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1 Reverse search

1.1 How to design an enumeration algorithm

Let V be a finite set V with n = |V |. We shall consider the problem of enumerating a family O
of subsets of V which have a specified combinatorial structure. For example, V = {1, 2, . . . , n}
and O is the set of all permutations, or V is an edge set of a graph and O is a family of (edge
sets of) spanning trees in the graph. Below we list the procedure for enumerating O by reverse
search.

Step 1: Define a connected search graph on O.

Step 1.1: Define a flip operation,

• that is, a (simple) operation which generates a new object o1 ∈ O from the
current object o2 ∈ O. E.g., swap operations on permutations; diagonal flips on
triangulations.

• A flip operation is called a k-flip if the symmetric difference between o1 and o2
is at most 2k.

Step 1.2: Define the search graph G = (O, E)

• where vertices are corresponding to the objects and o1 and o2 are adjacent iff
they can be converted to each other by a single flip.

Step 1.3: Prove G is connected.

Step 2: Define a search tree in G.

Step 2.1: Define a unique root of G and the parent for each non-root node of G.
• The parent should be defined by using only the local information.

• The function which returns a parent is called a parent function.

Step 2.2 Prove the parent-child relation forms a rooted tree (search tree) in G.
• Typical example: Define a potential p : O → R which is injective and can

be computed without looking at the other nodes. Then, define a root r to be
argmaxo∈Op(o) and the parent argmaxo′∈N(o)p(o

′) for each o ∈ O \ {r}.
• A potential may be defined from O to a totally ordered set, e.g, the set of k-tuples

of indices with lexicographical ordering.

Step 3: Trace the search tree from the root by applying the reverse search technique.
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• Compute the root r and set v := r.

• Repeat the following until v = r and all neighbors are “checked”.

– (⋆) For each u ∈ N(v),

∗ ask the parent of u;

∗ if the parent of u is v;

∗ then output u and go forward to u (i.e., recursively go to (⋆) by setting
v := u)

– (After testing all neighbors) backtrack to the parent.

The total computational time is roughly nO(k)|O| since |N(v)| = O(n2k). So, what we have
to do is

• to define a k-flip operation with small k so that the search graph becomes connected;

• to define an easily computable parent function so that the parent-child relation forms a
rooted tree;

• an efficient implementation.

1.2 Example we have seen in the last lecture: Enumeration of triangulations

Let us look at the problem for enumerating all triangulations on a given point set in the plane
(in general position). Recall the following terms and fundamental theorems:

• Delaunay triangulation (shortly DT ): a triangulation which satisfies the empty circle
property (i.e., for each edge ab ∈ DT there is an empty circle passing through a and b).

• Diagonal flip: an operation that replace an edge with another diagonal edge within a
quadrilateral in T .

• Illegal edge: an edge ab which is incident to two triangles, say abc and acd in T and the
circumcircle of abc does not contain d in its interior.

• Angle vectors: the vector of interior angles sorted in non-decreasing order.

Proposition 1 (See e.g. [4]). Suppose P is in general position.

(i) There exists a unique Delaunay triangulation DT on P .

(ii) DT has the lexicographically maximum angle vector among all triangulations on P .

(iii) If a triangulation is not Delaunay, then there always exists an illegal edge.

(iv) Moreover, the diagonal flip on an illegal edge decreases the angle vector.

(v) T can be converted to DT by greedily flipping illegal edges.

This gives us all ingredients:

• Flip: diagonal flip (1-flip);

• Root: the Delaunay triangulation;

• Potential: angle vectors:
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• Parent: the triangulation which has the lexicographically maximum angle vector among
the neighbors (that is, triangulations obtained by a diagonal flip).

Then the remaining task is to prove (i) the search graph defined by diagonal flips is connected
and (ii) the parent-child relation indeed forms a rooted tree. But we are already done: for a non-
Delaunay triangulation T Proposition 1 implies that there always exists a triangulation which
can be moved from T by a diagonal flip and whose angle vector is lexicographically smaller than
that of T ; Thus, the parent of T always has the smaller angle vector and tracing the parents we
finally reach to a Delaunay triangulation, which is our root; This implies that the parent-child
relation forms a rooted-tree and simultaneously implies that the search graph is connected.

