第20回 KIDS

日時  2004年11月30日(火) 13:30--16:50

場所  京都大学 ベンチャービジネスラボラトリー 2階セミナー室

プログラム 

13:30--14:30 今村友和(岩間研) Approximating Vertex Cover on Dense Graphs
14:40--15:40 永持 仁(情報学研究科) 弾性矩形詰め込みに対する一考察
15:50--16:50 藤戸敏弘(豊橋技術科学大学) Submodular Integer Cover and its Application to Production Planning


概要

今村友和(岩間研)

Although many problems in MAX-SNP admit a PTAS for dense graphs,
that is not the case for Vertex Cover,
which is MAX-SNP hard even for dense graphs.
This paper presents a randomized approximation algorithm for Vertex Cover
on dense graphs,
i.e., graphs whose average degree $\avd$ is $\Omega(n)$.
(i)~Our algorithm improves the best-known bound for the approximation factor
by Karpinski and Zelikovsky.
For example, our bound is $\frac{2}{1+\frac{\avd}{2\Delta}}$ for dense graphs such that $|E|\le \Delta(n-\Delta)$
where $\Delta$ is the maximum degree.
The improvement is especially large when $\avd\approx \Delta$;
if $\avd \ge \frac{2}{3}\Delta$ for instance, our bound is at most 1.5
while the previous bound approaches to 2.0 as $\frac{n}{\Delta}$ increases.
(ii)~It achieves the same factor for a wider range of graphs, i.e.,
for the graphs whose $\Delta$ is $\Omega(n\frac{\log\log n}{\log n})$.
(iii)~It is probably optimal in the sense that
if we can achieve a better approximation factor by $\delta > 0$
for the above range of graphs, then we can achieve a factor of $2-\delta$ for general graphs.

永持 仁(情報学研究科)

藤戸敏弘(豊橋技術科学大学)