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Statistical Inference

• Statistical: useful to study random systems...

◦ Mutations, environmental changes etc.→ life is random!

• Inference: learn rules using observations assuming some “stationarity”.

in this talk: “yes/no” rules = “binary classification”

◦ given an image, does it contain the photograph of a human face?
◦ given a patient’s genome, is it safe/effective to give him medecine XYZ?
◦ given a patient’s genome, is (s)he at risk of developing Parkinson’s disease?
◦ etc.

“binary classification”⇒ simple 0/1 predictions for well-understood problems
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Data

• The Data we have: a bunch of vectors x1, x2, x3, · · · , xN .

• Ideally, to infer a “yes/no” rule, we need the correct answer for each vector.

• We consider thus a set of pairs of vector/bit

“training set” =























xi =
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∈ R
d, yi ∈ {0, 1}









i=1..N















• For illustration purposes only we will consider vectors in the plane, d = 2.

• Points are easier to represent in 2 dimensions than in 20.000...

• The ideas for d ≫ 3 are exactly the same.

Many thanks to J.P. Vert for some of the following slides
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Classification Separation Surfaces for Vectors

What is a classification rule?
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Classification Separation Surfaces for Vectors

Classification rule = a partition of R
d into two sets
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Classification Separation Surfaces for Vectors

Can be defined by a single surface, e.g. a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halspaces.
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Linear Classifiers

• Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.

• A hyperplane Hc,b is a set in R
d defined by

◦ a normal vector c ∈ R
d

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across R
d

c

Hc,0

Hc,b0
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Linear Classifiers

• Exactly like lines in the plane, hypersurfaces divide R
d into two halfspaces,

{

x ∈ R
d | cTx< b

}

∪
{

x ∈ R
d | cTx≥ b

}

= R
d

• Linear classifiers attribute the “yes” and “no” answers given arbitrary c and b.

NO

YES

Hc,b

c

• Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c⋆, b⋆) given a training sample?
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Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. Depends on the meaning of “best” [4]:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• etc.

Today’s focus: the Support vector machine [5]

Nov 26 2010 10



Classification Separation Surfaces for Vectors
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Classification Separation Surfaces for Vectors
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Classification Separation Surfaces for Vectors
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Classification Separation Surfaces for Vectors
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

Nov 26 2010 16



Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Which one is better?
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A criterion to select a linear classifier: the margin [2]
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A criterion to select a linear classifier: the margin [2]

Nov 26 2010 24



Largest Margin Linear Classifier [2]
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Support Vectors with Large Margin
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In equations

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .

• Next, we give a formula to compute the margin as a function of w.

• Obviously, for any t ∈ R,
Hw,b = Htw,tb

• Thus w and b are defined up to a multiplicative constant.

• We need to take care of this in the definition of the margin
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx + b,
consider the interstice defined by the hyperplanes:

• f(x) = wTx + b = +1

• f(x) = wTx + b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

• Consider x1 and x2 such that x2 − x1 is parallel to w.
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The margin is 2/||w||

• Margin = 2/‖w‖: the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ
def
= 2||x2 − x1|| =

2

||w||.

where γ is by definition the margin.
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All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(

wTxi + b
)

≥ 1
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Finding the optimal hyperplane

• Find (w, b) which minimize:
‖w‖2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi

(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

.
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The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi

(

yi

(

wTxi + b
)

− 1
)

}

is only defined when

w =
n

∑

i=1

αiyixi, ( derivating w.r.t w) (∗)

0 =

n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.

• Strong duality holds. KKT gives us αi(yi

(

wTxi + b
)

− 1) = 0,
...hence, either αi = 0 or yi

(

wTxi + b
)

= 1.

• αi 6= 0 only for points on the support hyperplanes {(x, y)| yi(w
Txi + b) = 1}.
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1
αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α∗ can be computed using optimization software
(e.g. built-in matlab function)
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Recovering the optimal hyperplane

• With α∗, we recover (wT , b∗) corresponding to the optimal hyperplane.

• wT is given by wT =
∑n

i=1
yiαix

T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1

2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx + b∗

=

n
∑

i=1

yiαix
T
i x + b∗.

• Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors

α>0

α=0
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Another interpretation: Convex Hulls [1]

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls

Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls

Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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A brief proof through duality

• Suppose that

◦ all the points of the blue set are in a matrix A ∈ R
d×n−1,

◦ all the points of the red set are in a matrix B ∈ R
d×n1

A =





... · · · ...
x1 · · · xn−1
... · · · ...



 ∈ R
d×n−1, B =





... · · · ...
x′

1 · · · x′
n1... · · · ...



 ∈ R
d×n1.

• Finding the two points in question, and the minimal distance, is given by

minimize ‖Au − Bv‖2

subject to 1
T
n−1

u = 1
T
n1

v = 1

0 ≤ u ∈ R
n−1, v ∈ R

n1

• Possible to prove that the primal SVM program, slightly modified, has this dual.

• A bit tedious unfortunately.
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM [3]

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{

1

margin(f)
+ C × errors(f)

}

• C is a parameter
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Soft-margin SVM formulation [3]

• The margin of a labeled point (x, y) is

margin(x, y) = y
(

wTx + b
)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1 − margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b

{‖w‖2 + C
n

∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

• c(u, y) = max{0, 1 − yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.
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Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b

{‖w‖2 + C
n

∑

i=1

max{0, 1 − yi

(

wTxi + b
)

}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1
ξi

such that yi

(

wTxi + b
)

≥ 1 − ξi

• In that case the dual function

g(α) =
n

∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=
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What about the convex hull analogy?

• Remember the separable case

• Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.
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What about the convex hull analogy?

• To follow with the convex hull analogy, consider instead the reduced convex
hull,

Definition 1. Given a set of n points A, and 0 ≤ C ≤ 1, the set of finite
combinations

n
∑

i=1

λixi, 1 ≤ λi ≤ C,

n
∑

i=1

λi = 1,

is the (C) reduced convex hull of A

• Using C = 1/2, the reduced convex hulls of A and B,
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Closest Points in the Reduced Convex Hull

• Idea: find the closest points for the two reduced convex hulls

minimize ‖Au − Bv‖2

subject to 1
Tu = 1

Tv = 1
u ≤ C1, v ≤ C1

0 ≤ u ∈ R
n−1, v ∈ R

n1

• Again, can prove that the soft-margin SVM with C constant accepts as a dual
the formulation above.
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Sometimes linear classifiers are of little use
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Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let φ(x) = (x2
1, x

2
2)

′, w = (1, 1)′ and b = 1. Then the decision function is:

f(x) = x2
1 + x2

2 − R2 = 〈w, φ(x) 〉 + b,
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Kernel trick for SVM’s [3]

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1

x2

])

=

[

x2
1

x2
2

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′

1)
2 + (x2)

2(x′
2)

2.
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Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉 + b∗

=
n

∑

i=1

yiαik(xi, x) + b∗.
(1)
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The Kernel Trick [5]

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1

2
αT (yTKy)α

such that 0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• K’s positive definiten ⇔ problem has an optimum

• the decision function is f(·) =
∑n

i=1
αi k(xi, ·) + b.
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Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√

2x1x2, x
2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2

• Many more:
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Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models
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