(X) | Ny nNZ coNPc nOP MD nOP  MD coNPc coNPc

nOP: no Output P, Pd: P delay, MD: Monotone Dual




Open Problems

1. Abductive Inference
2. Monotone Dualization
3. Horn Transformation

4. VVertex Enumeration

Conclusion

Generating abductive explanations from
Horn CNFs

Practical side
High order logic, non-Horn case.
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Procedure Resolution

Input: ACNF p = /\:”:1 c; representing |f.
Output: All prime implicates of f.
Step1: S:={c;|i=1,2,--- ,m}.
Step 2: Repeat (s) simplification and (r) resolution.

(s) Remove ¢ from Sif 3¢* € Ss.t.c* = c.

(r) Add a resolvent |3 of two clauses c1,¢c2 in|S.
Step 3: Output all clauses in S.
Modification

(1) Input resolution: ¢1 € @

(2) Add a prime implicate ¢’ s.t. ¢/ =

(3) Output ¢’ in (r) immediately, if ¢’ is new.
(4)c2>4q

Sketch: Al explanations can bé generated by the
input resolution procedure if ¢ is deflnlte Horn

‘ .18’?\ gatR el E%“Wg%ei

9 q clenerated so far

Note /™ irredundant ( Ve € ¢*: ¢* # "\ {c})
if 7= wj Fvip(v) =1,97(v) =0
v o maximal
‘\@/‘ Jeep, I e\ c(v) Zc’(v_) =0
N’ =PV Vuen )
; 1) d=(qV V,en ?)

0,0,.
T
| pFaq J

=(0

1)": CNF consisting of all prime implicates 5 ¢
) :CNF consisting of all prime implicates 3 g generated so far
ify#&¢ u:iyw)=1,9"(w) =0
L/"J{r"\\\\lb v: maximal |
“\ /‘ Jeep, I e \Yp: c(v)=(v)=0
N\ ! _
- AN e=(0V oy @)
U_(ga%a"'voala"\'}]a}) Cl:(qv\/xGN’f)
v+e,=(0,1,...,0,1,...,1)
d(v+ey) =0, v (v+ey) =0, ¥(vtey) =0
A" ey "(v+ep)=0
Since "(v)=1, "=(qV VzeN”u{p} T)
Resolution of ¢ and ¢’ <

Proof. (mod(f) is closed under N)
o= 1|1 1/0- 0|o
w:(1-~~1|O~~~O|1~-1|O-~0)
v/\wz(1-~1|0---O|O~~O|O-~O

JHorn clause ¢ = A,y Ti A xj:
cw)=clw) =1, c(lvAw) =0

Fromc(’U/\U))—O NChL,jelhUIzUI4

c¢(v) =0 or c(w) =0. acontradiction. <
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Metric Labeling: Upper and Lower Bounds

SEFFI NAOR

COMPUTER SCIENCE DEPT.
TECHNION
HAIFA, ISRAEL

Based on Joint Work with:
CHANDRA CHEKURI, JULIA CHUZHOY, SANJEEV KHANNA, ROY SCHWARTZ, AND
LEONID ZOSIN.

Metric Labeling: The Problem

e Input:
— Undirected graph G with edge weights w(u v).
— Aset L of k labels equipped with a metric d.
— Cost function ¢: V(G) x L — R.
e Goal: An assignment [ : V(G) — L (or a labeling of V(()).

e Objective Function: minimize

Z c(u flu)) + Zu'(u v)d(f(u) f(v))

ueV(G) uv
—_—

Labeling Cost Separation Cost

Example

: VAN

Combinatorial Optimization: Related Problems

e Multiway Cut:

— Set of terminals t; th.
— Find minimum cut separating the terminals.
— Special case of ML: uniform metric and no assignment cost.

e 0-Extension:

— Same as multiway cut except that metric is arbitrary:
penalty of cut edge depends on terminals that endpoints belong to.
— Special case of ML.

G e Quadratic Assignment: dropping the bijective property in QA yields
metric labeling.
2 3
Motivation Do assignment costs matter?

e Clean and general abstraction of classification problems [Kleinberg
and Tardos, 1999].

e Links to Markov random fields and their applications.
e Specific applications to image processing and analysis.

e Generalization of well known optimization problems.

The (0 co)-Extension Problem:
c(u i) e{0 oo} forallu e V(G) 1 <i<k.

e Approximation preserving reduction from metric labeling with
arbitrary assignment costs to (0 cc)-extension.

e Reduction preserves label set, but changes graph (in a simple way).

Theorem. [Chuzhoy 2001] Ifthereisa f(n k)-approximation algorithm
for (0 oo)-extension, then thereis a f(n+nk k)-approximation algorithm
for general metric labeling.

- 504 —




Relaxation: Embedding in a Simplex

[Chekuri, Khanna, N., Zosin, 2001]

e Foreachve Viv— (z(v 1) z(v 2)  z(v k)), where

M=

z(vi)=1

i=1

Vertex v is mapped into a probability distribution over the label set.

e Distance between w and v defined by Earthmover Metric -
solution to a transportation problem between (u 1)  (u k) and
(v 1) (v k) with respect to label metric d.

dpn(u v) = Zd(z 3)az(uivj)

z(u i v j) - flow on edge ((u i) (v 7))

X(v)

Linear Program: Computing the Embedding

e Result: Embedding in a simplex where distances are defined by an
earthmover metric (and not ¢;).

e Objective Function: Minimize

ueV i=1 (uv)EE 1<i j<k

k
Z Z(:(u i) x(u i) + Z w(u v) z d(i j)-z(u i v j)
ere=

labeling cost separation cost

Constraints

M=

z(wi) =1 VueV

i=1

k

Zac(u ivj)—awi) = 0

j=1

zwivyj)—azwjui) = 0
z(ui)z(uivi) > 0

VuveViel k

YVuveV,ijel k

Uniform Metric

e Foranyi#j,d(i j)=1.
o What does the earthmover solution look like? for edge (u v):

z(u ¢ v i) = min{z(u i) x(v i)}

e Thus,

k
dpar(u v) = Y d(i je(uivj) > %-Z\r(u i) — (v i)

ij i=1

Uniform Metric: Rounding Algorithm

Rounding an LP solution. [Kleinberg and Tardos, 1999].

Idea: Random choices should be correlated.
Algorithm: repeat until all vertices are labeled.
1. pick ; at random from {1 2 k}.

2. pick ¢ at random from the interval [0 1].

3. label an unlabeled vertex u with @ iff < z(u ).
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Uniform Metric: Integrality Gap

Observation: Probability of assigning 7 to u is exactly z(u ).

Lemma: Probability that « and v get different labels is at most

k
Z |z(u 2) —z(v 7))

i—1
Recall:  dgy(u v) > %-Zle |z(u i) — z(v i)

Theorem: For a uniform metric, integrality gap < 2.

Open Question: Can the 2-approximation be improved?

General Metrics

e Solve the simplex embedding LP.

e Approximate the fractional solution to the LP by a deterministic HST
metric losing a factor of O(log k).

e The integrality gap on an HST tree is O(1).

e Yielding an O(log k)-approximation for general metrics [Kleinberg
and Tardos, 1999].

Linear Metric

Rounding of LP solution:

e Assume w.l.o.g. labels are integers 1 2 k.

e For each vertex u, define «(u i) = Z.r(u 7).
j=1

e Pick ¢ uniformly at random from [0 1].
o L(u)=iiffa(ui—1) <0< alui).

o All vertices get a label since a(u k) = 1.

k
Lemmal: dgy(uv) > Z\a(u i) — (v i)|.

i=1

\ /

Flow is uncrossing

Flow crossing i is exactly |a(u i) —a(v 7)|. o

Analysis

M=

la(u i) — av i)

Lemmal: dgy(u v) >

i=1

k
Lemma2: E[d((L(u) L(v))] = Z la(u i) — a(v i)
i=1

¥

Theorem: The integrality gap of the LP for the line metric is 1.

Convex functions on the line

e d(i j) = f(|i — j|) where f is convex and increasing.
e (is a metric iff f is linear.
e The linear programming formulation is useful for convex f.

o Integrality gap is 1 since flow is uncrossing.
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Truncated Linear Metric

e d(i j) =min{M |i —j|}.
e Applications to image processing.
o Generalizes uniform and linear metrics and is NP-hard.

e 2+ /2 ~ 3 4l4-approximation by generalizing the linear algorithm.
[Chekuri, Khanna, N., Zosin, 2001]

e Open Question: Improve the approximation factor.

Truncated Quadratic Distance

o d(i j)=min{(i — j)* M}. Not a metric!
o Useful function for vision applications.
o O(+/M)-approximation easy.

e Open Questions:
— NP-hard?
— LP gap?
— O(1) approximation?

0-Extension Problem

e Input:
— Graph G with edge weights w(u v).
— T C V(G) - Set of k: terminals.
— d-Metricon 7.

e Solution: Partitioning of the graph, s.t. each terminal is in a different
connected component.

— t(v) - terminal in connected component of v.

» Objective: minimize ST wu ) - d(tu) Hw).

(uv)EE(G)

0-Extension Problem: Open Questions

o s 0-extension easier than (0 co)-extension?

e |.e, if each non-terminal vertex can be labeled for free, does that
make the metric labeling problem easier?

[FHRT] for general

o Best approximation factor known: O (W
) [CKR]).

metrics (improving a previous factor of O(log

Balanced Metric Labeling

e Input: Metric labeling instance.

e Additional constraint:
Each label can be assigned to at most ¢ vertices.

[N., Schwartz, STOC 2005]

Motivation

e Minimum weight k-way balanced partitioning:

— Each part contains at most 2n/k vertices.
— Minimizing weight of edge cuts.

e Special case of balanced metric labeling:

— Label is equivalent to a Part.
— (< 2n/k.
— Uniform metric.

