Polyhedral Computation Linear Classifiers & the SVM

mcuturi@i.kyoto-u.ac.jp

Statistical Inference

- **Statistical**: useful to study random systems...
 - \circ Mutations, environmental changes $etc. \rightarrow$ life is random!
- Inference: learn rules using observations assuming some "stationarity".

in this talk: "yes/no" rules = "binary classification"

- $\circ\,$ given an image, does it contain the photograph of a human face?
- given a patient's genome, is it safe/effective to give him medecine XYZ?
- given a patient's genome, is (s)he at risk of developing Parkinson's disease?
 etc.

"binary classification" \Rightarrow simple 0/1 predictions for well-understood problems

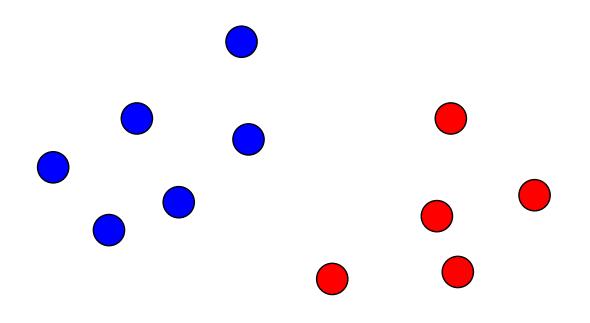
Data

- The **Data** we have: a bunch of vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \cdots, \mathbf{x}_N$.
- Ideally, to infer a "yes/no" rule, we need the correct answer for each vector.
- We consider thus a set of **pairs of vector/bit**

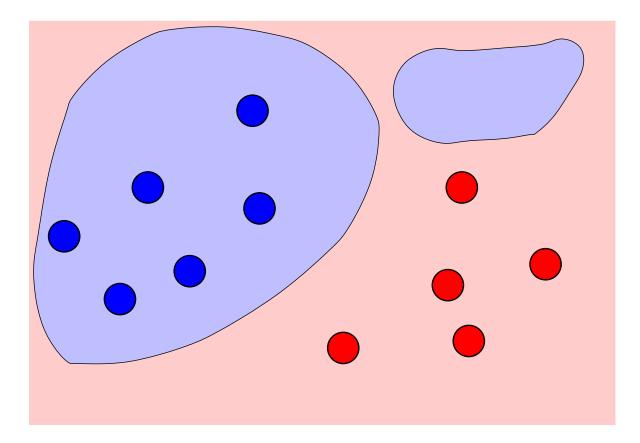
"training set"
$$= \left\{ \left(\mathbf{x}_i = \begin{bmatrix} x_1^i \\ x_2^i \\ \vdots \\ x_d^i \end{bmatrix} \in \mathbb{R}^d, \ \mathbf{y}_i \in \{0, 1\} \right)_{i=1..N} \right\}$$

- For illustration purposes only we will consider vectors in the plane, d = 2.
- Points are easier to represent in 2 dimensions than in 20.000...
- The ideas for $d \gg 3$ are **exactly the same**.

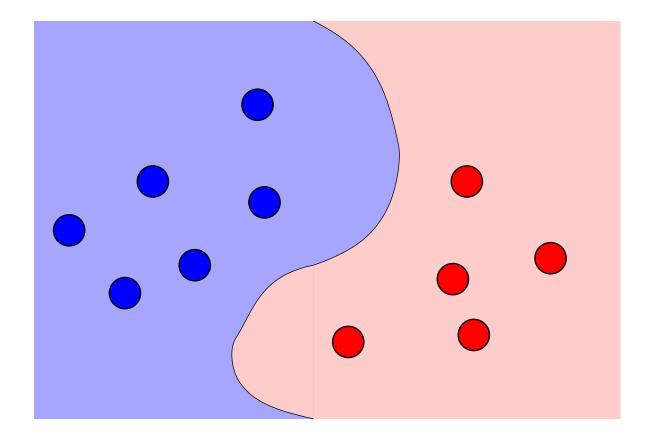
Many thanks to J.P. Vert for some of the following slides



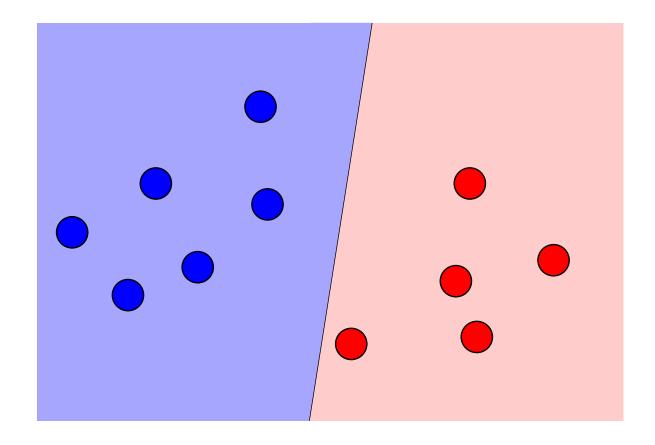
What is a classification rule?



Classification rule = a partition of \mathbb{R}^d into two sets



Can be defined by a single surface, e.g. a curved line



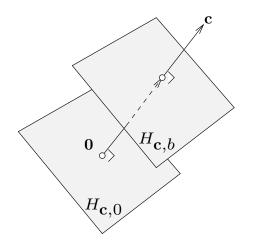
Even more **simple**: using **straight lines** and halspaces.