2 Enumeration of bases of matroids

The next problem is the enumeration of spanning trees of graphs. But here we shall present a
much abstract approach by generalizing the concept of spanning trees. We are going to develop
an enumeration algorithm for bases of matroids. Let’s start with the definition of matroids. (For
details, see a book [5] of matroid theory.)

2.1 Matroids

A matroid is an abstraction of a matrix, which unifies two concepts of linear algebra and graph
theory, the linear independence in vector spaces and cycle-freeness in undirected graphs. Let
us consider the set V = {v1, v2, . . . , vn} of vectors in a finite dimensional vector space. Let I
be the family of linearly independent subsets of V . Then, observe that I satisfies the following
properties:

(I2) ∀Y ∈ I and ∀X ⊆ Y,X ∈ I;

(I3) ∀X,Y ∈ I with |X| < |Y |, ∃x ∈ Y s.t. X + x ∈ I.

Recall basic facts from linear algebra: Any subset of a linearly independent set is also linearly
independent, which is (I2). (I3) can be verified as follows: dim(span(X)) = |X| < |Y | =
dim(span(Y )) ⇒ ∃x ∈ Y with x /∈ span(X) ⇒ X + x is independent. Also we may say that the
empty set is always independent:

(I1) ∅ ∈ I.

A matroid is defined by extracting these three properties (I1)(I2)(I3) as axioms.

Definition 1. A matroid is a pair M = (E, I) of a finite set E and a family I of subsets of E
satisfying (I1)(I2)(I3). E is called the ground set and an element in I is called an independent
set.

We list examples:

• linear matroid

– E: the set of vectors.

– I: the family of linearly independent subsets of E.

• uniform matroid Un,m

– E: a finite set of n elements.

– I := {I ⊆ E | |I| ≤ m}.

3



• graphic matroid (cycle matroid)

– E: the edge set of a graph G.

– I: the family of forests (i.e., cycle-free edge subsets) in G.

• The following (E, I) may not be a matroid.

– E: the edge set of a graph G.

– I: the family of matchings in G.

• matching matroid (V, I)

– V : the set of vertices of a graph G.

– I := {I ⊆ V | I is the set of end-vertices of some matching in G}.

2.2 Basics of matroids

Definition 2. A maximal independent set of a matroid M is called a base of M.

For example, if M is a linear matroid, a base is a basis of the underlying vector space; if M
is a graphic matroid, a base is a spanning tree of an associated connected graph.

Let us denote by B the family of all bases of M. B has the following nice properties.

Lemma 2. All bases of a matroid M = (E, I) have the same cardinality.

Proof. Suppose |B1| < |B2| for B1, B2 ∈ B. Then there exists x ∈ B2 \ B1 with B1 + x ∈ I by
(I3). This contradicts the maximality of B1.

Theorem 3. B satisfies the following properties:

(B1) B ̸= ∅.

(B2) ∀B1, B2 ∈ B and ∀x ∈ B1 \B2, ∃y ∈ B2 \B1 s.t. B1 − x+ y ∈ B.

Proof. (B1) follows from (I1). To see (B2), observe |B1 − x| < |B2| by Lemma 2. Hence there
exists y ∈ B2 \ (B1 − x) such that B1 − x+ y ∈ I by (I3). Note x ̸= y. By Lemma 2 again, we
conclude B1 − x+ y ∈ B.

The operation of (B2) is often referred to as a base exchange operation. Conversely, conditions
(B1)(B2) are enough for characterizing matroids:

Theorem 4. For a finite set E, the family B of subsets of E forms the base family of a matroid
if and only if B satisfies (B1) and (B2).

The proof can be found in [5]. So (B1)(B2) give another axioms which defines matroids.
Namely, we may define a matroid as a pair (E,B) of a finite set E and a family of subsets
satisfying (B1)(B2) instead of (I1)(I2)(I3). Here is another interesting matroid defined in terms
of (E,B):

• rigidity matroid

– E: the set of bars of a rigid pin-jointed truss structure (in structural engineering)

– I: the family of bar-subsets each of which forms a minimally rigid sub-structure
connecting all joints.
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Matroids have a quite nice property even from an optimization point of view, which we
should remark here:

Theorem 5. Let M = (E, I) be a matroid on a finite set E = {e1, . . . , en} and w : E → R
be a weight function on E. Then, the maximum weight independent set can be computed by the
following greedy algorithm:

(i) Set X0 = ∅ and relabel the elements {e1, . . . , en} in the non-increasing order of weight.