- 507




Motivation (contd.)

e What if each vertex can only be labeled by a subset of the labels?
— The balanced {0 oo}-extension problem.

e Application: Clustering Base Transceiver Stations in GSM networks:
— Weighted graph on the BTS-s: traffic — edge weight.
— Each cluster is controlled by a Base Station Controller (= label).
— Base Station Controller have bounded capacity.
— Each BTS can only be assigned to a subset of the BSC-s.

e Graph arrangement problems:

— E.g,, linear-arrangement: linear metric and capacity = 1.

24

Balanced Uniform Metric Labeling - Difficulties

e Bounding the number of vertices assigned to each label?
— Not obvious in the methods developed for uncapacitated uniform
metric labeling, e.g., the Kleinberg-Tardos algorithm.
e Incorporating label assignment costs?
— Not obvious in the techniques developed for approximating graph
partitioning problems ([LR], [ENRS], and [ARV]).

— For example, there may not always exist a label that can be
assigned to all vertices in a single cluster of the partition.

Spreading Constraints

« Very useful for approximating graph partitioning problems.
e Example: VS C V Yu € S: Zd(u v) > |S| ¢
veES

e For large subsets S, there is a radius guarantee:

5]

FelS:duv)>1-

e Radius guarantee = Ball growing techniques can be applied.

26

The Relaxation

e Embedding in a k-dimensional simplex.
e Spreading constraints.
e Capacity constraints:

v label j :

Zx(v j) <t

veV

e Closeness constraints.

The Relaxation: Closeness Constraints

e Closeness of v and v wrt label j: ¢;(u v) < z(u j) (v j).

e Variation distance: Vu v,

dluv)=1-— Z(;‘,(u v)

JjEL
e Triangle inequality: Yu v w € V,

Zlc](u v) —cj(u w)| <1 7201'(1) w)

28

The Approximation Algorithm

e Overview: A combination of randomized metric decomposition and
label assignment techniques.

e Initial Labeling: Each vertex v is assigned a root labeling,
f*:V — L, satisfying:
Pr(f*(v) = jl = x(v j) Yo € V'V label j

e lteratively: Each vertex, in its turn, is a root and labels a subset of
the unlabeled vertices.
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Radius and Label Tests

e Current root: Vertex u.

e Radius test:

— Choose radius R from the distribution:

n 1+¢ _plde €
fg(r):( )-T-lnnln =3 TE{OlJrJ

n—1

— Define a ball of radius R, with respect to metric d, around root

vertex u:
{z|d(u z) <R}

Radius and Label Tests (contd.)

e Label Test:

— Choose uniformly in random « € [0 z(u f*(u))].
— Define vertices close to the root « with respect to root label f*(u):

{z]epu ) > a}

e Labeling: All unlabeled vertices that pass both radius and label tests
receive label f*(u)).

Approximation Algorithm: Summary

e For each u € V, iteratively:

— Apply radius and label test.
e Output labeling.

Theorem: Upon termination, all vertices are labeled.

Proof: Each vertex passes the radius and label tests when it becomes
the root vertex.

The Approximation Algorithm - Example

u
oy

uy @ ug
®

L = {Red Bluc }

The Approximation Algorithm - Example

u @ us

L= {Red Blue }

The Approximation Algorithm - Example

uy

uy @ ug

L= {Red Blue }
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The Approximation Algorithm - Example

L= {Red Blue Croon)

The Approximation Algorithm - Example

uy @ ®.,

L = {Red Bluc )

36 37
The Approximation Algorithm - Example The Approximation Algorithm - Example
uy Uy
e e
N @ o S @ .
ug Ry} ug ug, Ra! ug
® ®
b b
L = {Red Blue } L = {Red Blue }
38 39
The Approximation Algorithm - Example The Approximation Algorithm - Example
u
®
" ® ... ...
®
®
L = {Red Blue }
40 41
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The Approximation Algorithm - Example

L = {Red Blue

The Approximation Algorithm - Example

uy
®
@ ®
ug us
@
(]
uy
L = {Red Blue }

42 43
The Approximation Algorithm - Example The Approximation Algorithm - Example
-
®
u2 ©/“_J”\ ® . ®.
' uy ' ST
L = {Red Blue } L = {Red Blue Grecn)
a4 45
The Approximation Algorithm - Example The Approximation Algorithm - Example
uy uy
® ®
u & ® . uz o ug,
®
®
L = {Red Blue } L = {Red Blue }
46 a7
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The Approximation Algorithm - Example

L= {Red Blue

a8

The Approximation Algorithm - Example

L = {Red Bluc

The Approximation Algorithm - Example

L= {Red Blue

The Approximation Algorithm - Example

L = {Red Bluc

The Approximation Algorithm - Example

L= {Red Blue

The Approximation Algorithm - Example

L = {Red Blue
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Analysis

o Difficulty:

— Capacity: Easy to bound the number of vertices assigned to a label
with independent random labels.

— Vertex separation costs: If the labels chosen for the vertices are
dependent [KT], cost of vertex separation is bounded.

Analysis (contd.)

e Main Ingredient: The algorithm balances the dependencies
between the labels assigned to the vertices.

— Label of a vertex depends on only a limited number of other labels:
Labels of vertices that are far from each other are independent.

— Spreading constraints: not too many vertices are close.
— Number of vertices assigned to each label is bounded via a new
inequality of Janson for tail bounds of (partly) dependent random

variables.

— Separation cost is bounded.

Approximation Factor

o Bicriteria approximation factor: Forany 0 < e < 1,

- O (I22)-approximation to the solution cost.

— min {o](:m l+ 1} (1 +¢) ¢ vertices are assigned to each label.

e For ¢/ = O(1) or k = O(1), capacity is violated by a constant
multiplicative deviation.

o Compare with balanced k-way partitioning:

Either (O(logn) const), [ENRS] or (O(y/lognlogk) const) [ARV].

Open Questions

e Can we improve the approximation factor?

e Can we obtain the same biciriteria factor (logn constant) known for
balanced partitioning?

Hardness of Metric Labeling

e Back to uncapacitated metric labeling [Chuzhoy, N., FOCS 2004]:

e There is no constant approximation for Metric Labeling unless P=NP.

e No lo;ﬁ"X n-approximation exists unless NP C DTIME(nPoY 12 ") (for

any constant ).

e Hardness is proved for (0 oc)-extension.

Gap 3SAT(5)

Input: A 3SAT(5) formula ¢ on n variables.

e pisa YES-instance if it is satisfiable.

e ¢ isaNO-instance (with respect to some ¢) if at most a (1—e¢)-fraction
of the clauses are simultaneously satisfiable.

Theorem: [ALMSS’92] There is some 0 < ¢ < 1, such that it is NP-hard
to distinguish between YES and NO instances.
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A 2-prover Protocol for 3SAT(5) Formula ¢

e Verifier: randomly chooses clause C' and one of its variables z.

e Prover 1: receives the clause C' and answers with an assignment to
the variables of C' that satisfy it.

e Prover 2: receives variable z and answers with an assignment to z.
o \erifier: checks that the two assignments match.

Theorem:

e If p is a YES-instance: there is a strategy of the provers such that the
verifier always accepts.

o If ¢ is @a NO-instance: for any strategy, the acceptance probability is at
most (1—£).

60

The Raz Verifier

e Performs ¢ parallel repetitions of the 2-Prover Protocol.

e A query to prover 1 is an ¢-tuple of clauses and a query to prover 2
is an ¢-tuple of variables.

e If ¢ isa YES-instance: then there is a strategy of the two provers that
makes the verifier always accept.

e If © is a NO-instance: then for any strategy of the two provers the
acceptance probability is at most 2-°(),

A Simple (3 — ¢)-Hardness

o Start from a 3SAT(5) formula .

e Use the Raz verifier with ¢ repetitions (¢ is a large constant) to
produce a (0 oo)-extension instance:

— If pis a YES-instance, then there is a solution of cost |R|.

— If p is a NO-instance, then the cost of any solution is at least (3 —
8)|R|.

62

A (3 —¢)-Hardness: Label Set

e V query-answer pair (¢ a) of each prover, there is a label (g a).

e Given:

— random string r.
— queries q1, g2 sent to the provers under r.
— ap and ay is a pair of consistent answers to ¢; and ¢o.

— There is an edge of length 1 between (¢; a1) and (g2 az).
o Label distances are defined by shortest paths in the label graph.

e Label graph is bipartite: Part < Prover. Distances: either 1, or > 3.

A (3 —¢)-Hardness: the Graph

e For each possible query ¢ to provers 1 and 2 there is a vertex v(q)
that can only be assigned to its corresponding labels (¢/(q a)).

e For each random string , let ¢;, ¢» be the queries sent to the two
provers under r. There is an edge between v(q,) and v(g2).

Note that every assignment of the vertices to the labels defines a
strategy for the provers and vice versa.

64

Properties

e If v is a YES-instance:

— J strategy of provers s.t. their answers are always consistent.
— Strategy defines an assignment of vertices to labels of cost |R|.

e If o is a NO-instance:

— Assignment of labels to vertices defines a strategy for the provers.
— Acceptance probability of this strategy is at most 2~

— Hence, almost all the edges in the graph pay (at least) 3.

— The solution cost is arbitrarily close to 3|R|.
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Extending to y/log n-Hardness

Difficulty:
e Suppose queries ¢; and ¢, are sent to the two provers.

o If their answers a;,a, are inconsistent, then there is a path of length
(precisely) 3 in the label graph between the labels ¢(¢; a;) and
g2 az).

e This is true even if the answers are inconsistent in many coordinates.