Linear Classifiers

- Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.
- A hyperplane $H_{\mathbf{c},b}$ is a set in \mathbb{R}^d defined by
 - \circ a normal vector $\mathbf{c} \in \mathbb{R}^d$
 - \circ a constant $b \in \mathbb{R}$. as

$$H_{\mathbf{c},b} = \{ \mathbf{x} \in \mathbb{R}^d \, | \, \mathbf{c}^T \mathbf{x} \, = \, b \}$$

• Letting b vary we can "slide" the hyperplane across \mathbb{R}^d

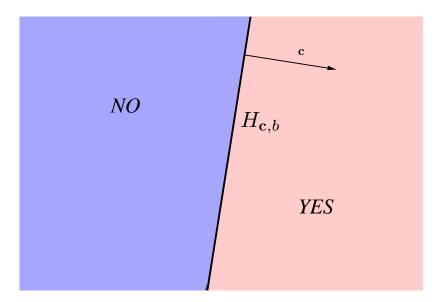


Linear Classifiers

• Exactly like lines in the plane, hypersurfaces divide \mathbb{R}^d into two halfspaces,

$$\left\{ \mathbf{x} \in \mathbb{R}^d \, | \, \mathbf{c}^T \mathbf{x} < b \right\} \cup \left\{ \mathbf{x} \in \mathbb{R}^d \, | \, \mathbf{c}^T \mathbf{x} \ge b \right\} = \mathbb{R}^d$$

• Linear classifiers attribute the "yes" and "no" answers given arbitrary c and b.



Assuming we only look at halfspaces for the decision surface...
 ...how to choose the "best" (c*, b*) given a training sample?

Linear Classifiers

• This specific question,

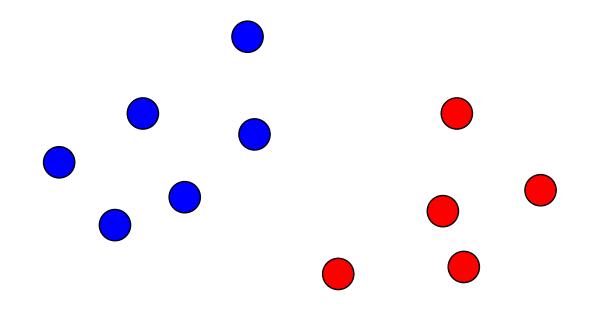
"training set"
$$\left\{ \left(\mathbf{x}_i \in \mathbb{R}^d, \ \mathbf{y}_i \in \{0, 1\} \right)_{i=1..N} \right\} \stackrel{????}{\Longrightarrow}$$
 "best" $\mathbf{c}^{\star}, \ b^{\star}$

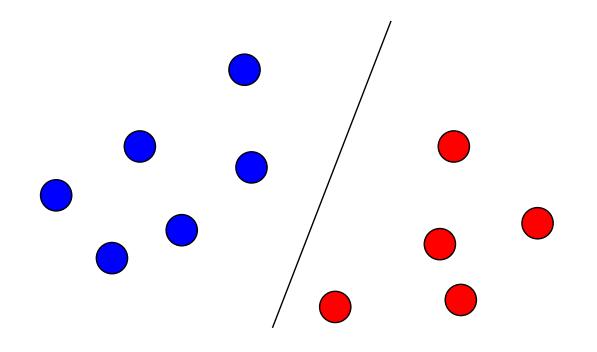
has different answers. Depends on the meaning of "best" [4]:

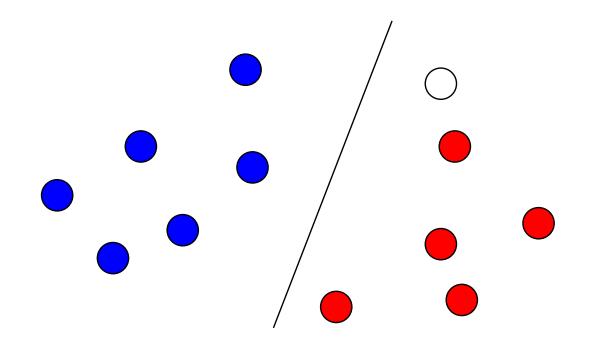
- Linear Discriminant Analysis (or Fisher's Linear Discriminant);
- Logistic regression maximum likelihood estimation;
- **Perceptron**, a one-layer neural network;

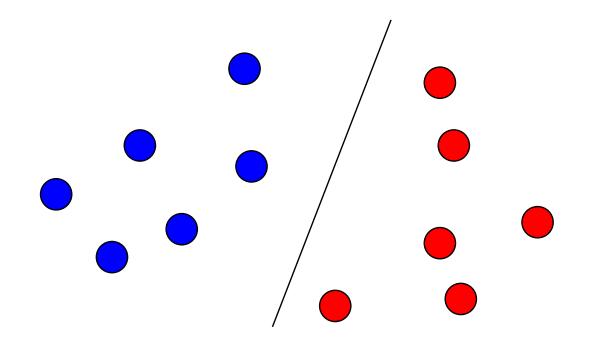
• etc.

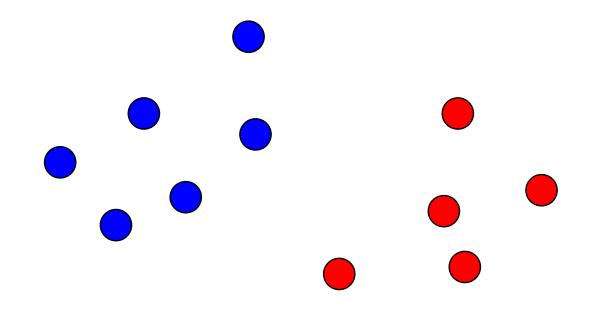
Today's focus: the **Support vector machine** [5]

