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Convexity Review: Farkas-Type Alternative Theorems

Gale’s Theorem.
For any4A € R™*? andb € R™, exactly one of (a) and (b) holds:

(@) 3z € R? such thatd x < b;
(b) 3z € R™ such that: > 0,274 =0andz'b < 0.

Various forms of a pair (a) and (b):

Farkas (1894) Gordan (1973)
(@ dr: Ax=0bandx > 0; (@ dzr:Ax=0andx > 0;
(b) 3z:2zTA>0andz’b < 0. (b) 3z: 1A > 0.

Symmetric Form(V is a linear subspace &¢, g € [d] is fixed.)
(@) dz € V such thatt > 0 andz, > 0;
(b) Iy € V+ such thaty > 0 andy, > 0.



Constructive Proofsfor MW: MW in Various Forms

Theorem 2.1. [Minkowski-Weyl's Theorem for Polyhed}a
For P C R, the following statements are equivalent:

(a) Pisan H-polyhedron,i.edA & dbs.t. P = {z : Ax > b};

(b) Pis aV-polyhedron, i.ejv;'s & 3r;’s s.t.

P = conv{vy,...,v,} + nonneg{ry,...,rs}.
(a) = (b): Minkowski’s Theorem
(b) = (a): Weyl's Theorem

Theorem 2.2. [Minkowski-Weyl's Theorem for Congs
For P C R, the following statements are equivalent:

(a) PisanH-cone,i.ejAst.P={x: Az > 0};

(b) PisaV-cone,i.e.dr;'ss.t. P = nonneg{ri,r2,...,7s}.



Constructive Proofsfor MW: MW in Various Forms

Theorem 2.2. [MW for Cones in Matrix Form
For P C R¢, the following statements are equivalent:

(a) PisanH-cone,i.ejAst.P={x: Az > 0};
(b) PisaV-cone,i.e.dRst.P={x:x= R\ M\ >0}

A pair (A, R) is adoubledescriptionpair or simply aDD pair if

Ar >0 <+« x = R )forsome) > 0.

Theorem 2.6. [Minkowski for Cone$
VA, 4R such that A, R) is a DD pair.

Theorem 2.7. [Weyl for Cone$
VR, 3A such that A, R) is a DD pair.



Constructive Proofs for MW: Key Proposition

Proposition 2.8. [DD Pair Duality For any A and R,
(A, R) is a DD pair (R', A") is a DD pair.

Corollary. Minkowski <—- Weyl.
(In practical terms, one needs to implement one convelsion.

First Proof of the MW:

Let a matrixR (i.e. V-cone) is given. By the Fourier-Motzkin
Elimination, we can eliminate all variablesfrom the system

x = R X\, A > 0. The resulting system of inequalities written4s > 0
gives A. This proves the Weyl's theorem.

By Proposition 2.8, Minkowski’s Theorem is true.

This provides neither a polynomial nor a compact algorithm.



Minkowski viathe Double Description Algorithm (2.1.3)

Suppose am x d matrix A is given and let
P(A) ={x: Ax > 0}.
Let K C {1,2,...,m} be a subset of the row indices dfand letA x

denote the submatrix of.

Suppose we already found a generating maifor P(Ag ), or
equivalently(Ag, R) is a DD pair.

Key Incremental StepSelect any row indexnot in K and construct a
DD pair (A1, R") using the computed DD pafdx, R).

Remark: The double description algorithm is due to
Motzkin-Raiffa-Thompson-Thrall (1953).



Minkowski viathe Double Description Algorithm (2.1.3)

Partition the column index set of R into three parts:

Jt = {jeJ: A;r;>0}
JO — {jEJAZTj:O}
J- = {]EJ Airj<0}.

Lemma 2.9. [Main Lemma for Double Description Method]
The pair(Ax;, R) is a DD pair, where?' is thed x |.J’| matrix with
columnsr; (5 € J') defined by
J = JuJu(Jt xJ), and
T = (Az Tj)?“j/ — (Az Tj/)?“j for eaCh(j,j/) cJt xJ .



The Double Description Method: Complexity?

P : an H-polytope represented by halfspaces, . . ., h,, in R
P, = m’?: h; : kth polytope P = P,,).

