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Convexity Review: Farkas-Type Alternative Theorems

Gale’s Theorem.

For anyA ∈ Rm×d andb ∈ Rm, exactly one of (a) and (b) holds:

(a) ∃x ∈ Rd such thatA x ≤ b;

(b) ∃z ∈ Rm such thatz ≥ 0, zT A = 0 andzT b < 0.

Various forms of a pair (a) and (b):

Farkas (1894)

(a) ∃x : A x = b andx ≥ 0;

(b) ∃z : zT A ≥ 0 andzT b < 0.

Gordan (1973)

(a) ∃x : A x = 0 andx  0;

(b) ∃z : zT A > 0.

Symmetric Form(V is a linear subspace ofRd, g ∈ [d] is fixed.)

(a) ∃x ∈ V such thatx ≥ 0 andxg > 0;

(b) ∃y ∈ V ⊥ such thaty ≥ 0 andyg > 0.
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Constructive Proofs for MW: MW in Various Forms

Theorem 2.1. [Minkowski-Weyl’s Theorem for Polyhedra]

ForP ⊆ Rd, the following statements are equivalent:

(a) P is an H-polyhedron, i.e.,∃A & ∃b s.t.P = {x : Ax ≥ b};

(b) P is a V-polyhedron, i.e.,∃vi’s & ∃rj ’s s.t.

P = conv{v1, . . . , vn} + nonneg{r1, . . . , rs}.

(a)=⇒ (b): Minkowski’s Theorem

(b) =⇒ (a): Weyl’s Theorem

Theorem 2.2. [Minkowski-Weyl’s Theorem for Cones]

ForP ⊆ Rd, the following statements are equivalent:

(a) P is an H-cone, i.e.,∃A s.t.P = {x : Ax ≥ 0};

(b) P is a V-cone, i.e.,∃rj ’s s.t.P = nonneg{r1, r2, . . . , rs}.
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Constructive Proofs for MW: MW in Various Forms

Theorem 2.2. [MW for Cones in Matrix Form]

ForP ⊆ Rd, the following statements are equivalent:

(a) P is an H-cone, i.e.,∃A s.t.P = {x : Ax ≥ 0};

(b) P is a V-cone, i.e.,∃R s.t.P = {x : x = R λ, λ ≥ 0}.

A pair (A, R) is adoubledescriptionpair or simply aDD pair if

Ax ≥ 0 ⇐⇒ x = R λ for someλ ≥ 0.

Theorem 2.6. [Minkowski for Cones]

∀A, ∃R such that(A, R) is a DD pair.

Theorem 2.7. [Weyl for Cones]

∀R, ∃A such that(A, R) is a DD pair.
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Constructive Proofs for MW: Key Proposition

Proposition 2.8. [DD Pair Duality] For anyA andR,
(A, R) is a DD pair⇐⇒ (RT , AT ) is a DD pair.

Corollary. Minkowski ⇐⇒ Weyl.
(In practical terms, one needs to implement one conversion.)

First Proof of the MW:
Let a matrixR (i.e. V-cone) is given. By the Fourier-Motzkin
Elimination, we can eliminate all variablesλ from the system

x = R λ, λ ≥ 0. The resulting system of inequalities written asAx ≥ 0

givesA. This proves the Weyl’s theorem.

By Proposition 2.8, Minkowski’s Theorem is true.

This provides neither a polynomial nor a compact algorithm.
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Minkowski via the Double Description Algorithm (2.1.3)

Suppose anm × d matrixA is given and let

P (A) = {x : Ax ≥ 0}.

Let K ⊂ {1, 2, . . . , m} be a subset of the row indices ofA and letAK

denote the submatrix ofA.

Suppose we already found a generating matrixR for P (AK), or

equivalently(AK , R) is a DD pair.

Key Incremental Step:Select any row indexi not inK and construct a

DD pair (AK+i, R
′) using the computed DD pair(AK , R).

Remark: The double description algorithm is due to

Motzkin-Raiffa-Thompson-Thrall (1953).
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Minkowski via the Double Description Algorithm (2.1.3)

Partition the column index setJ of R into three parts:

J+ = {j ∈ J : Ai rj > 0}

J0 = {j ∈ J : Ai rj = 0}

J− = {j ∈ J : Ai rj < 0}.

Lemma 2.9. [Main Lemma for Double Description Method]

The pair(AK+i, R
′) is a DD pair, whereR′ is thed × |J ′| matrix with

columnsrj ( j ∈ J ′ ) defined by

J ′ = J+ ∪ J0 ∪ (J+ × J−), and

rjj′ = (Ai rj)rj′ − (Ai rj′)rj for each(j, j′) ∈ J+ × J−.
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The Double Description Method: Complexity?

P : an H-polytope represented bym halfspacesh1, . . ., hm in Rd.

Pk = ∩k
i=1hi : kth polytope (P = Pm).