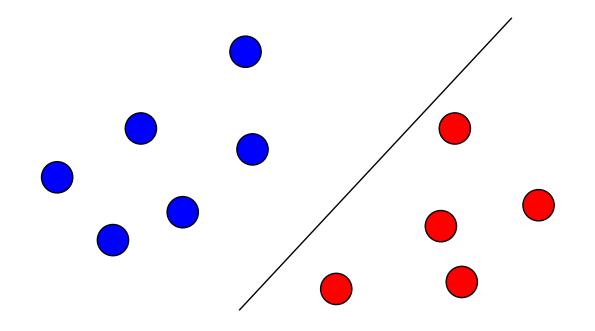


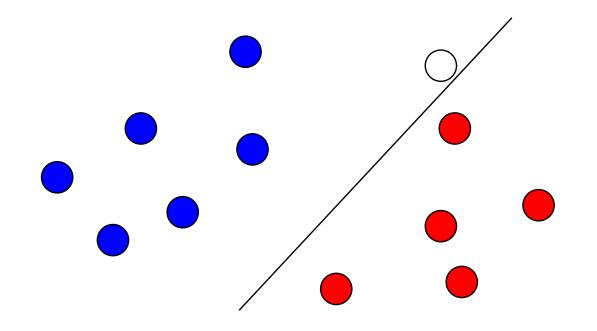


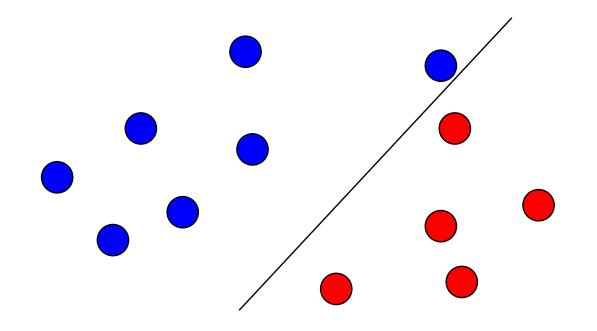




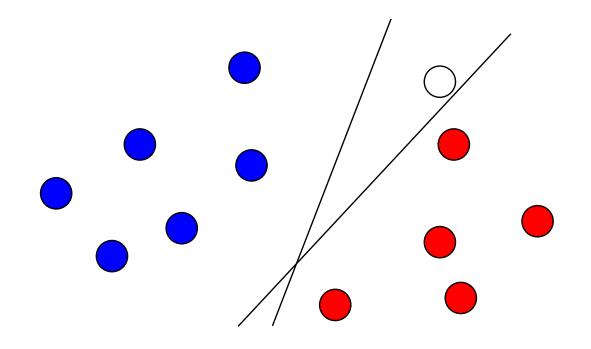


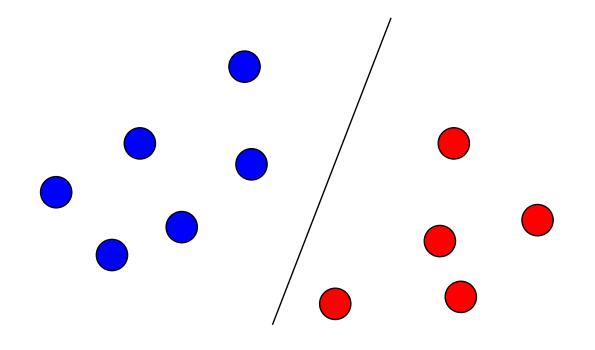


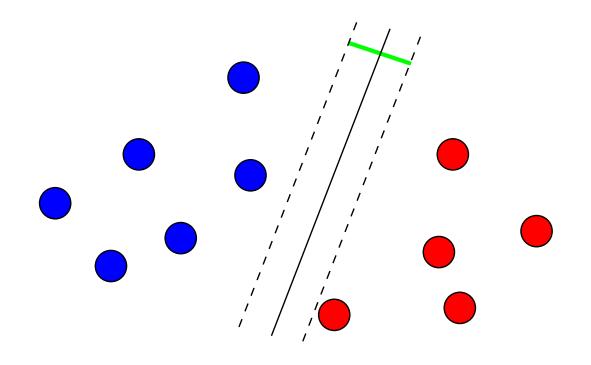


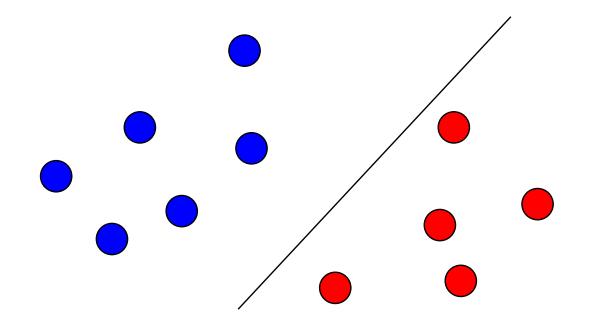


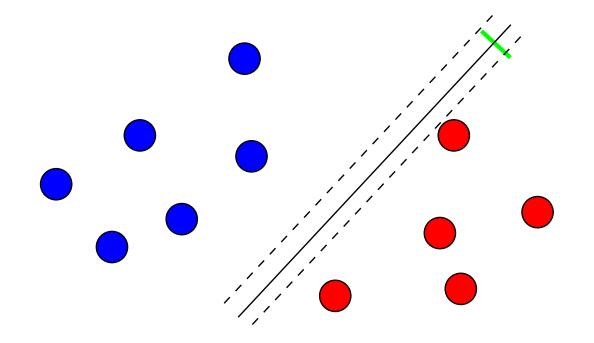
Which one is better?

