Page 22 Chapter 2

with one determinant calculation.

This completes our merge algorithm. To apply it to compute all proper antipodal pairs we
need only arrange the input in the correct form: i.e. construct the two input lists corresponding
to the upper and lower support maps. However, there is no need to explicitly create these lists!
Since they both have the same number of nodes and ordering as the list representing P, we
may just as well work with P. All that is required is to show that for each node v of P, we
can quickly compute the fields first(v) and last(v) for the respective support maps. But this is
easily done. For instance, for the upper support map let v correspond to node p;. Then
first(v) is the vector obtained by rotating p;—p;_; counterclockwise by m/2 and normalizing it.
Similarly, last(v) is the vector obtained by rotating p;,;—p; counterclockwise. In practice one
can avoid rotating the vectors, and consider the algorithm to be working on upper and lower

support maps which are rotated m/2 clockwise.

In merge(a, b), a, b can be two pointers to the list representing P. They can be thought
of as the contact points of a pair of rotating calipers. The main step of the algorithm can then
be interpreted as a simulation of the calipers rotating about the point set. The reader is urged
to simulate the operation of merge on a small set of points, interpreting the steps in these

terms.

2.5. Computing the Convex Hull

There are several algorithms for computing the convex hull of a set of n points in the
plane in O (nlogn) time. The first published algorithm with this complexity was due to Ron
Graham. It has two steps. In the first step, tﬁe points are sorted in angular order about some
interior point of the convex hull. The second step scans the points in this order and deletes all
points interior to the convex hull using a local test. There have since been several variants of
this algorithm. Although conceptually very simple, there are certain technical difficulties due

to collinearity of points and other "degeneracies”. A simple way around this is to assume that

the point set does not contain these unpleasant features and leave it to the reader (or program-

o gaucd (o (T |— - | — — — | — | — | — | | — | — | —

Diameter Page 23

mer) to take care of them. Most programmers complain, however, that it is just the degenera-
cies and special cases that take up most of the code. Since the convex hull problem is rela-
tively straight forward, we will try to develop as complete a procedure as possible in this sec-

tion, without making any assumptions about the input data.

We describe a variant of Graham’s algorithm in which the points are initially sorted lexi-
cographically according to their first and second coordinates. The points are processéd in this
order updating the convex hull as each new point is added. We will see that at each step, the
new point being considered is a vertex of the updated convex hull. Some other points may no
longer be vertices and must be deleted from the list of convex hull vertices. In fact, the heart
of the algorithm is in identifying these vertices quickly using some local tests. Figure 2.13
contains an example of the main step of the procedure. In Figure 2.13(a) a point p is added to
the set of convex hull vertices P = {p;, ..., p7}. Supporting lines are drawn from p to P, and
the supports first and last are identified. In case a supporting line contains an edge, as is the
case of the line containing [p,, p1], the point furthest from p is identified. In Figure 2.13(b).

the chain between first and last is deleted and replaced by the single vertex p.

'We will now describe the theoretical basis of the procedure suggested by the example,
then we will discuss the implementation. Suppose we have so far obtained a set
P={p,. - - .p,} of n 23 points that are all convex hull vertices of P arranged in sorted
clockwise order. Let each point p; have coordinates (p;', p;%). We now define a lexicographic

ordering "<" on P by saying that p; < p; whenever

@ pi' <pj',or
(ii) p;" =p;" and pit<p*
According to this order, we may assume that the points of P have been labelled so that the

first point is py, i.e. py < p;, i # 1. Let the last point in the order be p;. This lexicographic

ordering is compatible with the angular order of the points in the following sense (which you

are asked to prove in Exercise 2.6)

Page 24 Chapter 2

Lemma26 p, <py < + - < pj and p, € p, Kp, < kp;. O

Since we are processing points in lexicographic order, our next point p will satisfy
p > p;. Thus, for any point p > p; in the plane, let P’=PU{p}. We would like to efficiently
compute the vertices of CH (P”) from P, the vertices of CH (P). The following lemma is cru-
cial for this computation.

Lemma 2.7 p is a vertex of CH (P’).

Proof: Let a=(1,0) and let b=ap. Since p > p;, it is easy to see that the vertical line /, ; is
an upper supporting line through p for CH(P’). If the support is p, we are done, otherwise
the support is the vertical segment having the form [p, p;] or [p, pi], with p; > p,. In the
first case p1=pj1 and p? >pj2, so p is an endpoint of the segment. In the second case,

p' =p/ and pt> ij > p,2 with the same conclusion. O

In order to compute CH (P’), it will suffice to compute the endpoints of the two edges
that originate at p. This will indicate a (possibly empty) chain of vertices in P to be deleted.

The endpoints are characterized by the following theorem.