Goal: If the answers are inconsistent in many coordinates, the length of
the path between them should also be large.

Plan

GAP 3SAT(5)

k—prover protocol

2-prover protocol

(Raz verifier)

(0, o0 )-extension

A New Ek-Prover System

For each pair of provers (i j), 1 <i<j<k:

e The verifier chooses randomly and independently clause C;; and one
of its variables ;.

e Prover i receives clause C;; and answers with an assignment to its
variables satisfying the clause.

e Prover j receives z;; and answers with an assignment to it.

e Every other prover a # i j receives both C;; and z;; and answers
with an assignment to the variables of C;; satisfying the clause.

A Query

Each query has (%) coordinates.

Coordinate (a b) (for a < b) of the query for prover i:
o If i = q, it contains Cy;
o If i =b, it contains x4,

e If a b # i, it contains both C,;, and x4,

Example: Queries in a 3-Prover Protocol

(12) (13) (2 3)

Py Cia Cis Cog w33

P z12 Ci3 713 Cas

P3| Cig w19 13 To3

The k-Prover System: Properties

Definition:

e Let A;, A; be the answers of provers i, j to their queries.

e The answers are weakly consistent if their (i j) coordinates match.
e They are strongly consistent if all their coordinates match.

Theorem: If ¢ is a YES-instance, then there is some strategy of the
provers, such that their answers are always strongly consistent.

Theorem: If ¢ is a NO-instance, then for every pair of provers, the
probability that their answers are weakly consistent is at most (1 — §).




The Reduction - an Overview
Given a 3SAT(5) formula ¢ on n variables, we use the k-prover system
to produce an instance of (0 oo)-extension, such that:
o If ¢ is a YES-instance, there is a solution of cost 4|R|.
o If pis a NO-instance, the cost of any solution is at least |7'| > (f;’)%\R\)
e Thus, the gap between YES and NO instances is Q(k).
o The instance size is N = n®*"),

= Choosing k = poly(logn), no log%";N approximation exists unless
NP C DTIME(nPo1og) (for any constant §).

The Construction: Label Metric

There are two types of labels:

e Query Label (P, ¢; A;):

— For each prover P;,
— For each query ¢; to prover P;,
— For each possible answer A; to ¢;.

e Constraint Label /(r A; Ag):

— For each random string ,
— For each k-tuple A; Ay, of strongly consistent answers of the
provers to the queries implied by r.

Label Metric: Edges

Let » be a random string, ¢; g1, be the corresponding queries, and

let Ay Ay, be a k-tuple of strongly consistent assignments. For each

i, there is an edge of length % between ((r A, Ag) and £(P; q; Aj).
((Py. g2, Ay)

/(Pz- 3. A3)

Py, qry Ax)

The Graph: Vertices

e Query Vertices: For each prover P;, for each query ¢; to P;, there is a
vertex v(P; ¢;), which can only be assigned to labels corresponding
to the same query of the same prover (i.e., ((P; ¢; A).)

Note that the assignments of all the query vertices to the labels define
a strategy of the & provers.

Constraint Vertices: For each random string r, there is a vertex v(r),
which can be only assigned to the labels corresponding to r (i.e.,
l(r Ay Ap)).

Note that the assignment of v(r) defines the answers of the provers
when the random string is 7.

The Graph: Edges

Let ¢1 qi, be the queries corresponding to random string ». Then,
for each i, there is an edge between v(r) and v(P; ¢;).
v(P. q2)

v(Fs, q3)

”(Pk-‘lk)

76

YES Instance

e There exists an accepting strategy of the provers.

e Queries ¢; i, correspond to random string r.
o A Ay, are the answers to the queries.
(P 25(0) HPa.az(r). f(a2(r)))
w(Fra1(r) oPoraste)) H(F1a1(r)s far(r))) {(Pavas(r), £la: (7))
) = @) Haele))
o P (r) UL ak(r), Jan ()

Therefore, the solution cost is &|R|.
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NO Instance

Assignments of the query vertices define a strategy for the provers.

Let T be the set of “inconsistent” triples (r i j) (i < j), s.t. for random
string r, the answers of provers i and j are not weakly consistent.

7| > (’g)%\l{\ (Recall that the probability that a pair is weakly
consistent is at most (1 — 5)).

We can show that the solution cost is at least |7, yielding a gap of
Q(k) between YES and NO instances.

Since the construction size is N = n®*), choosing k = poly(log ),
no logZ~® N approximation exists unless NP C DTIME(nPOV1g ™) (for
any constant ¢).

Open Questions

e There is still a gap between the logarithmic upper bound and the
lower bound of log'/>~%n on the approximability of metric labeling.
Can this gap be closed?

e Can we prove better (non-constant?) lower bounds on the

approximability of 0-Extension?

e Or, can we obtain better approximation factors?
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Approximate Distance Oracles

Spanners with sublinear surplus

Mikkel Thorup
AT&T Research

Uri Zwick
Tel Aviv University

Approximate Distance Oracles (TZ’01)

&
&tgbq&@ n by n
© / distance
matrix

) %,N
Weighted ~ %#%.,"“% Compact data

; “% X, structure
undirected graph % e

e @ @

uVv  O(1) query time &'(u,v)
stretch 2k-1

Stretch-Space tradeoff is

Approximate Shortest Paths

Let 5(u,v) be the distance from u to v.

An estimated distance

Multiplicative is of stretch 7 iff
CIror
d(uv) < <t-8(u,v)
An estimated distance
Addive is of surplus 7 iff
error

d(u,v) < <5(u,v) +t

Spanners

Given an arbitrary dense graph, can we
always find a relatively sparse subgraph that
approximates all distances fairly well?

Spanners [PU'89,PS'89]

Let 6=(V,E) be a weighted undirected graph.

A subgraph &=(V,E) of & is said to be a 7-spanner
of 6 iff 6, (uv)< 16, (uv)forevery uvin V.

Theorem:

Every weighted undirected graph has a
(2k-1)-spanner of size O(n**%). [ADDJS '93]

Furthermore, such spanners can be constructed
deterministically in linear time. [BS '04][TZ '04]

The size-stretch trade-off is essentially optimal.

(Assuming there are graphs with Q(n'*'/%) edges of
girth 2k+2, as conjectured by Erdds and others.)

Additive Spanners

Let 6=(V,E) be a unweighted undirected graph.

A subgraph &=(V,E) of & is said to be an additive
t-spanner if & iff 6, (u,v)<d;(uv)+1forevery uvell

Theorem: Every unweighted undirected graph has an
additive 2-spanner of size O(n*?). [ACIM '96] [DHZ '96]

Theorem: Every unweighted undirected graph has an
additive 6-spanner of size O(n*3). [BKMP '04]

Major open problem

Do all graphs have additive spanners with
only O(n**¢) edges, for every &0 ?
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Spanners with sublinear surplus

Theorem:

For every k>1, every undirected graph 6=(V E)
on n vertices has a subgraph G'=(V E') with
O(n*V/¥) edges such that for every uveV, if
85(u,v)=d, then 8;(u,v)=d+O(d-/(-D),

d mm) d+O(dlVkD)

Extends and simplifies a result of Elkin and Peleg (2001)

All sorts of spanners

A subgraph &=(V,E)of Gis said to be a functional
F-spanner if & iff 5. (u,v)< F(6,(uv)) for every uvel.

| size | f(d) | reference |

[ ntvk | (2k1)d | [ADDIS93] |
PR d+2 [ACIM '96] [DHZ '96]
n4s3 d+6 [BKMP '04]

[ pnts | (Gw)d+ped) | (PO |

[ nvve [deqdt-ved)  [1z05] |

Part I

Approximate
Distance Oracles

Approximate Distance Oracles [TZ’01]

AV | A <D
A; <sample(A,_;,n"1/¥) ;

Bunches

A= o

B(v) (—U {wed -4, |6(w,v)<5(A4,,,v)}

Lemma: E[|B(v)|] <kn'*

Proof: |[B(v)nA4,| is stochastically
dominated by a geometric random

variable with parameter p=n""%,
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The data structure

Keep for every vertex vel:

* The centers p;(v), py(v)s-- Py.1(V)
* A hash table holding B(v)

For every w eV, we can check, in
, whether weB(v),
and if so, what is &(v,w).

Query answering algorithm

Algorithm dist,(u,v)
w<«u, i<0
while wgB(v)
{ i«i+l
(u,v) «(v,u)
wepi(u) )
return 3(u,w)+ &(w,v)

Query answering algorithm

w3=p3(v)eA;

w,o=p,(u)eA,

Analysis
w;=pi(u)eA;

S(U,Wi) < iA , ieven
o(v,w;) <iA , iodd

wi_1=pi.1(V)eA

Claim 2 | (l— 1) A
o(u,w;) +8(w;,v)
. y < (2i+1)A
< (2k-1)A N
A= »
Clusters PR
Where are the spanners? '
‘o A= @
Define clusters, the “dual” of bunches. . °
. e
For every ueV, include in the spanner @ °
a tree of shortest paths from u to all .-°
. . - @
the vertices in the cluster of u. 0® °
®
o -
Cw)<{veV|o(w,v)<d(4,,,v)} , wed—-A,
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Bunches and clusters
weB(y) © vel(w)

Cw)y<{veV|ow,v)<o(4,,v)} ,
fwed -4,

Bw)«|J{weA -4, |6(mwv)<5(4,,,v)}

Part 11

Spanners with
sublinear surplus

The construction used above,
when applied to unweighted
graphs, produces spanners with
sublinear surplus!

We present a slightly modified
construction with a slightly
simpler analysis.

Ballu)y={veV|ow,v)y<o(u,4,)} ,ucd -4,
Balllu]= Ball(u)w{p,, (W)} , ue 4 -4,

The original construction

Select a hierarchy of centers Ay DAD..DA ;.