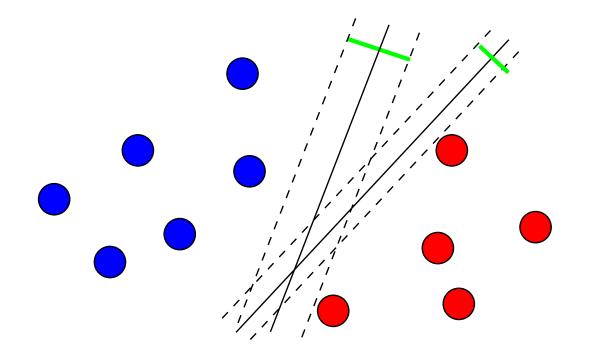




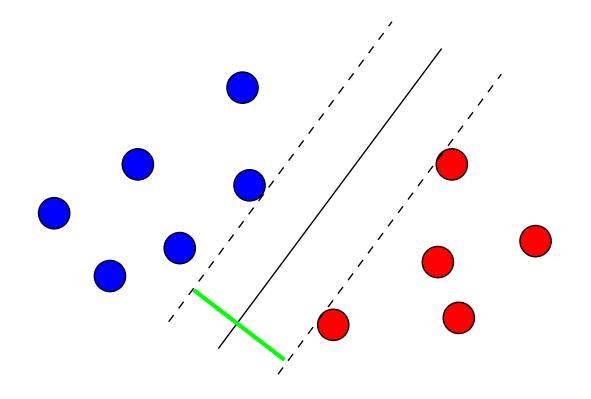




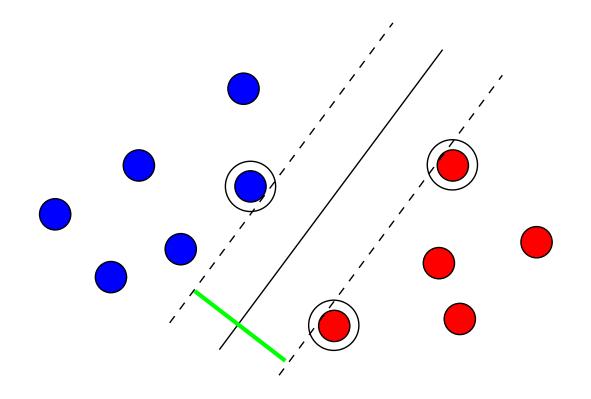




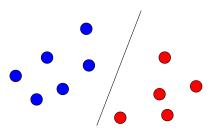
Largest Margin Linear Classifier [2]



Support Vectors with Large Margin



In equations



 We assume (for the moment) that the data are linearly separable, i.e., that there exists (w, b) ∈ ℝ^d × ℝ such that:

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b > 0 & \text{if } \mathbf{y}_i = 1 ,\\ \mathbf{w}^T \mathbf{x}_i + b < 0 & \text{if } \mathbf{y}_i = -1 . \end{cases}$$

- Next, we give a formula to compute the margin as a function of \mathbf{w} .
- Obviously, for any $t \in \mathbb{R}$,

$$H_{\mathbf{w},b} = H_{t\mathbf{w},tb}$$

- Thus w and b are defined up to a multiplicative constant.
- We need to take care of this in the definition of the margin

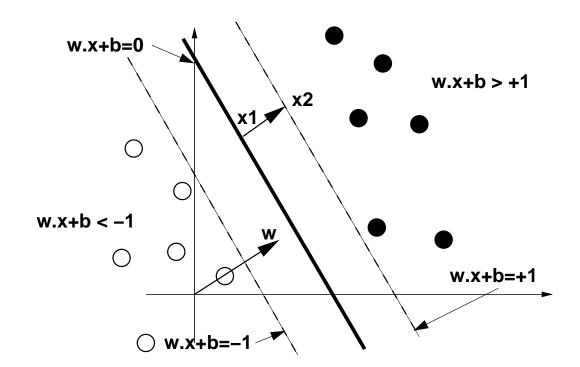
How to find the largest separating hyperplane?

For the linear classifier $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$,

consider the **interstice** defined by the hyperplanes:

•
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \mathbf{+1}$$

• $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = -\mathbf{1}$



• Consider \mathbf{x}_1 and \mathbf{x}_2 such that $\mathbf{x}_2 - \mathbf{x}_1$ is parallel to \mathbf{w} .

The margin is $2/||\mathbf{w}||$

• Margin = $2/||\mathbf{w}||$: the points \mathbf{x}_1 and \mathbf{x}_2 satisfy:

$$\begin{cases} \mathbf{w}^T \mathbf{x}_1 + b = 0, \\ \mathbf{w}^T \mathbf{x}_2 + b = 1. \end{cases}$$

• By subtracting we get $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = 1$, and therefore:

$$\gamma \stackrel{\text{def}}{=} 2||\mathbf{x}_2 - \mathbf{x}_1|| = \frac{2}{||\mathbf{w}||}.$$

where γ is by definition the margin.

All training points should be on the appropriate side

• For positive examples $(y_i = 1)$ this means:

 $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

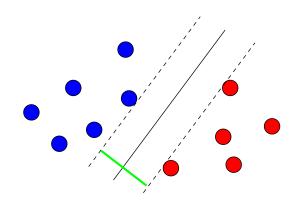
• For negative examples $(y_i = -1)$ this means:

$$\mathbf{w}^T \mathbf{x}_i + b \le -1$$

• in both cases:

$$\forall i = 1, \dots, n, \qquad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1$$

Finding the optimal hyperplane



• Find (**w**, *b*) which minimize:

 $\|\mathbf{w}\|^2$

under the constraints:

$$\forall i = 1, \dots, n, \quad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

This is a classical quadratic program on \mathbb{R}^{d+1} linear constraints - quadratic objective

Lagrangian

• In order to minimize:

$$\frac{1}{2}||\mathbf{w}||^2$$

under the constraints:

$$\forall i = 1, \dots, n, \qquad y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

- introduce one dual variable α_i for each constraint,
- one constraint for each training point.
- the Lagrangian is, for $\alpha \succeq 0$ (that is for each $\alpha_i \ge 0$)

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right).$$

The Lagrange dual function

$$g(\alpha) = \inf_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right) \right\}$$

is only defined when

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i \mathbf{x}_i, \quad (\text{ derivating w.r.t } \mathbf{w}) \quad (*)$$
$$0 = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i, \quad (\text{derivating w.r.t } b) \quad (**)$$

substituting (*) in g, and using (**) as a constraint, get the dual function $g(\alpha)$.