Vi = : the vertex set computed ath step.
newly
generated
for each adj

pair (@ ,*)




The Double Description Method: Complexity? (cont.)

e Itis anincremental methqdlual to the Beneath-Beyond Method.
e Practical for low dimensions and highly degenerate inputs.

e For highly degenerate inputs, the sizes of intermediatgtppés are
very sensitive to the orderingf halfspaces. For example, the
maxcutoff ordering (“the deepest cut”) may provoke extrgnnggh
Intermediate sizes.

e It is hard to estimate its complexity in terms of and the saasput
and output. The main reason is that the intermediate podgiBp
can become very complex relative to the original polytépe P,,.

e D. Bremner (1999) proved that there is a class of polytopew/iach
the double description method (and the beneath-beyondjaues
exponential



How Intermediate Sizes Fluctuate with Different Orderings
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The input is al5-dimensional polytope witB2 facets. The output is a list
of 368 vertices. The lexmin is a sort of shelling ordering.
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How Intermediate Sizes Fluctuate with Different Orderings

Size
Maxcutoff
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The input is al0-dimensional cross polytope with" facets. The output

IS a list of 20 vertices. The highest peak is attained by maxcutoff orderin
following by random and mincutoff. Lexmin is the best amot@ad the
peak intermediate size is less than (Too small too see it above.)
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Pivoting Algorithms for Vertex Enumeration

Basic Idea:Search the connected graph of an H-polytépby pivoting
operations to list all vertices.

Advantage:Under the usual nondegeneracy (i.e. no pointB ire on
more thand facets), it is polynomial in the input size and the outpuésiz

Space ComplexityDepends on the search technique. The standard
depth-first search requires to store all vertices found.
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Memory Free: Reverse Search for Vertex Enumeration

Key idea:Reverse the simplex method from thetimal vertexin all
possible ways:

Complexity: O(mdf,)-time andO(md)-space (under nondegeneracy).
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Reverse Search: General Description

Two functionsf andadj define the search:

A finite local searcly for a graphG' = (V, E') with a special node € V
Is a function:V' \ {s} — V satisfying

(L1) {v, f(v)} € Eforeachw € V' \ {s}, and
(L2) for eachw € V' \ {s}, 3k > 0 such thatf*(v) = s.
Example:

o LetP = {z c R?: A x < b} be asimple polytope, and = be any
generic linear objective function. L&t be the set of all vertices of
P, s the unique optimal, and(v) be the vertex adjacent toselected
by the (deterministic) simplex method.
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Reverse Search: General Description

A adjacency oracled; for a graphGG = (V, F) is a function (wheré a
upper bound for the maximum degree(®f satisfying:

(1) for each vertex and each numbédrwith 1 < k& < ¢ the oracle returns
adj (v, k), a vertex adjacent to or extraneou$ (zero),

(ii) if adj(v, k) = adj(v, k") # 0 for somev € V, k andk’, thenk = £/,

(iii) for each vertex, {adj(v, k) : adj(v, k) #0,1 < k <} is exactly
the set of vertices adjacent to

Example:

o LetP = {x € RY: A x < b} be asimple polytope. Léf be the set
of all vertices ofP, ¢ be the number of nonbasic variables and
adj (v, k) be the vertex adjacent toobtained by pivoting on théth
nonbasic variable at.
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Reverse Search: General Description

procedure ReverseSearaH(,d,s, f);
v:=s; 7 := 0; (* 7: neighbor counter *)
repeat
whilej < é do
J=7+1
(r1) next := adj(v,j);
if next # 0 then
(r2) if f(next) = vthen (* reverse traverse *)
v:=next; ) :=0
endif
endif
endwhile;
If v # s then (* forward traverse *)
(f1) u:=wv, wv:= f(v);
(f2) j:=0; repeatj:=j+ 1until adj(v,j) = u (* restorej *)
endif
untilv = sandj = ¢
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Pivoting Algorithm vsIncremental Algorithm

e Pivoting algorithms, in particular the reverse search ratigan (Irs,
Irslib), work well for high dimensional cases.

e Incremental algorithms work well for low (up ) dimensional
cases and highly degenerate cases. For example, the catlesdiib
and porta are implemented for highly degenerate cases arubtie
ghull for low (up to10) dimensional cases.

e The reverse search algorithm seems to be the only methoddhiais
very efficiently in massively parallel environment.

e Various comparisons of representation conversion algostand
Implementations can be found in the excellent article:

D. Avis, D. Bremner, and R. Seidel. How good are convex hull
algorithms. ComputationalGeometry.TheoryandApplications,
7:265-302, 1997.
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