For every ueV, add to the spanner a
shortest paths tree of Clust(u).

The modified construction

Select a hierarchy of centers Aj DAD..DA, ;.

For every ueV, add to the spanner a
shortest paths tree of Ball(u).

Spanners with sublinear surplus

Select a hierarchy of centers Ay DAD..DA ;.

For every ueV, add to the spanner a
shortest paths tree of Ball(u).
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The path-finding strategy

Suppose we are at uc A; and want to go to v.
Let A be an integer parameter.

If the first X;=Al-A"! edges of a shortest path
from u to v are in the spanner, then use them.

Otherwise, head for the (i+1)-center uj,; nearest to U.
» The distance to ;. is at most X;. (As u'¢Ball(u).)

Ui €A,

The path-finding strategy
We either reach v, or at least make
X;=Ai-A" steps in the right direction.

Or, make at most X;=Al-Ai"! steps, possibly in a
wrong direction, but reach a center of level i+1.

If i=k-1, we will be able to reach v.

Ui, 1€A;

The path-finding strategy

either we reach v

or distance to v

decreased by
A 2AM

After at most A steps:

The path-finding strategy

After at most Al steps:

- s
A
or distance to v Stretch
decreased by = L 2
A2/ No2at | a2

The surplus is incurred only once!

8'u,v) < (l+ﬁ)-é‘(u,v) + 2AF7

Sublinear surplus

J'(u,v) < (1+ﬁ)-5(u,v) + 207
Swv)=d , A=[d"“+2]

4

S'u,v) < d+0(d" ™)

Open problems

Arbitrarily sparse additive spanners?

Distance oracles with sublinear surplus?
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The walkers problem

J.D., X.Perez, M.Serna, N.Wormald

Partially supported by the EC 6th FP 001907: DELIS
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GOAL GOAL

STUDY THE CONNECTIVITY OF THE AD-HOC STUDY THE ITERACTIONS OF
NETWORK STABLISHED BETWEEN THE SIMULTANEOUS RANDOM WALKS ON
AGENTS, AS THESE MOVE FOLLOWING DIFFERENTS TOPOLOGIES.

THE EDGES OF A GRAPH:

Cycle

(€|

Hypercube

Random Geometric graph

Walkers in the toroidal grid

Given a set W (|W]=w) of walkers (agents, » At step =0, the w walkers are sprinkled
robots,..) which at each step, they can move w.a.r. on Ty. f*W — V(T,) (static case)
N/S/E/W on the edges of a toroidal grid 7,
with N=n?, the walkers have RF
communication within a distance d
(Manhatan, euclidian, etc.), we wish to
study the evolution of the connectivity
graph G /W], as the walkers move.

* At each step 7, every walker is forced to
move

Toy example

* At step t+1, every walker is forced to move » At =0, sprinkle 5 walkers in a nxn grid,
with a max communication distance d=3 (in
the /2 norm)

* Look evolution of G /W] up to t=4.







Static case




h for [ and /° distances (for d=3)

Some parameters

* K =# connected components in G,/ W]
© =w/N (expected walkers per node)

e h = minimum number vertices around a
simple component.

* Simple component: isolated vertex in G/ W]

Some values for A Observation

I' h=2d(d+1) * Ifd22n = G/W] is connected
P h~7zd forlarge d « If d’= Q(N/v'w)=» G/W] connected
[* h=4d(d+1) a.a.s. —_
* Interesting case of study: d’=o(N/v/w)
d=o(n)

Random variables

* X =number simple components

* K =number connected components
Let 1 =N(1-e?) e"». Then
u~w e if p=w/N—> 0,
U~N(I1-e*) e’ if p=w/N —c,
u~Nehr if p=w/N —/Jeo.




Shape distribution of X

Theorem The expected number of simple
Components satisty E/X]= N(I-e?)(1-h/N)"
Moreover

o If 1 — Othen E[X] — 0, there are
no simple components a.a.s.

o If y—//o there are simple components a.a.s.
e If u=@)(1)then X is Poisson with mean x

Sketch of proof

Compute the K-th moment:

W=E[[X] J=2 Pr[S,,=14 ... 4 S,=1]

where S,,=1 if v, is the center of a simple
component, otherwise S,,=0, and the sum is

over all 4-tuples of vertices which occupy
different walkers.

Use inclusion-exclusion

nr-components

. The probability of not having simple

Components is
Pr[X=0]=e™* +o(l).

* A r-component a non-simple component
which can be embedded ina i”; grid
(ij<n)

A nr-component a non-simple component
which is not r-component

X =# simple components
Y = # r-components

Z, = # nr-components which can not
coexists with other nr-components

Z,=#non type 1 nr-components
K=X+Y+Z, +Z,




with the edges of C, the

and the external regions

Connected component C, maximal boundary walk

and associate outside empty area

Geometric Lemma

Ty with fa max.

Let C be a component in

boundary walk of length /. Then

|4, |>di/107

then |4 ,> h+dl/10!

)

If C is rectangular

predominant a.a.s. in Ty Connectivity of G,/ W]

Simple components are

Theorem

For u—0(1), aas G,{W] consists of simple

If hp=hw/N—> 00, then

. E[Y]

components and a giant connected component

o(E[X])

Corollary. If w walkers are placed uar on

Ty, the probability that G,/W] is connected is

e +o(l).




Threshold for connectivity
dvsw

Corollary. If 1 =0(1):

» If h=0(1) iff w= O(N log N)

» If h=O(log N) iff w= ON)

o If h=O(N¢ log N) iff w= O(N'°)

» Ifh= &N/log N) iff w= Odog Nloglog N)

3000x3000; d=logn w=875018

Dynamic properties

Consider labelled (x,y) all vertices in T,
Given fof {1,...,w} on T, a configuration
(as t evolves) is a vector a=(a,a,,..,a,,),
where a,=(a,,a,) is the label of vertex

in which walker i is.

3000x3000; d=cte

3000x3000; n** w=719

a= ((1,2),(1,6),(3,4),(5,1),(5,5))

\




b=((1,7).,(2,2),(3,4),(4,5),(5,2))

-

Hitting time 4, in M

If N is even, a and b have the same
parity iff //i,j
(a,-a;,)*(a,-a,)=(b;,-b;)+(by-b,) mod 2.

Lemma Given a, b in M,

If Nis odd, M is ergodic and £, is finite.
If N is even, M no es ergodic but if @ and b
have the same parity, 4, is finite.

Notice The initial uniform distribution stays
invariant as ¢ evolves.

So we need to consider only the
case u=0(1).

(if — 0then Gt[W] aas connected
if w— co then Gt[W] aas disconnected)

Let the graph M:
V(M)={configurations} and
(a, b) in E(M) if /i dist(a,b;)=1

Notice: Xa) = 4".
The dynamic process is a random walk
on M.

Therefore, the system always reaches a state
representing a single connected component,
within finite expected time

Dynamic random variables

X(¢) = number simple components at time ¢

S(¢) = number simple components surviving
between ¢ and ¢+

B(t) = number simple components born
between ¢ and 7+/

D(t) = number simple components dying
between ¢ and ¢+




Theorem. S(?), B(?), D(t) are asymptotically
jointly independent Poisson and

E[S(®)] ~ u if dw/N— 0,
E[S®)] ~ u—A if dw/N — ¢,
E[S@®)] ~ 4u(l-eP?)/(1-eP) if dw/N — oo,

E[B(t)]= E[D®)] ~dup  if dw/N — 0,
E[B(t)]= E[D(®)] ~ A if dw/N—>c,
E[B(t)]= E[D®)] ~ u if dw/N — oo,
with A=(1- &%) .

Survival sc in /* (for d=2)

Creation sc in /* (for d=2)

Sketch of proof: consider all cases of S, B, D

Show that S, B, B are jointly asymptotic
Poisson

EL[S],[B]-[D],]= paf-pa," 41,

Survival sc in /* (for d=2)

Survival sc in /* (for d=2)




Destruction sc in /7 (for d=2)

Prob G,/W] connected and
G,/ W] disconnected

Theorem.

Pr(X(t+1)21 and X(1)=0]~
et bp ifdp—0,
et (l-e*) ifdp—c,
et (l-e*) if dp— co.

Average lifespan of simple
component

Theorem

L ~1/dpifdp—>0
L~ itdp—>c
L ~1ifdp—> oo

Destruction sc in /© (for d=2)

=5

— |
° o\\j

Average lifespan of simple
component

Lifespan of simple component: number of steps from
creation to destruction.

L, lifespan simple component at v, between t and
t+1.