Vk = V (Pk) : the vertex set computed atkth step.

(Pk-1, Vk-1) (Pk, Vk)

hk

newly
generated
for each adj
pair  (    ,   )
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The Double Description Method: Complexity? (cont.)

• It is anincremental method, dual to the Beneath-Beyond Method.

• Practical for low dimensions and highly degenerate inputs.

• For highly degenerate inputs, the sizes of intermediate polytopes are

very sensitive to the orderingof halfspaces. For example, the

maxcutoff ordering (“the deepest cut”) may provoke extremely high

intermediate sizes.

• It is hard to estimate its complexity in terms of and the sizesof input

and output. The main reason is that the intermediate polytopesPk

can become very complex relative to the original polytopeP = Pm.

• D. Bremner (1999) proved that there is a class of polytopes for which

the double description method (and the beneath-beyond) method is

exponential.
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How Intermediate Sizes Fluctuate with Different Orderings
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The input is a15-dimensional polytope with32 facets. The output is a list

of 368 vertices. The lexmin is a sort of shelling ordering.
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How Intermediate Sizes Fluctuate with Different Orderings
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The input is a10-dimensional cross polytope with210 facets. The output

is a list of20 vertices. The highest peak is attained by maxcutoff ordering,

following by random and mincutoff. Lexmin is the best among all and the

peak intermediate size is less than30. (Too small too see it above.)
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Pivoting Algorithms for Vertex Enumeration

Basic Idea:Search the connected graph of an H-polytopeP by pivoting
operations to list all vertices.

A polytopeP and its graph (1-skeleton)

Advantage:Under the usual nondegeneracy (i.e. no points inP lie on
more thand facets), it is polynomial in the input size and the output size.

Space Complexity:Depends on the search technique. The standard
depth-first search requires to store all vertices found.
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Memory Free: Reverse Search for Vertex Enumeration

Key idea:Reverse the simplex method from theoptimal vertexin all
possible ways:

!!

!$

"*

#"

$"

min  x1 + x2 + x3

Complexity: O(mdf0)-time andO(md)-space (under nondegeneracy).
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Reverse Search: General Description

Two functionsf andadj define the search:

A finite local searchf for a graphG = (V, E) with a special nodes ∈ V

is a function:V \ {s} → V satisfying

(L1) {v, f(v)} ∈ E for eachv ∈ V \ {s}, and

(L2) for eachv ∈ V \ {s}, ∃k > 0 such thatfk(v) = s.

Example:

• Let P = {x ∈ Rd : A x ≤ b} be a simple polytope, andcT x be any

generic linear objective function. LetV be the set of all vertices of

P , s the unique optimal, andf(v) be the vertex adjacent tov selected

by the (deterministic) simplex method.
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Reverse Search: General Description

A adjacency oracleadj for a graphG = (V, E) is a function (whereδ a

upper bound for the maximum degree ofG) satisfying:

(i) for each vertexv and each numberk with 1 ≤ k ≤ δ the oracle returns

adj (v, k), a vertex adjacent tov or extraneous0 (zero),

(ii) if adj (v, k) = adj (v, k′) 6= 0 for somev ∈ V , k andk′, thenk = k′,

(iii) for each vertexv, {adj (v, k) : adj (v, k) 6= 0, 1 ≤ k ≤ δ} is exactly

the set of vertices adjacent tov.

Example:

• Let P = {x ∈ Rd : A x ≤ b} be a simple polytope. LetV be the set

of all vertices ofP , δ be the number of nonbasic variables and

adj (v, k) be the vertex adjacent tov obtained by pivoting on thekth

nonbasic variable atv.
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Reverse Search: General Description

procedure ReverseSearch(adj ,δ,s,f );

v := s; j := 0; (* j: neighbor counter *)

repeat
while j < δ do

j := j + 1;

(r1) next := adj (v, j);

if next 6= 0 then
(r2) if f(next) = v then (* reverse traverse *)

v := next; j := 0

endif
endif

endwhile;

if v 6= s then (* forward traverse *)

(f1) u := v; v := f(v);

(f2) j := 0; repeat j := j + 1 until adj (v, j) = u (* restorej *)

endif
until v = s andj = δ
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Pivoting Algorithm vs Incremental Algorithm

• Pivoting algorithms, in particular the reverse search algorithm (lrs,
lrslib), work well for high dimensional cases.

• Incremental algorithms work well for low (up to10) dimensional
cases and highly degenerate cases. For example, the codes cdd/cddlib
and porta are implemented for highly degenerate cases and the code
qhull for low (up to10) dimensional cases.

• The reverse search algorithm seems to be the only method thatscales
very efficiently in massively parallel environment.

• Various comparisons of representation conversion algorithms and
implementations can be found in the excellent article:

D. Avis, D. Bremner, and R. Seidel. How good are convex hull
algorithms.ComputationalGeometry:TheoryandApplications,
7:265–302, 1997.
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