(ii) For i = 1, 2, . . . , n, do the following: if Xi−1 + ei ∈ I and w(ei) > 0 then Xi := Xi−1 + ei;
otherwise Xi := Xi−1.

(iii) Output Xn.

Proving Theorem 5 is a good exercise. Rather surprisingly, matroids almost characterize
discrete optimization problems which can be solved by greedy algorithm (see [5] for the proof).

Theorem 6. A pair M = (E, I) is a matroid if and only if (I1)(I2) hold and the greedy
algorithm works for fining a maximum weight set in I for any weight function.

2.3 Enumeration of bases of a matroid

Let us go back to the enumeration problem. Out problem is to find all bases of a matroid on a
given ground set E. Notice that this problem includes

• the problem of enumerating all spanning trees in a given connected graph G = (V,E);

• the problem of enumerating all column bases of the colum space of a matrix;

• the problem of enumerating all minimally rigid truss structures connecting a given joint
set.

As before, we have to define a root, a flip, and a parent function. To do that, denote the
ground set by E = {e1, e2, . . . , en} and take a base B∗. Let r = |B∗|, and without loss of
generality we assume B∗ = {e1, e2, . . . , er} (otherwise we can relabel the elements). The label
vector ℓ(B) of a base B is defined as the vector of r labels of all elements in B sorted in increasing
order. Then we define ingredients as follows:

• Root: B∗;

• Flip: base exchange operation (1-flip);

• Parent: a base which can be obtained by a flip and has more elements of B∗ than the
current. (If there are many such bases, we select one of them following some fixed rule,
say, the lexicographical ordering of the label vectors ℓ(B).)

Then the remaining task is to prove the following:

Claim 7. The above parent function is well-defined and the parent-child relation indeed forms
a rooted-tree.

Proof. Consider B ∈ B∗ with B ̸= B∗. Take any edge e ∈ B \ B∗. By (B3), there exists
f ∈ B∗ \B with B − e+ f ∈ B. Since |(B − e+ f) ∩B∗| > |B ∩B∗|, there always exists a base
in the neighbors of B that contains more elements of B∗ than B. Thus, the parent function is
well-defined.

Tracing parents from any base, we clearly reach to B∗. This implies that the parent-child
relation forms a rooted-tree.
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3 Enumeration of non-crossing spanning trees

So far, our reverse search algorithms are based on the well-developed theorems from geometry
or combinatorics. However, one of interesting job in the design of enumeration algorithms is
to prove the connectivity of search graph by ourselves. Here we shall give an example for
non-crossing spanning trees.

Given a point set P in the plane, a spanning tree on P is called non-crossing if any two edges
do not intersect at a point except their endpoints. As we have seen above, the set of spanning
trees is connected by 1-flips (base-exchange operations). The set of non-crossing spanning trees
is however not the base family of a matroid in general, and it may not be true that the set of
non-crossing spanning trees is not connected by 1-flips. Here we shall prove the connectivity
based on the approach developed in [2].

A triangulation which contains a specified non-crossing edge set F is called an F -constrained
triangulations. Recall that all results on the Delaunay triangulation can be extended to the case
of F -constrained triangulations (see e.g. [4]):

• An F -illegal edge is an illegal edge not contained in F .

• The F -constrained Delaunay triangulation (shortly DT (F )) is the triangulation which has
the lexicographically maximum angle vector among all F -constrained triangulations on P .

• If an F -constrained triangulation is not F -constrained Delaunay, then there always exists
an F -illegal edge. Thus F -constrained T can be converted to DT (F ) by greedily flipping
F -illegal edges.

Let S be the set of all non-crossing spanning trees on P and let S∗ = {S ∈ S | DT (S) = DT}.
Our method is based on a trivial observation: Any spanning tree in a triangulation is non-crossing
since a triangulation is a plane graph. We already learned how to enumerate all elements of S∗

efficiently — this is just the enumeration of all spanning trees in a triangulation. Our idea is to
measure how far S ∈ S is from S∗. To do this we define the angle vector v(S) of a non-crossing
spanning tree S to be that of the S-constrained Delaunay triangulation DT (S).

Theorem 8. The set of non-crossing spanning trees on a point set in the plane is connected by
1-flip operations.