Average lifespan L of simple components born in
[07T' 1]

LT: (ztzv Lvt )/ ‘ {(V,[) N Lvl >0}|

Average connectiveness

Let C be the average connectivity of G/W]

The random variable counting the expected
length of any connected period

Theorem

C ~ 1/dpu ifdp—>0
C~1/(l-e?) ifdp—>c
C~1/1-e*) ifdp— oo




Average disconnectiveness

N = 1000 x 1000 Experimental average | Modified prediction

" o o__o d=3 Time Gt [W] stays connected 1.93 2.08
Let D be the aver age dlsconneCtIVIty Of Gf w = 555377 | Time G, [WT stays disconnected | 2.14 2.02
d=T Time Gy, [W] stays connected 2.05 2.01
Theorem w = 106128 [ Time G ,[IV] stays disconnected | 2.70 2.88
d=10 Time Gy, [W] stays connected 2.28 2.20
D ~ U 1 lf 3 0 w =50804 | Time G, [W] stays disconnected | 3.17 2.49
(e )/dp'lj dp d=132 Time Gz, [W] stays connected 4.89 4.97
_ . ) o : w =4113 Time G4, [W] stays disconnected [ 7.56 8.15

D ~ (e 1/(1-e7) ifdp—>c Z=100 | Timo Gy, [W] stays connected | 14.14 15.26

w =301 Time G4, [W] stays disconnected | 27.86 3342

~ p M 1 y 0O d=145 Time G, [W] stays connected 18.97 21.35

D € lf dp w =122 Time G, [W] stays disconnected | 55.20 63.51

Similar results obtained for:

n-dimensional hypercube: Hy

Future work on Random Geometric
Graphs
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Approximation Algorithms for

Network Problems

Susanne Albers
University of Freiburg
Germany

Large networks

Buffer management in switches
Online, competitive analysis
A., Schmidt STOC'04

Web caching, request reordering
Offline, approx. algorithms
A. SPAA'04

Network creation game
Nash equilibria, price of anarchy
A. 05

Large networks

Buffer management in switches
Online, competitive analysis
A., Schmidt STOC'04

Web caching, request reordering
\ Offline, approx. algorithms
A. SPAA'04

Network creation game
Nash equilibria, price of anarchy
A. 05

Buffer management in switches'

Input Ports Output Ports

[T I

Buffer Buffer

Switches forward data packets.
Buffers store packets temporarily if capacity available.

Goal: maximize throughput.

Virtual output queueing .

Input Ports Output Ports

—= [ Tmmom

Each input port 4 maintains for each output port j a queue Q;;.

m buffers, each of which can store
B pakets.

In each time step
— new packets arrive online
P;: #tpackets in buffer ¢
N;: #new packets at buffer i
paket loss: max{N; + P, — B, 0}
— one buffer can send one paket
to the output

Goal: maximize #transferred pakets
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Competitive analysis'

Online problem

A:
Online

algorithm

A(o)

A is e-competitive if Ja such that for all sequences o

A(o) > --OPT(0) —a.

Q=

OPT:
Offline

algorithm

OPT(0)

Previous results

Every reasonable algorithm is 2-competitive.

Randomized upper bound: e/(e — 1) ~ 1.58
Azar, Richter 2003

Lower bounds
Deterministic: 1.366
Randomized: 1.46 (B =1)
Azar, Richter 2003

Single buffer problems: pakets have values
Upper bounds: 2, 1.75
Kesselman et al. 2001; Bansal et al. 2004

Greedy algorithms '

Greedy: Always serve a buffer currently
storing a maximum number of packets.

Advantages:

— fast

— little extra memory

— best strategy to avoid packet loss

Our results

Exact performance of all Greedy algorithms: 2-competitive

New algorithm Semi-Greedy: 17/9 ~ 1.89
fast, little extra memory, serves full buffers

Lower bounds (B arbitrary)
Deterministic: e/(e — 1) ~ 1.58
Randomized: 1.46

Extra resources: larger buffers, higher transmission rates
Almost matching upper and lower bounds

e Optimal offline algorithm running in polynomial time

Semi-Greedy

In each time step execute the first
applicable rule. 1

1. 3 buffer with > B/2 packets
— serve a buffer with
max. number of packets

2. dnon-empty buffer that has never been full
— amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

Semi-Greedy

In each time step execute the first B/2
applicable rule. 1

1. 3 buffer with > B/2 packets
— serve a buffer with
max. number of packets

2. I non-empty buffer that has never been full
— amongst these, serve one with m
max. number of packets

3. Serve a buffer with max. number of packets
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Semi-Greedy

In each time step execute the first
applicable rule. 1

1. 3 buffer with > B/2 packets
— serve a buffer with
max. number of packets

2. Z non-empty buffer that has never been full
— amongst these, serve one with
max. number of packets

3. Serve a buffer with max. number of packets

Semi-Greedy

In each time step execute the first
applicable rule. 1

1. 3 buffer with > B/2 packets
— serve a buffer with
max. number of packets

. I non-empty buffer that has never been full
— amongst these, serve one with m
max. number of packets

1B/2

3. Serve a buffer with max. number of packets

Semi-Greedy

Whenever all buffers are empty,
the hitherto maximum load of each
queue is set to 0.

Semi-Greedy

In each time step execute the first
applicable rule. 1

1. 3 buffer with > B/2 packets
— serve a buffer with
max. number of packets

. I non-empty buffer that has never been full
— amongst these, serve one with m
max. number of packets

3. Serve a buffer with max. number of packets

Semi-Greedy OPT

C—— 1 [ 1ImIn
1 10
C—— 1 [0
1 1[0

Partition input into subsequences so that at the end of each subsequence

Semi-Greedy's buffers are empty.

Compare: throughput Semi-Greedy / throughput OPT

different costs

Documents are text files, im-
ages, html pages, . ..

Important properties:
documents have
different sizes and incur
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Web caching

Request: (z, D) = requests
documents D

D notin z’s cache: Cost(D)
Optional: loading D

Goal: Minimize total service cost

o= (z,D)(y,E) (2,4) (v,C) (w, B) (z, )...

MEe] D [Blc[c]rlL] 1] M ]

cache
network node

remaining
network

0=DCABCFECNILMBEALIF

Goal: Serve a sequence of requests
so that the total service cost at the node is minimized.

Request reordering

Proxy server: requests are independent

(£[a[ o [c]s]

/7N

[MEe] b [Blclc]r[L] 1] M] nework

cache
proxy server

oc=DCABCFEEANLMBEALIF
L 1
”
o(j) may be served before o (i) if j —i < r
Advantage: improved cache hit rates

Feder, Motwani, Panigrahy, Zhu 2002

Document D Size(D) Cost(D)
Uniform Model:
Cost(D) = Size(D) =1

Bit Model:
Cost(D) = Size(D)

Fault Model:
Cost(D) =1

General Model:
Cost(D) arbitrary

‘Previousreults reordering.

Online
Uniform Model: (K/s + 2)-competitive (deterministic)
Bit and Fault Models:  (K/s + 3)-competitive (deterministic)

Offline
General Model:  Polynomial algorithm for cache size 1 if
r logarithmic in |o| or #distinct documents is constant

K = size cache s = size smallest document

Feder, Motwani, Panigrahy, Seiden, van Stee, Zhu 2003

Online
General Model: optimal (K/s + 1)-competitive alg. (deterministic)

Offline
Approximation Extra memory S = max Size
Uniform Model: 2 -
Bit Model: 2+¢ ms €>0
Fault Model: 2+¢€ (1+2/¢)S
General Model: 8 -

Approach: reduce problem to one of computing batched schedules.
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Batched processing

o=0(1) ... 0(r) o(r+1) ... o(2r) o(2r+1) ... o(3r)...
] — |
B,

Batch ¢
B;=o(ir+1)...0(ir+r)

Batched processing

o=0(l) ... o(r) o(r+1) ... 0(2r) o2r+1) ... o(3r)...
By
Batch i

B;=o(ir+1)...0(ir+r)

Batched processing

o=o0(l) ... 0(r) o(r+1) ... o(2r) o(2r+1) ... o(3r)...
By
Batch i

B;=o(ir+1)...0(ir+r)

Batched processing

Lemma: Suppose that A serves o with cost C'.
Then there exists A’ that processes o in batches and
incurs a cost of at most 2C'.

Uniform Model

Algorithm BMIN
1. Serve requests to documents in cache;

2. while 2D € B; with unserved requests do
Serve requests to D;
Determine E in cache whose next unserved request is farthest in future;
if next unserved request to E is in a later batch than that to D then
Load D by evicting E;

Uniform Model

Algorithm BMIN
1. Serve requests to documents in cache;

2. while 3D € B; with unserved requests do
Serve requests to D;
Determine E in cache whose next unserved request is farthest in future;
if next unserved request to E is in a later batch than that to D then
Load D by evicting E;
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Uniform Model

Algorithm BMIN
1. Serve requests to documents in cache;

2. while 3D € B; with unserved requests do
Serve requests to D;
Determine E in cache whose next unserved request is farthest in future;
if next unserved request to E is in a later batch than that to D then
Load D by evicting E;

o=...... ABAAD ...... ABBDE ...... BABBE
L ] L I
B; B; By,

Uniform Model

Lemma: BMIN is optimal among algorithms processing request sequences
in batches.

Theorem: BMIN achieves an approximation ratio of 2.

Construct schedules that serve o in batches

Bit, Fault Models: Formulate problems as ILP.

General Model: Formulate problem as a loss minimization problem.
Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber 2001

Network creation gamej

o o o

O @)
O

n agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’'03

Network creation game]

Network creation game

n agents have to build a connected network.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03

Cost of @ > 0 for each edge.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’'03
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Network creation game]

™

agent i

nagents a>0

Shortest path distance to agent j, for all j # 7.
Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC'03

Cost(agent i)

a #edges built by agent ¢

+ Z shortest path distance to agent j

J#t

Previousresults

Nash equilibria

No agent can improve its cost if other agents keep their strategies.

>, Cost(agent i)

Price of anarchy:
Cost(OPT)

P = max
Nash eq.

Koutsoupias, Papadimitriou '99

Fabrikant, Lutha, Maneva, Papadimitriou, Shenker PODC’'03

a<l, a>n?
P is constant

1<a<n?
P is bounded by /a
Tree-conjecture: 3 C' s.t. for a > C every Nash equilibrium is a tree.