- To solve the dual problem, maximize g w.r.t. α .
- Strong duality holds. KKT gives us $\alpha_i (\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) 1) = 0$, ...*hence*, either $\alpha_i = \mathbf{0}$ or $\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) = \mathbf{1}$.
- $\alpha_i \neq 0$ only for points on the support hyperplanes $\{(\mathbf{x}, \mathbf{y}) | \mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1\}$.

Dual optimum

The dual problem is thus

$$\begin{array}{ll} \text{maximize} & g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{such that} & \alpha \succeq 0, \sum_{i=1}^{n} \alpha_i \mathbf{y}_i = 0. \end{array}$$

This is a **quadratic program** in \mathbb{R}^n , with *box constraints*. α^* can be computed using optimization software (*e.g.* built-in matlab function)

Recovering the optimal hyperplane

• With α^* , we recover (\mathbf{w}^T, b^*) corresponding to the **optimal hyperplane**.

•
$$\mathbf{w}^T$$
 is given by $\mathbf{w}^T = \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T$,

• b^* is given by the conditions on the support vectors $\alpha_i > 0$, $\mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$,

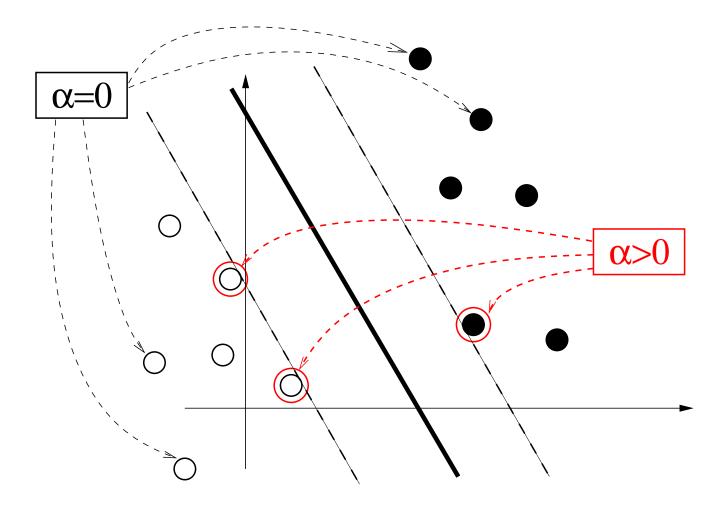
$$b^* = -\frac{1}{2} \left(\min_{\mathbf{y}_i = 1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) + \max_{\mathbf{y}_i = -1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) \right)$$

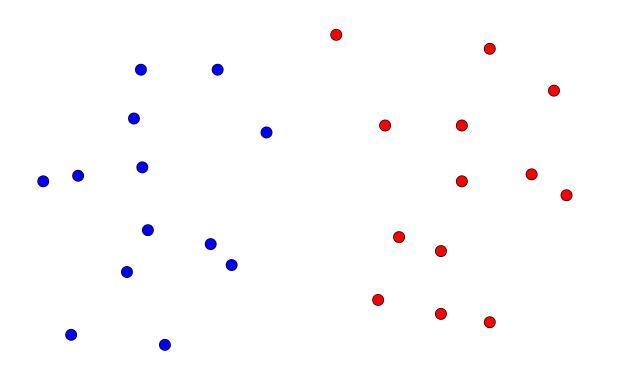
• the **decision function** is therefore:

$$f^*(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b^*$$
$$= \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T \mathbf{x} + b^*.$$

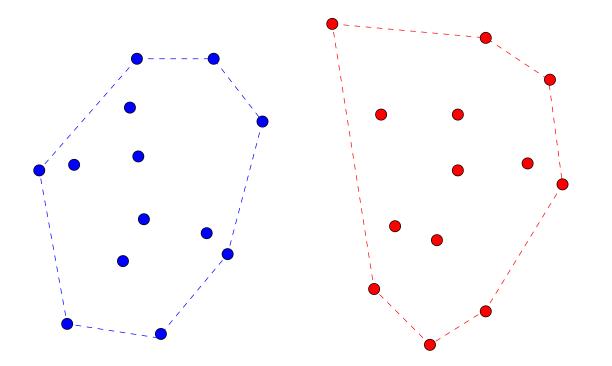
• Here the **dual** solution gives us directly the **primal** solution.

Interpretation: support vectors

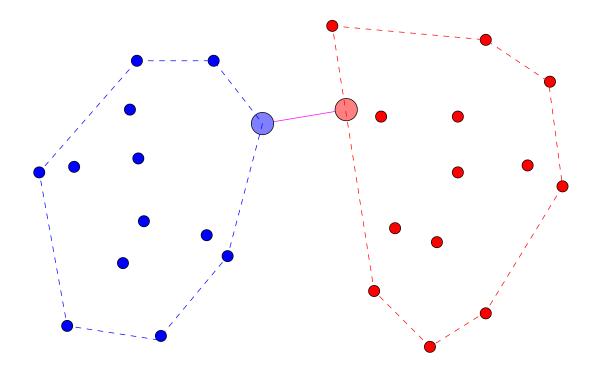




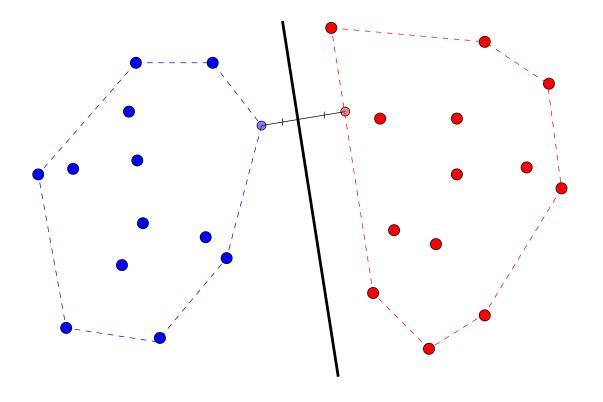
go back to 2 sets of points that are linearly separable