Proof. LetM be a graphic matroid on the edge set of DT . Then, as noted above, the set of bases
of M is equal to S∗. By Claim 7, the set of bases is connected by base-exchange operations (that
is, 1-flips); in particular, any spanning tree can be converted to the minimum weight spanning
tree by a sequence of 1-flips.

Thus let us consider a non-crossing spanning tree S with DT (S) ̸= DT . Since DT (S) ̸= DT
but every edge of DT (S) cannot be illegal except for edges in S, there is an illegal edge e ∈ S
in DT (S). So, after relaxing the constraint on e, the diagonal flip on e will occur. Namely,
the angle vector of DT (S − e) will be strictly larger than that of DT (S). Since DT (S − e) is a
connected graph, there exists an edge f ∈ DT (S−e) which connects two connected components
of S − e. Moreover S − e+ f is non-crossing spanning tree since it is contained in DT (S − e).
Since DT (S−e) = DT (S−e+f) (why?) and DT (S−e) has a larger angle vector than DT (S),
we found that v(S − e+ f) is the lexicographically smaller than v(S).

If we repeat the above process, v(S) will be minimized; in other words S is converted to an
element of S∗ by a sequence of 1-flips.

Let S∗ be the Euclidean minimum spanning tree. Recall that the Euclidean minimum
spanning tree is contained in the Delaunay triangulation. If we define a potential p(S) of a
non-crossing spanning tree S by a tuple (v(S), |S ∩ S∗|, ℓ(S)) of the angle vector v(S), |S ∩ S∗|,

6



and the label vector ℓ(S), then S∗ has the lexicographically maximum potential. Moreover, the
above proof implies that, if S is not the Euclidean minimum spanning tree, then there always
exists a non-crossing spanning tree S′ which can be obtained from S by a 1-flip and has a larger
potential. Consequently, if we define the parent of S by S′, the parent-child relation forms a
rooted tree, and thus we can enumerate all non-crossing spanning trees by reverse search.

The same approach can be applied to the enumeration of all non-crossing minimally rigid
truss structures connecting a given joint set because the method relies only on the base-exchange
property of spanning trees (see [2]). Also, if you get interested in flip operations or enumerations
of non-crossing geometric graphs, please check [6] and [3].

Open Problems

• Enumerate all non-crossing perfect matching on a point set P in the plane with |P | = 2n
in polynomial time per output.

• Enumerate all simple polygons on a point set P in the plane in polynomial time per output.

4 Exercise

The exercise is to develop a faster algorithm for enumerating bases of a matroid M = (E,B).
It is known that the family of bases satisfies another-type of base exchange property: (Compare
with (B2))

(B2’) ∀B1, B2 ∈ B and ∀y ∈ B2 \B1, ∃x ∈ B1 \B2 s.t. B1 − x+ y ∈ B.

In this exercise you may use this fact without proof.
Consider a matroid M = (E,B). Denote n = |E| and E = {e1, e2, . . . , en}. Also let r be the

size of a base in M. As in the algorithm given in Section 2, let us take a base B∗ and without
loss of generality denote B∗ = {e1, e2, . . . , er}.

Then we define the root by B∗ and we use 1-flip operations as before. The different is the
parent function; we define the parent of B ∈ B \ {B∗} by B − es + et, where

• t = min{i | ei ∈ B∗ \B}

• s = max{j | ej ∈ B \B∗ and B − ej + et ∈ B}.

(i) Prove (using (B2’)) that the above parent function is well-defined and the parent-child
relation forms a rooted-tree in the search graph.

(ii) Prove the following claim:

Claim 9. Let B be a base, and let ek ∈ E \B. Also, let C(B, ek) = {ej ∈ B | B−ej+ek ∈
B}. Then, for any eℓ ∈ B, B − eℓ + ek is a child of B if and only if (i) k is the maximum
index among C(B, ek) and (ii) B contains ei for all 1 ≤ i ≤ ℓ.

C(B, ek) is called the fundamental circuit in matroid theory. Indeed it forms a cycle when
M is a graphic matroid.

(iii) Sketch an implementation of the reverse search algorithm (using the above root and the
parent function) that runs in O(n(Q+ r)|B|) time, where Q denotes the (upper bound of)
time to compute C(B, ek) for any B ∈ B and ek ∈ E \B.
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