>0 P=0(1+ (min{%, 2 })/3)
a < n: P is constant
Vn < a<mn: Pincreasing, bounded by n'/3

P decreasing, constant for o > n?

n<al

Upper bounds can be extended to:
Weighted game: t;; = traffic sent from agent i to j
Cost sharing: agent can pay for a fraction of an edge

Foranynandn/4 <a <n/3

3 Nash equilibria that contain cycles.
Transient: J seq. of players’ changes leading to non-equilibrium state.

Nash equilibrium representing a chordal graph is transient.
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Upper bound

Nash equilibium N G = (V, E)
Shortest path tree rooted at agent i

-
1

i

L AL
il

Upper bound

Nash equilibium N G = (V, E)
Shortest path tree rooted at agent ¢

depth 0 agent ¢

depth 1

it l
i
depthd (e)Xe)

Cost(agent i) < aT; +d(n — 1)

——o0

O

T; = #tree edges built by agent ¢

Cost of agent j

agent i

A ﬁ/}ﬁoé
[ o
agent j
(e)e]

G

Cost of agent j

agent i

al;+a+(d+1)(n—1)

Cost of agent j

Cost(agent j) < a7 +a + (d+1)(n — 1)

Cost(agent i) < o} +d(n — 1)

Cost(agent j) < a1 + o+ (d+1)(n— 1)

Cost(Nash eq.) < a(n —1)+a(n—1)+(d+1)(n—1)n
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log o
logn

3
o
W =

o

Price of anarchy

Cost(Nash eq.) < 2a(n —1) + (fT‘c’ + 1) (n—1)n

Cost(OPT) > a(n — 1) + n(n — 1)

Open problems

Buffer management:
Determine competitiveness of randomized algorithms.

Packets have limited lifeliness.

Web caching
Improve approximations guarantees.

Complexity in the Uniform, Fault Models.

Network creation
Settle price of anarchy of any a.

Study other network creation games.
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Generalized Linear
Programming

Jifi Matousek
Charles University, Prague

The cool slides in this presentation are included by
the courtesy of Tibor Szabé.

Linear Programming

* Minimize cx subject to Ax < b.

» Geometry: Minimize a linear function over
the intersection of n halfspaces in R?
(=convex polyhedron).

LP Algorithms

» Simplex method [Dantzig 1947]
— very fast in practice
— very good “average case”

— exponential-time examples for almost all pivot
rules

* Ellipsoid method [Khachyian], interior-point
methods [Karmakarl],...

— weakly polynomial but no (worst-case) bound
in terms of n and d alone

Combinatorial LP algorithms

» wanted: time < f(d,n) for all inputs

» computations “coordinate independent”;
use only combinatorial structure of the
feasible set (polyhedron) or of the
arrangement of bounding hyperplanes

Combinatorial LP algorithms

Computational geometry: research started
with d fixed (and small)
— [Megiddo] exp(exp(d)).n
— [Clarkson] randomization; d?n+d?2log n
— [Seidel] simple randomized; d! n
— [Chazelle, M.] exp(O(d)).n deterministic
— parallel [Alon, Megiddo] [Ajtai, Megiddo]

— 546 —




A subexponential algorithm

Theory of convex polytopes | | Computational geometry:
(Hirsch conjecture): [Sharir, WelzI],
[Kalai] 1992 [M., Sharir, Welzl] 1992

exp(\(d log d)).n (randomized expected)
— known as RANDOM FACET :

In the current vertex of the feasible polytope, choose
a random improving facet, recursively find its
optimum, and repeat

— still the best known running time!

Abstract frameworks

systems of axioms capturing some of the
properties of linear programming

running time of algorithms counted in terms of
certain primitive operations

to apply to a specific problem, need to
implement them ...

... and then algorithms become available (such
as Kalai/MSW, Clarkson)

Abstract frameworks

Abstract objective functions [Adler, Saigal
1976], [Wiliamson Hoke 1988], [Kalai
1988]

— P a (convex) polytope

— f:V(P) — Ris an abstract objective function
if a local minimum of any face F is also the
unique global minimum of F

— every generic linear function induces an AOF

— but there are nonrealizable AOF on the 3-
dimensional cube!

Abstract frameworks

Acyclic Unique Sink Orientations (AUSO)

— acyclic orientation of the graph of the
considered polytope such that every
nonempty face has exactly one sink (sink = all
edges incoming)

— same as abstract objective functions

Abstract frameworks

LP-type problems [Sharir, Welzl]

— also called Generalized Linear Programs
[Amenta]
— encompass many geometric optimization
problems [MSW,Amenta,Halman...]
« smallest enclosing ball of n points in R?
« smallest enclosing ellipsoid of n points in R

— plus some non-geometric (games on graphs)

LP-type problems

H a finite set of constraints

(W,<) a linearly ordered set (such as the reals)
w: 2H — W a value function; intuitively: w(G) is
the minimum value of a solution attainable under
the constraints in G

Axiom M (monotonicity):

If F< G, then w(F) < w(G).

Axiom L (locality):

If F < G and w(F) = w(G) =w(FU{h}), then
w(G)=w(Gu{h}).
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Example: Smallest enclosing ball
* H afinite set of points in the plane
* w(G) = radius of the smallest disk containing G

monotonicity trivial

locality depends on
unigeness of the smallest
enclosing ball!

LP-type problems: more notions

 basis for G: inclusion-minimal B = G with
w(B)=w(G)

« dimension d of (H,w): maximum cardinality
of a basis

« computational primitives (B a given basis)
—violation test: value(Bu{h})>value(G)?
—pivoting: compute a basis for Bu{h}

Abstract frameworks

Abstract Optimization Problems [Gartner]
— only one parameter: dimension d=|H| (no n)
— a linear ordering of 2+

— primitive operation: Is G optimal among all
sets containing F? If not, give a better G’

— nice randomized algorithm: exp(O(Vd))
[Gartner]

— allows a (rather) efficient implementation of
“primitives” in Kalai/MSW, e.g., for the
smallest enclosing ball problem

Algorithms in the abstract

frameworks

+ several algorithms (KalaiiMSW = RANDOM
FACET,; Clarkson) work for AOF’s, same
analysis
— AUSO given by oracle: returns edge orientations for a

given vertex

— yields n.exp(O("d)) randomized algorithm
— analysis tight in this abstract setting [M.]

« for LP-type problems they work too (but...)
— O(n) algorithms for fixed d usually immediate
— but primitives “depend on d” ... may be hard
— sometimes Gartner’s algorithm helps

Algorithms in the abstract

frameworks
RANDOM EDGE

+ the simplex algorithm that selects an
improving edge uniformly at random

+ for AUSO: random outgoing edge

 great expectations: perhaps always
quadratic??? [Williamson Hoke 1988]

RANDOM EDGE

Expected running time
—on the d-dimensional simplex: ©(log d)
[Liebling]
— on d-dimensional polytopes with d+2 facets:
0O(log2d) [Gartner et al. 2001]
—on the d-dimensional Klee-Minty cube:
* O(d?) Williamson Hoke (1988)
» Q(d?%/log d) Gartner, Henk, Ziegler (1995)
* ©(d?) Balogh, Pemantle (2004)




RANDOM EDGE can be
(mildly) exponential

There exists an AUSO of the d-dimensional cube such
that RANDOM EDGE, started at a random vertex,
makes at least exp(c.d'’3) steps before reaching the
sink, with probability at least 1- exp(-c.d'3).

[M., Szabs, FOCS 2004]

The Klee-Minty cube

KM, HH H‘H

an

A blowup construction

i @

Hypersink reorientation

|

l

AMAAM A

gt

A simpler construction

Let A be a d-dimensional cube on which
RANDOM EDGE is slow (constructed
recursively)

— take the blowup of A with random KM,,'s
whose sink is in the same copy of A, m=Vd

—reorient the hypersink by placing a random
copy of A

—thus, a step from d to d+Vd

A simpler construction

9

5
@
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A typical RANDOM EDGE move

* Move in the frame:
— RANDOM EDGE move in KM,,
—stay putin A
* Move within a hypervertex:
— RANDOM EDGE move in A
—move to a random vertex of
KM, on the same level

rand A

i Random walk with reshuffles on KM,
RANDOM EDGE on A

Walk with reshuffles on KM,,

Start at a random v(% of KM,
v(?is chosen as follows:

— with probability p; ., make a step of
RANDOM EDGE from v(-1);

— with probability p; s, randomly permute
(reshuffle) the coordinates of vf-") to obtain v

— with probability 7- p; g = Pjresn, V¥ = V7).

Walk with reshuffles on KM, is slow

Proposition. Suppose that
min pi,resh 2 1 1 -max pi,step
Then with probability at least 1—e "

the random walk with reshuffles makes
at least e’ steps (a and B are constants).

Reaching the hypersink

Either we reach the sink by reaching the sink of a
copy of A and then perform RANDOM EDGE on
KM,,,. This takes at least T(d) time.

Or we reach the hypersink without entering the
sink of any copy of A. That is, the random walk
with reshuffles reaches the sink of KM, . This
takes at least exp(pm) > T(d) time.

The recursion

* RANDOM EDGE arrives to the hypersink at a
random vertex. Then it needs T(d) more steps.
So passing from dimension d to d+vd the
expected running time of RANDOM EDGE
doubles.

+ lterating vd - times gives T(2d) > 24 T(d).

* In order to guarantee that reshuffles are frequent
enough we need a more complicated
construction and that is why we are only able to
prove a running time of exp(c.d"3).

Open questions

Obtain any reasonable upper bound on
the running time of RANDOM EDGE

Can one modify the construction such that
the cube is realizable? (Probably not ...)
Or at least it satisfies the Holt-Klee
condition?

Or at least each three-dimensional
subcube satisfies the Holt-Klee condition?
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More open questions

+ Find an algorithm for AOF on the d-cube
better than exp(Vd)

» The model of unique sink orientations of

cubes (possibly with cycles) include LP on 4 4 4
an arbitrary polytope. THE E§ l QJD

Find a subexponential algorithm!
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Madras, December 1994
My Fayorlte Ten = |nvited Talk at
Complexity Theorems FST&TCS '04
= My Favorite Ten
of the Past Decade |l Complexity
Theorems of the

Lance Fortnow: Past Decade

University: of' Chicago

Favorite TTheorems 1985-94
Favorite Theorem 1

Why?