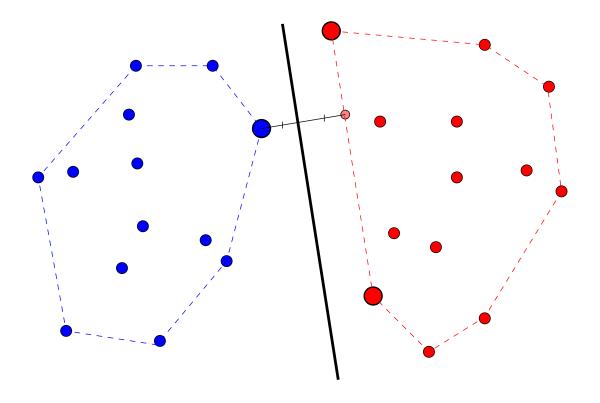
Linearly separable = convex hulls do not intersect



Find two closest points, one in each convex hull



The SVM = bisection of that segment



support vectors = extreme points of the faces on which the two points lie

A brief proof through duality

• Suppose that

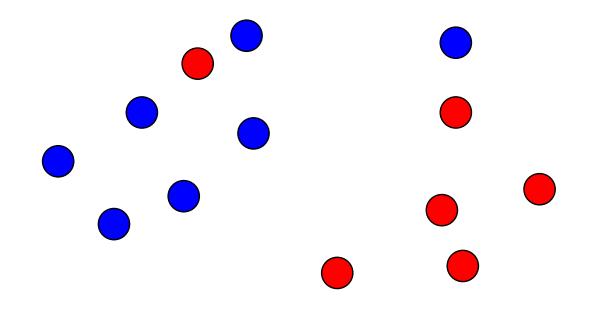
- \circ all the points of the blue set are in a matrix $A \in \mathbb{R}^{d imes n_{-1}}$,
- \circ all the points of the red set are in a matrix $B \in \mathbb{R}^{d imes n_1}$

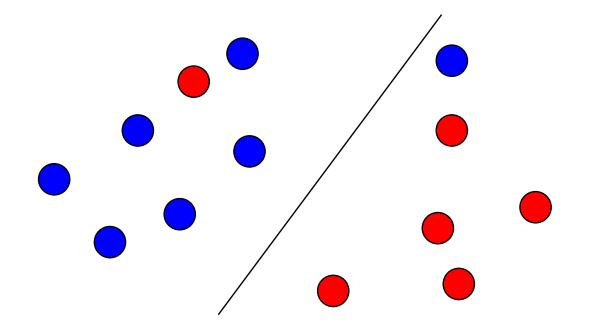
$$A = \begin{bmatrix} \vdots & \cdots & \vdots \\ x_1 & \cdots & x_{n-1} \\ \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{d \times n_{-1}}, \quad B = \begin{bmatrix} \vdots & \cdots & \vdots \\ x'_1 & \cdots & x'_{n_1} \\ \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{d \times n_1}.$$

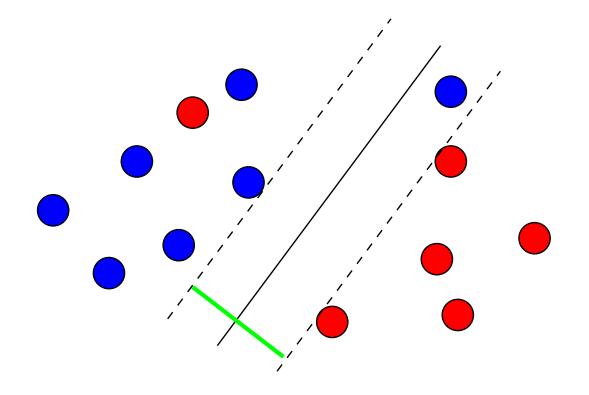
• Finding the two points in question, and the minimal distance, is given by

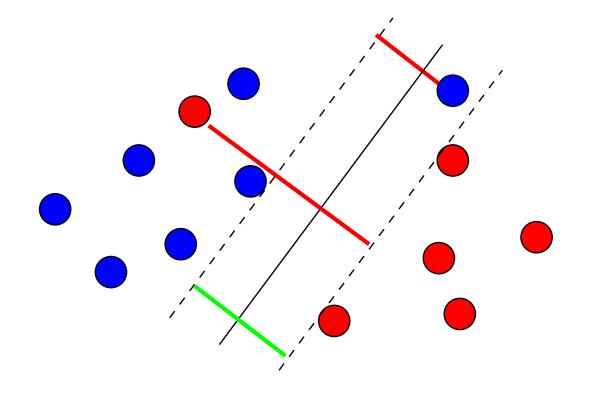
$$\begin{array}{ll} \text{minimize} & \|\mathbf{A}\mathbf{u} - \mathbf{B}\mathbf{v}\|^2 \\ \text{subject to} & \mathbbm{1}_{n_{-1}}^T \mathbf{u} = \mathbbm{1}_{n_1}^T \mathbf{v} = 1 \\ & 0 \leq \mathbf{u} \in \mathbb{R}^{n_{-1}}, \mathbf{v} \in \mathbb{R}^{n_1} \end{array}$$

- Possible to prove that the primal SVM program, slightly modified, has this dual.
- A bit tedious unfortunately.