Theorem 2.8. Let P = {py, ..., p,} . n 23 be a set of n convex hull vertices in clockwise
order, with p; defined as in Lemma 2.6. Let p > p; be a point in the plane, and let
P’=PU(p}. The segment [p;,p] is an edge of CH(P") if and only if there is a line /, , con-

taining p; and p such that

(1) a(pi—1—p;) <0, a(p;—p;+1) 20 when i<j, and

(ii) @ (pis1=pi) < 0, a(pi=pi—y) 2 0 when i2;j.
Proof: Suppose [p;,p] is an edge of CH(P”). Then there is an upper supporting line /, , of
CH(P’) with support [p;,p]. Therefore a(py—p) <0, k=1,....n. Suppose that i < j and

a(p;-1—p) =0. Then [, contains the points p;_;, p;, p and by Lemma 2.6 p;_; < p; < p, so

p; is not a vertex. Thus (i) holds for i < j, and a similar argument shows that (ii) holds when

i

|
i
i
i
_
i
|
|
i
i
|
|
|
|
|
.
:
|
_

Diameter Page 25

Conversely, suppose that there is a line /, , containing [p;,p] , for some i<j , and satis-
fying (i). Recall Section 2.3 where we characterized upper supporting lines for vertices. As p;

is a vertex of CH(P), a must belong to the set
Ui={a : a@j1—pi) £ 0, a(p;—p;-y) 20}

Noting that b=ap,=ap, we see that aeU; and so a(p;—p;) <0, k=1,...n. Condition (i)

implies that a is not contained in

Uin={a : a(p;—p;i-1) £0, a(pi_1—pi-2) 2 0},

since the first inequality is violated. [, supports CH(P’) at precisely [p;, p]. A similar

argument applies to the case when i 2 j. O

Theorem 2.8 implies that first is the unique vertex of py, ..., p; satisfying condition (i),
and last is the unique vertex of pj, ..., p, satisfying condition (ii). Note that conditions are

exclusive, so that first # last.

2.6. Implementing the Convex Hull Algorithm

The first step in the implementation is to choose an appropriate data structure for the con-
vex hull vertices. From the discussion in the last section, such a data structure should keep the
vertices in sorted angular order and allow for traversing the vertices in either direction. A dou-
bly linked circular list is ideal for this purpose. At each node v we store the coordinates of the
vertex it represents, along with pointers pred(v) and next(v) to the preceding and succeeding
vertices in clockwise order around the convex hull. For simplicity, we use v to represent both
thé node and the point it represents. We need one additional pointer, max, that points to the

last vertex inserted into the list. Figure 2.14 shows the data structure for the example in Figure

2k,

We next convert the test of Theorem 2.8 into left and right turn tests. Let the new point
be p and let v initially be set to the vertex pointed to by max. The test involves the four points

p,v, pred(v) and next(v). Test (i) says that the vertices pred(v) and next(v) must lie in the

T2

|

a4

Pe

Noda

N

Diameter Page 27

same halfplane bounded by the line through p and v. Furthermore, pred(v) must lie in the
open halfplane. The two favourable configurations are shown in Figure 2.15(a) and (b). In

terms of left and right turns, condition (i) is satisfied if and only if
left(p, v, pred(v)) and not right(p, v, next(v)) = true.

Case (ii) is handled analagously. The procedure tangent(p, first, last, max) implements the

test of Theorem 2.8.

procedure tangent (p, first, last, max);

Vv i=max;

while (not left(p, v, pred(v))) or right(p, v, next(v))
do v:=pred (v);

first:=v;v:=max;

while (not right(p, v, next(v))) or left(p, v, pred(v))
do v:=next(v);

last:=v

return;

Any vertices that are both successors of first and predecessors of last are deleted from
the circular list, and p is inserted in this place. The above code can in fact be simplified: the
second part of each "or" condition can be dropped (see exercise). Putting all of the pieces

together we have the following algorithm to find the convex hull.

algorithm convex hull;

Step 1. (Sort)
Sort the n input points into increasing lexicographic order and store them in an array
piio Nl

Step 2. (Initialize)
Find the first point p; that is not collinear with p; and p,. If no such point exists then re-
turn the convex hull {p,,p,}. Else, construct the circular linked list for p, p;,_;, p; -

Step 3. (Update)
For each j = i+1,...,n call tangent (p;, first, last, p;_). Update the circularly linked list
by removing all vertices that are successors of first and predecessors of last. Insert p j-
between first and last.

2.7. Exercises
2.1 (a) Show there do not exist 4 points in the plane, for which the distance between each
pair of points is one.

(b) Show there do not exist 4 points in the plane, for which the distance between each

Page 28 Chapter 2

2.2

23

24

2.7

pair of points is either one or two.

(a) Let P be a set of n points in the plane. Let L be the set of upper supporting lines for

P that each contains at least two points of P. Show that

CHP)=n I".
leL

(b) Prove that the boundary of CH(P) is a convex polygon.

Let P be a set of n points in the plane. Show that

n n

CHP)={x:x=3YNp;, 2N =1LA20,i=1,..,n}

i=l i=1
Show that every convex polygon has at least fi;-:l proper antipodal pairs. Construct exam-
ples for each even n to show the bound is tight.
(a) Write a short Pascal-like procedure sign(x,y,z) to compute the sign of the deter-
minant A, . Try to minimize the number of multiplications.
(b) Write a procedure to implement disjoint(a,b) using at most three calls to
sign (x,y,2).
(c) Write a procedure to implement the case statement of merge (a,b) using one call to
sign (x,y,z).

Prove Lemma 2.6.

Prove that in the procedure tangent(p, first, last, max) the second condition in each

while statement can be dropped.