= Ten years as a complexity theorist.

= | ooking back at the best theorems during
that time.

= Computational complexity: theory _
continually produces great work. * Barrington 1989

= [Use as springboard toitalk about research
areas! inicomplexity theory.

= | et’s recapi the favorite theorems fiom
1985-1994.

= Bounded-width Branching Programs
Equivalent to Boolean Formula

Favorite TTheorems 1985-94 Favorite Theorems 1985-94
Favorite Theorem 2 Favorite Theorem 3

= Parity requires 200" gates for circuits of = Clique requires exponentially large
depth d. monotone circuits.
= Hastad 1989 = Razborov 1985
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Favorite Theorems 1985-94 Favorite TTheorems 1985-94
Favorite Theorem 4 Favorite Theorem 5

= Nondeterministic Space is Closed Under = Pseudorandom Functions canibe
Complement constructed from any one-way function.
= |Immerman 1988 and Szelepcsenyi 1988 = |mpagliazzo-Levin-Luby 1989
= Hastad-Impagliazze-Levin-Luby 1999

Favorite Theorems 1985-94 Favorite TTheorems 1985-94
Favorite Theorem 6 Favorite Theorem 7

= There are no sparse sets hard for NP via = A pseudorandom generator with seed of:
bounded truth-table reductions unless length O(s?(n)) that looks random to any:
P=NP algoerithmiusing s(nj) space.
= Ogihara-\Watanabe 1991 = Nisan 1992

Favorite TTheorems 1985-94 Favorite TTheorems 1985-94
Favorite Theorem 8 Favorite Theorem 9

= Every language in the polynomial-time = PP'is closed under intersection.
hierarchy:is reducible to the permanent. = Beigel-Reingold-Spielman 1994
= TJoda 1991




Favorite Theorems 1985-94
Favorite Theorem 10

= Every language in'NP has a
probabilistically: checkable proof that can
be verified with O(login) random bits and
a constant number of queries.

= Arora-Lund-Motwani-Sudan-Szegedy 1992

Derandomization

Many: algorithms use
randomness to help
searching.

Computers don't have
real coins to flip.

Need strong
pseudorandom

generators, to :
simulate randomness. : ]

Favorite Theorem: 1

= |f there is a language computable in time 2°0)
that does not have 2:-sjze circuits then P = BPP.
= |mpagliazzo-Wigderson ‘97

Kyoto, March 2005

= |nvited Talk at
NHC Conference.

= Twenty years:in
field.

= \Vly: Favorite Ten
Complexity.
Theorems of the
Past Decade Il

Hardness vs. Randomness

= BPP — Class of languages computable
efficiently by probabilistic machines

= 1989 — Nisan and Wigderson

= [f exponential time does not have cincuits that
cannot solve EXP-hard languages on average
then P = BPP.

= lany: extensions leading to ...

Primality

= How can we tell'ifta number is prime?




Favorite Theorem: 2

= Primality is in P
= Agrawal-Kayal-Saxena 2002

More Prime Complexity

= Goldwasser-Kilian 1986

= Adleman-Huang 1987

= Primes in RP: Probabilistically:generate
primes with proofs of primality.

= Eellows-Kublitz 1992: Primes infUP
= Unique witness to primality;
= Agrawal-Kayal-Saxena — Primes in P

Probabilistically: Checkable

Proofs
= EFrom 1994 list:

= Every language iniNP has probabilistically:
checkable proof (PCP) with: O(log n) random
bits and constant queries.

= Arora-LLund-Motwani-Sudan-Szegedy

= Need to improve the constants to get
stronger approximation; bounds.

Complexity of Primality

= Primes in co-NP: Guess factors
= Pratt 1975: Primes in NP
= Solovay-Strassen 1977: Primes inico-RP.

= Primality’ became the standarnd example of
a probabilistic algorithms

® Primality Is a problem, hanging over ai cliff
above P'with. its grip: continuing torloosen
every day. — IHartmanis, 1966

Division

= Division: in:Non-uniform LLogspace
= Beame-Cook-Hoover 1986
= Division in Uniform Logspace
= Chiu 1995
= Divisionin Uniform NC,
= Chiu-Davida-Litow 2001
= Division in; Uniform TC,
= Hesse 2001

Favorite Theorem: 3

= For any language L in NP

there exists a PCP using

O(log| n) random coins and

3/ gueries such that

= |fix in L verifier will accept
with prob 2 1-¢.

= |f'x not in L verifier will
accept with prob < 7.

= Hastad 2001




Approximation Bounds

= Given a 3CNFE formula we can find
assignment that satisfies 7/8 of the

clauses by choosing random assignment.
= By Hastad can’t do better unless P = NP.

= [Jses tools of parallel repetition and list
decodable codes that we will see later.

Connections

= Beauty in results that tie together two
seemingly different areas of complexity.

= Extractors — Information Theoretic

0110
_— 010010101

o11100101 | EXtractor Tlese (@ Redler

High Entropy — |

Random

Favorite Theorem 4

= Equivalence between
PRGs and Extractors.

= Allows tools for one to
create other, for
example Impagliazzo-
Wigderson! to create
extractors.
= Jrevisan 1999

Connections

= Beauty in results that tie together two
seemingly: different areas of complexity.

Connections

= Beauty iniresults that tie together two
seemingly different areas of complexity.

® Extractors — Information Theoretic

= Pseudorandoem Generators -
Computational

0110 010010101
—= d —_—

Small Seed

Fools Circuits

Superlinear Bounds

= Branching Programs

= Size corresponds to space needed for computation.

= Depthi corresponds to time.

= \We knew! no non-triviallbounds, for general
branching programs.




Favorite TTheorem 5 Parallel' Repetition

Non-linear time lower
bound for Boolean
branching programs.

Naturall problem that
any linear time
algorithmiuses nearly.
linear space.

Ajtai 1999

Accepts with prob 2

Parallel Repetition Parallel’ Repetition

0110 0010 0110 0010

B —
1010 1011 1010 1011
—_—

1100 0100 \ 1100 0100
A—— —
1001 1011 = 1001 1011

————————————————- , —————————————-

Accepts with prob 1/4 - Accepts with prob 1/4

Favorite Theorem 6 List Decoding

Parallel Repetition 00101110
does reduce error

exponentially:in

number of rounds.

Useful in construction

of optimal PCPs.

Raz 1998




List' Decoding
00101110

010001100101001110010101010111001110111110001110

List Decoding

00101110

010001100101001110010101010111001110111110001110

00101110

List' Decoding
00101110

010001100101001110010101010111001110111110001110

10010010
00101110
10111000
11101110

List Decoding
00101110

010001100101001110010101010111001110111110001110

List Decoding
00101110

010001100101001110010101010111001110111110001110

Favorite TTheorem 7

List Decoding; of
Reed-Solomon Codes
Beyond Classical
Error Bound

= Sudan 1997

Later Guruswami and
Sudan gives
algorithmite handle
believed best possible
amount of error.




Learning Circuits

= Can we learn circuits
by making
equivalence queries,
i.e., give test circuit
andiget out
counterexample.

= No unless we can
factor.

Corollaries

= |f SAT has small circuits, we canilearn
circuit for SAT with SAT oracle.

= [ SAT has small circuits then PH
collapses to ZPPNP,
= Kobler-Watanabe

Quantum Lower Bounds

00010010 10001000

Favorite Theorem: 8

= Canlearn circuits with equivalence queries and
ability to ask SAT questions.
= Bshouty-Cleve-Gavalda-Kannon-Tamon; 1996

Quantum Loewer Bounds

00010010 10001000

Favorite Theorem 9

= Razborov 2002

= N2 quantum bits
required to compute
set disjointness; i.e.,
whether the two
strings have a one in
the same position.
Matches upper bound
by Buhrman, Cleve
and Wigderson.




Derandomizing Space

= Given a randomized
log n space algorithm
can we simulate it in
deterministic space?

= Simulate any
randomized algorithm
in log? n space.
= Savitch 1969

Conclusions

= Complexity theory has had a great decade
producing many: ground-breaking results.

= Every theorem builds on other work.

= \Wide variety of researchers from a cross

section of countries.

= New technigues still needed to tackle the

big|separation questions.
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Favorite Theorem 10

= Saks-Zhoui 1999

= Randomized log space can be simulated in
deterministic space log®? n.

The Next Decade

= Favorite Theorem 1

= Undirected Graph Connectivity in
Deterministic Logarithmic Space

= Reingold 2005




March 3, 2005

Some Heuristic Analysis of
Average Behavior of Local Search Algorithms

Osamu Watanabe
Dept. of Math. & Comp. Sci., Tokyo Institute of Technology
http://www.is.titech.ac. jp/ watanabe/smapip/

Abstract
We propose some Heuristic Approach for analyzing average performance of local search algorithms.

As an example, we consider some satisfiability problems and invesitgate local search algorithms for
them.

Sorry!

@ No theorem
— Some proposal
Small observations

No animation

No color

1. Motivation: Experiments = ? = Rigorous Analyses
Facts
o Some problems, though they are believed hard in the worst case, are solvable “efficiently” on
average by relatively simple algorithms.
© Most of the positive results are given by computer experiments.

Why Analysis? Computer experiments are not enough!?
 More efficient than running the algorithm for many times.
 For better understanding of the feature/principle of the algorithm, which may leads us to im-
provements/applications to other problems.

But rigorous analysis is difficult!!