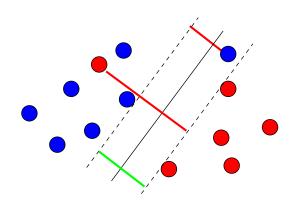


Soft-margin SVM [3]

- Find a trade-off between large margin and few errors.
- Mathematically:

$$\min_{f} \left\{ \frac{1}{\mathsf{margin}(f)} + C \times \mathsf{errors}(f) \right\}$$

• C is a parameter



Soft-margin SVM formulation [3]

• The margin of a labeled point (\mathbf{x}, \mathbf{y}) is

$$\mathsf{margin}(\mathbf{x}, \mathbf{y}) = \mathbf{y} \left(\mathbf{w}^T \mathbf{x} + b \right)$$

- The error is
 - 0 if margin(x, y) > 1,
 1 − margin(x, y) otherwise.
- The soft margin SVM solves:

$$\min_{\mathbf{w},b} \{ \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \}$$

- $c(u, y) = \max\{0, 1 yu\}$ is known as the hinge loss.
- $c(\mathbf{w}^T \mathbf{x}_i + b, \mathbf{y}_i)$ associates a mistake cost to the decision \mathbf{w}, b for example \mathbf{x}_i .

Dual formulation of soft-margin SVM

• The soft margin SVM program

$$\min_{\mathbf{w},b} \{ \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b\right) \}$$

can be rewritten as

minimize
$$\|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that $\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$

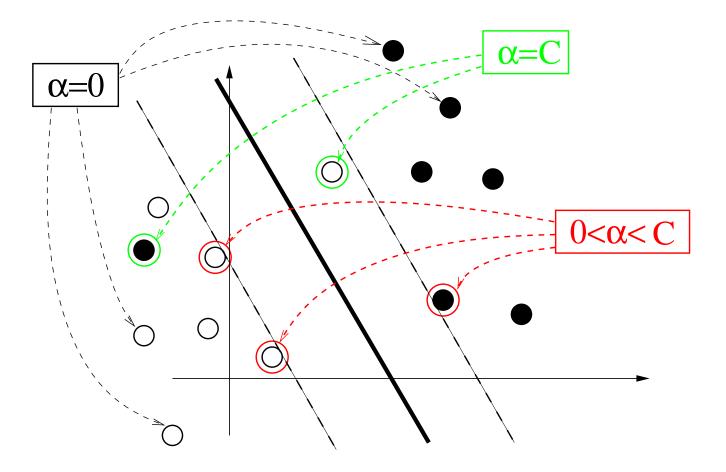
• In that case the dual function

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j \mathbf{y}_i \mathbf{y}_j \mathbf{x}_i^T \mathbf{x}_j,$$

which is finite under the constraints:

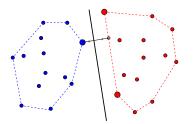
$$\begin{cases} 0 \le \alpha_i \le \boldsymbol{C}, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

Interpretation: bounded and unbounded support vectors

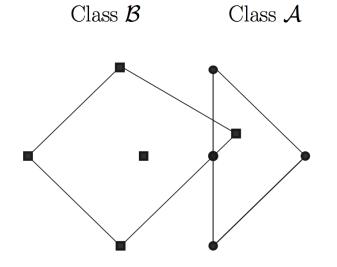


What about the convex hull analogy?

• Remember the separable case



• Here we consider the case where the two sets are not linearly separable, *i.e.* their convex hulls **intersect**.



What about the convex hull analogy?

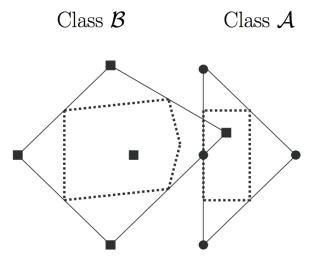
 To follow with the convex hull analogy, consider instead the reduced convex hull,

Definition 1. Given a set of n points A, and $0 \le C \le 1$, the set of finite combinations

$$\sum_{i=1}^{n} \lambda_i \mathbf{x}_i, 1 \le \lambda_i \le C, \sum_{i=1}^{n} \lambda_i = 1,$$

is the (C) reduced convex hull of \mathcal{A}

• Using C = 1/2, the reduced convex hulls of \mathcal{A} and \mathcal{B} ,



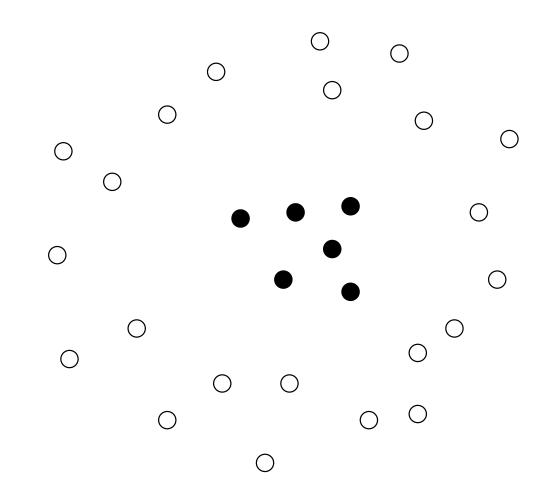
Closest Points in the Reduced Convex Hull

• Idea: find the closest points for the two reduced convex hulls

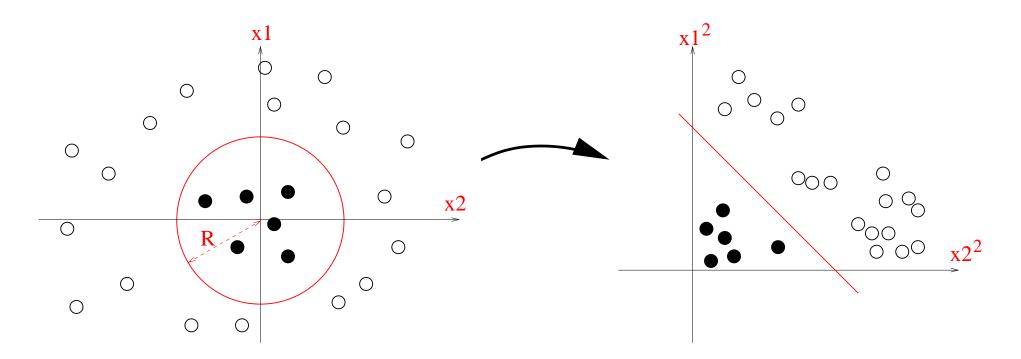
$$\begin{array}{ll} \text{minimize} & \|\mathbf{A}\mathbf{u} - \mathbf{B}\mathbf{v}\|^2\\ \text{subject to} & \mathbbm{1}^T\mathbf{u} = \mathbbm{1}^T\mathbf{v} = 1\\ & \mathbf{u} \leq \mathbf{C}\mathbf{1}, \ \mathbf{v} \leq \mathbf{C}\mathbf{1}\\ & 0 \leq \mathbf{u} \in \mathbb{R}^{n-1}, \mathbf{v} \in \mathbb{R}^{n_1} \end{array}$$

• Again, can prove that the soft-margin SVM with C constant accepts as a dual the formulation above.

Sometimes linear classifiers are of little use



Solution: non-linear mapping to a feature space



Let $\phi(\mathbf{x}) = (x_1^2, x_2^2)'$, $\mathbf{w} = (1, 1)'$ and b = 1. Then the decision function is:

$$f(\mathbf{x}) = x_1^2 + x_2^2 - R^2 = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b,$$

Kernel trick for SVM's [3]

- use a mapping ϕ from ${\mathcal X}$ to a feature space,
- which corresponds to the **kernel** k:

$$\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

• Example: if
$$\phi(\mathbf{x}) = \phi\left(\begin{bmatrix} x_1\\x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^2\\x_2^2 \end{bmatrix}$$
, then

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = (x_1)^2 (x_1')^2 + (x_2)^2 (x_2')^2.$$

Training a SVM in the feature space

Replace each $\mathbf{x}^T \mathbf{x}'$ in the SVM algorithm by $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = k(\mathbf{x}, \mathbf{x}')$

• **Reminder**: the dual problem is to maximize

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j),$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

• The **decision function** becomes:

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(x) \rangle + b^*$$

= $\sum_{i=1}^n y_i \alpha_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b^*.$ (1)

The Kernel Trick [5]

The explicit computation of $\phi(\mathbf{x})$ is not necessary. The kernel $k(\mathbf{x}, \mathbf{x}')$ is enough.

- the SVM optimization for α works **implicitly** in the feature space.
- the SVM is a kernel algorithm: only need to input **K** and **y**:

$$\begin{array}{ll} \text{maximize} & g(\alpha) = \alpha^T \mathbf{1} - \frac{1}{2} \alpha^T (\mathbf{y}^T \mathbf{K} \mathbf{y}) \alpha \\ \text{such that} & 0 \leq \alpha_i \leq C, \quad \text{for } i = 1, \dots, n \\ & \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{array}$$

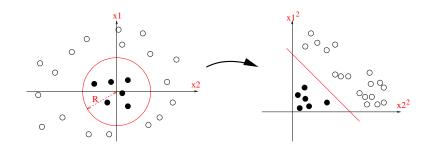
• K's positive definiten \Leftrightarrow problem has an optimum

• the decision function is
$$f(\cdot) = \sum_{i=1}^{n} \alpha_i \mathbf{k}(\mathbf{x}_i, \cdot) + b$$
.

Kernel example: polynomial kernel

• For $\mathbf{x} = (x_1, x_2)^\top \in \mathbb{R}^2$, let $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$:

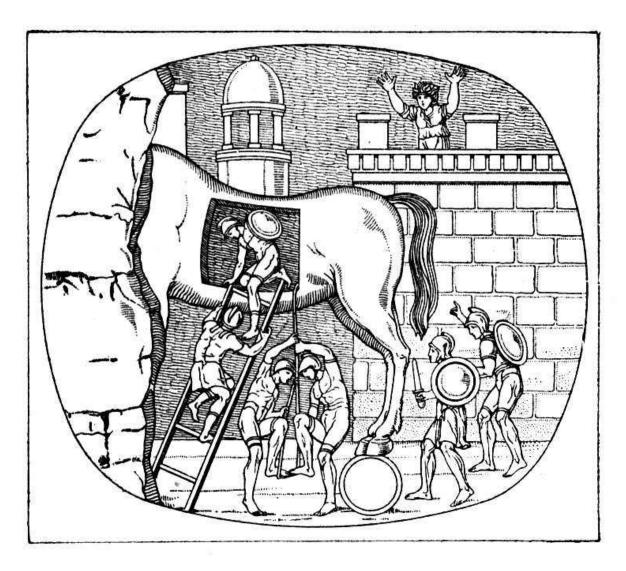
$$\begin{aligned} \mathbf{K}(\mathbf{x}, \mathbf{x'}) &= x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 \\ &= \{x_1 x_1' + x_2 x_2'\}^2 \\ &= \{\mathbf{x}^T \mathbf{x'}\}^2 . \end{aligned}$$



• Many more:

Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models



References

- K.P. Bennett and E.J. Bredensteiner. Duality and Geometry in SVM Classifiers. In *Proceedings of the Seventeenth International Conference on Machine Learning*, page 64. Morgan Kaufmann Publishers Inc., 2000.
- [2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the 5th annual ACM workshop on Computational Learning Theory*, pages 144–152. ACM Press, 1992.
- [3] Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine Learning*, 20:273, 1995.
- [4] T. Hastie, R. Tibshirani, and J. Friedman. *Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd edition).* Springer Verlag, 2009.
- [5] Bernhard Schölkopf and Alexander J. Smola. *Learning with Kernels: Support Vector Machines, Regularization , Optimization, and Beyond.* MIT Press, 2002.