[ ‘What shall we do!? J

Our Strategy

1. bra bra bra
ANALYSYS = 2. are kore

3. nan ya kan ya

need experiments on some step

Remarks.
« There are some strong mathematical techniques developed in different fiel
sciences, e.g., statistical phys
‘mance of such algorithms.

s of mathematical
which have been also applied for analyzing average case perfor-

= But these approaches are not perfeet
e.g., analysis for n — oo or £ — oo may not be sufficient
« Some rigorous analyses have been reported also in computer science.
= But there are still some limitations:
c.g., applicable to a cortain class of algorithms

2. Our Approach for Analyzing Local Search Algorithms

Motivation:
o Many contraint satisfaction problems can be solved fo some extent by local search algorithms on
average.

o Local search algorithm is not unique! There are many variations.

Our Approach [Watanabe-ctal, SAGA'03]:
0. Modify an algorithm to a randomized one.
1. Define a relatively simple Markov process that simulates (reasonably well) the execution of
the algorithm.
2. Approximate average states of this process by a relatively simple formula.

Remarks.
0. <= This may lose some efficiency, but it reduces dependency to paricular inputs.
1. < This may be hard to justify.
2. 4+ We have some justification for this approximation

3. First Example

Problem: 3-G-SAT (Parity SAT)

Closest Solution Search for 3-&-

Input: (1) 3-6-SAT formula F' over variables 1,
(2) Assignment a.

Output: A sat. assignment that is closest to a.

3-0-SAT formula = a conjunction of parity clauses
F = (~ws+ o7+ 22) A1 + w12 + ~wer) A

Average Case Senario: Random Positive (3,6)-6-SAT Formulas
(1) Every variable appears 6 times in F; hence, # of clauses = 2n.
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.
(3) An initial assignment a is chosen uniformly at random from those with Hamming distance pn
from 0; that is, a has pn 1's.

Remarks.
ntially the same as the Decoding Problem for Linear Codes,
« A solution search for ©-SAT is poly. time computable.

T3+ a7+ 72

T a1z g =0,
® The closest solution search is NP-hard.

... But @ is regarded as a hint 1?7

Algorithm: Local Search Algorithm; Greedy (or Steepest Decending Method?)

Local Search Algorithm for (3,6)-6-SAT

program GreedyPSAT(F, a);
B
repeat the following MAXT steps
if F s satisfied with ¥ then output the current assignment and halt;
flip the value of x; with the highest*) penalty;
program end.
(*) I there are several, chaose one in some dete

minisitic way.

penalty of x; = # of unsatisficd clauses containing x;.
Remarks.

o Each x; appears 6 times. Thus, 0 < Penalty of x; < 6,

 Fix MAXT = 2pn, where Ham(a,0) = pn. Use n = 6000.

Fig 1. The success prob. vs. p
Recall p is the parameter for the init. Ham. distance Ham(a,0) = pn.

By using larger bounds, the success threshold gets increased; but not so much, and seems to have
some limit.

s ¢ v BEFEE

Fig 2. The succes »
MAXT = 2pn(= 3600), 10000, and 20000

Fig 3. average
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For Understanding the Success Threshold

How does the Ham. distance change on average?

Fig 4. Ham. distance vs. step ¢ for some execution, p = 0.30 and p = 0.32

Technical Goal: State the following function (or its approximation) in a simple form.

erry(t) = the average Ham. distance from the solution after the th step.

Our Approach

Step 0. Modify the algorithm to a randomized one.

program GreedyPSAT(F, a);
X1y o X 0
repeat the following MAXT steps
if F s satisfied with % then output the current assignment and halt;
flip the value of x; with the highest(*) penalty;
program end.

I

program SoftGreedyPSAT(F, a);
X1, oo X = @
repeat the following MAXT steps
if F is satisfied with ¥ then output the current assignment and halt;
choose %; randomly according to their weights(*);
flip the value of x;:
program end.

How to Choose x; ?

W (penalty of x;)

Prfx, is chosen] T

where W is set, e.g., as follows for n = 6000,

w(0)
W)

0, W) W(2) =100, W(3
00000, T(5) = 500000, W(6) =

500000.

Our Approach, Cont.
Step 1. Define a simple Markov process simulating the algorithm.

Remark.
The execution of the algorithm is indeed a Markov chain with the following state space:

w01y = BEEEEL o variables 5,

{ (.

But this is too big!
4 state space reduction
A simple Markov process

*HE first idea **¥

uch that

Use a tuple (14,0, .14 6.1 0, s 4,6) of numbers

nak = # of correctly assigned variables with penalty k.

Regard the exccution of the algorithm as the change of this state by the following transition rule:

1. Choose sg € {+,~} and k, 1 < k < 6, with prob. P(sg. k), where
W(k) - ngg i ( _ W (k) - ngg )

Plsg.k) = =
(s9. k) 5 total weights
STWk) - (ng g+ n_g)

=

2. Update the current state by

Ny = Nggr—1
Mgk = Tosgok 1

3. Futher update the state for reflecting the staus change of related variables.

Remarks. = (100000, nl%)
.

© The total number is

a4+ n®, = n (= 6000).
=

13
« The Ham. distance is erry(f) = 3 n

© A initial state ng = (n, ...) can be estimated by p.

But here we will usc the values for some randomly generated instance.

Unfortunately, this state space is too simple.

1. Choose sg € {+,~} and k, 1 < k < 6, with prob. P(sg, k)
2. Update the current state by changing n.g c and n.6-
=3. Futher update the state for reflecting the staus change of related variables.

unsat. sat.
( + ﬁ{ +1) - (& + —%7 + )

(#0400  —  I¥0+D

in the execution:

in the simulation:

ed info. for co-e:

isting variables in each of 6 clauses.

(@ +4) (@++)
(@,+-) (z.+.-)
(@ +-) (@=-)
assignment pattern

# of variables assigned (in)correctly (+/-)
that appears in 6 clauses assigned of pattern i,

Ny =
where i = 1 ~ 56 (effective ones are < 20).

Express the state of the execution by using these 112 = 2 x 56 numbers,

Then the simulation matches the execution quite well |

Fig 5. Ham. distance vs. step : simulation and execution, p = 0.30 and p = 0.32

Assume that this simulation is accurate enough. ]

Then the analysis becomes feasible.
Our Approach, Cont.
Step 2. Approximate this random process by a simple recurrence formula.
E[n;] = f'(no)
erry(t) = B[ 0] ~ Sum_(f'(no)) Y approz-erry(t)

Then by analyzing approz-err,(t), we can observe that a gap exists when the execution reaches to
stage where no variable with penalty > 4 exist
Remarks.

By make a flip on a penalty k variable, the total penalty gets decreased by k — 3

Fig 6. (average) derivative at the beginning of stage 3
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Is it Enough ?
Am I Happy ? No!

Blni] = f(no)-
The function f is “relatively” simple. But.

Currently, f is expressed as a program with several hundred lin
/s a formula on 40 variables :

4. Second Example
Problem: 3-SAT (CNF SAT)

Input:  3-CNF formula F' over variables 1, ..., .
Output: A sat. assignment.

Average Case Senario: Random Positive (3,d)-SAT Formulas
(1) Every variable appears d times in F; hence, # of clauses = dn/3
(2) Sings are chosen uniformly at randomly so that 0 becomes a solution.

Algorithm: Local Search Algorithm; Random Walk (often called WALKSAT)

Local Search Algorithm for (3,d)-SAT

program RandomWalkSAT(F);
X1, wos % — randomly chosen @ in {0,1}";
repeat the following MAXT steps
if F is satisfied with % then output the current assignment and halt;
choose one unsat. clause and select one of the three variables in it;
make a flip on the selected variable:
program end.

Cf.

program GreedySAT(F):
X1, oy Xy — randomly chosen a in {0,1}";
repeat the following MAXT steps
if F is satisfied with % then output the current assignment and halt;
choose one variable with the highest penalty;
make a flip on the selected variable;
program end.

Why not Greedy 7
Easy Answer:

Because it does not work.
Usually trapped by a local minimum.

No Problem !!

program SoftGreedySAT(F);
X1 e Xy random a;
repeat the following MAXT steps
if F is satisfied with ¥ then output the
choose x; randomly according to their weights;
flip the value of x;:
program end.

rrent assignment and halt;

In fact, e.g., for (3,6)-SAT and n = 6000,

RandomWalkSAT — W[0] =0, W[1] = 1, ..., W[6
SoftCGreedySAT — — W[0] =0, W[1] = 1, W[2] = 20, .., W[6] = 20°

Second Answer:
Not so much difference.

Fig 7. no = # of penalty 0 var.s
SoftGreedy vs. RandomWalk

Remark.
Penalty 0 variables are those appearing only in sat. clauses.

For Understanding the Behavior
— Simulation by a Simple Markov Process

A similar but slightly different set of parameters is used.

Fig 8. ng = # of penalty 0 vars
Simulation vs. SoftGreedy

What does make this difference 7
Maybe the correlation between flipped variables.
4 then
What if a flip is restricted only once 7
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It works !!

o %o wow s @ mo mm @0 o
Fig 8. ng = # of penalty 0 vars
Simulation, SoftGreedy (flip once), SoftGreedy, and RandomWalk

Remarks.
o Usually a solution cannot be obtaind under the flip-once restriction. But an assignment, after
running out all unflipped variables (with penalty > 0), gets close enough to some solution.

« We cannot always hope this nice property. This algorithmic trick works for d < §

Fig 9. (3.8)-SAT Fig 10. (3,9)-SAT

5. Concluding Remarks

1. An Heuristic Analysis (Real exec. — Simple proce:
= Some reasoning for the success threshold
= An improvement of the algorithm

2. Some Observations (On Local Search Algorithms)
(1) Greedy is fast, but it needs to get a solution (or something very close to it) before running
out high penalty variables.
(2) There seems some other reasoning for RandomWalk
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