
Polyhedral Computation 2010/10/15

Lecture 3

Professor: David Avis Scribe:Yosuke Suzuki

We consider the problem of getting an initial feasible dictionary for the graph search
method for vertex enumeration discussed in the previous lecture. Recall the setup:
Input: m× n matrix A, m-vector b
Output: List of vertices of the polytope P = {x ∈ Rn, b + Ax ≥ 0}

By definition v ∈ P is a vertex if it is the unique solution of an n × n subsystem of
inequalities from P solved as equations. To be non-trivial, this problem implies m ≥ n
and that the column rank of A must be n or there is no n × n subsystem with unique
solution. However this is not sufficient, and there may in fact be no feasible dictionaries.
We discuss how to find a starting feasible dictionary if there is one or give a proof if there
is none. There are three steps.

Step 1: Introduce slacks obtaining the dictionary D0:

xn+i = bi +
n∑

j=1

aijxj

i = 1, 2, ...m

(We require xn+i ≥ 0 for a feasible solution.)
Step 2: Solve for the decision variables x1...xn on the LHS by letting some subset of

n slacks move to the RHS, getting D, with basis B1 = {indices of LHS variables} and
cobasis N1 = {indices of RHS variables}
(Note {1, 2, ...n} ⊆ B)

Step 3: If the dictionary obtained is infeasible, we use these steps to try to find a
feasible solution:

Step 3-1: Choose the smallest index i of a slack variable xi for which xi = bi < 0. If
none, we have a feasible dictionary.

Step 3-2: Choose smallest index j s.t. the coefficient of xj is positive in this row. If
none, P is empty and has no vertices. Pivot and return to Step 3-1.

The following is an example with n = 2,m = 4 which requires Step 3. It is illustrated
in Figure 1.

Suppose that after Step 2, n = 2,m = 4, we have B1 = {1, 2, 5, 6}, N1 = {3, 4} and
dictionary D1.

x1 = 1 + x3 + x4

x2 = −1 + x4

x5 = −1 + x3 − x4

x6 = −4 + 2x3 + x4

3 - 1



Figure 1: First example

We get a basic solution by setting x3 = x4 = 0, with x1 = 1, x2 = −1, x5 = −1, x6 =
−4. Both x5 and x6 are infeasible slacks.

In this example, Step 3-1 chooses infeasible slack x5, and Step 3-2 chooses x3. Letting
x3 replace x5 gives basis B2 = {1, 2, 3, 6}, N2 = {4, 5} and gives the dictionary D2:

x1 = 2 + 2x4 + x5

x2 = −1 + x4

x3 = 1 + x4 + x5

x6 = −2 + 3x4 + 2x5

This is infeasible as x6 = −2 in the basic solution. Applying Step 3-1 we select x6. In
Step 3-2 the variable x4 is chosen since x5 has larger index. This gives dictionary D3 with
B3 = {1, 2, 3, 3} and N = {5, 6}. We give only the b-vector since it is a feasible dictionary.

x1 =
10
3

+ ...

x2 = −1
3

+ ...

x3 =
5
3

+ ...

x4 =
2
3

+ ...

This is feasible as slack variables are all non-negative. The corresponding vertex of P is
x1 == 10

3 , x2 = −1
3 .

Given this feasible dictionary we can use the graph search method described in the
last lecture.

Let us consider the case where we terminate in Step 3-2. Here is an example:

3 - 2



x1 = 2 + 2x4 + x5

x2 = −1 + x4

x3 = 1 + x4 + x5

x6 = −2− 3x4 − 2x5

Consider the last row of this dictionary. Whatever nonnegative value x4 and x5 take, x6

must be negative. Therefore there can be no feasible solution and P is empty.
We have seen that if we terminate in Step 3-1 then we have a feasible dictionary with

basic solution corresponding to a vertex of P . If we terminate in Step 3-2 we have a proof
of infeasibility, since the infeasible equation in the dictionary is obtained by standard pivot
operations on the original dictionary. It remains to prove that we always terminate in a
finite number of steps.

1 Proof of termination

Suppose there exist A, b for which Step 3 loops forever. This means some basis repeats
itself, a situation we call a cycle. Choose the smallest value of m + n for which we have a
cycle. Note that xn+m must enter and leave the basis in this cycle, otherwise xn+m could
be deleted and we still have a cycle with smaller value of m + n.

• xn+m enters the basis
In this case the coefficients in the pivot row, say,

xi = bi +
∑
j∈N

ai,j

must have the sign pattern

bi < 0, ai,n+m > 0, ai,j < 0 j ∈ N \ {n + m}.

If follows from this that whenever xj ≥ 0, n + 1 ≤ j ≤ n + m − 1 we must have
xn+m > 0. (In Step 3 N never contains the original decision variables x1, ..., xn.)

• xn+m leaves the basis
Consider the basic solution for this dictionary. Since xn+m is chosen to leave the
basis in Step 3-1 we must have that each basic slack variable is nonnegative except
for xn+m < 0. Slack co-basic variables have value zero.

Now we need only observe that the basic solution obtained in the second item above
violates the condition given in the first item. This contradiction completes the proof.

2 The Adjacency Oracle

Given a feasible dictionary, want an adjacency oracle to get all adjacent feasible dictionaries
obtainable by a single pivot. For each pivot, in principle we can choose any i ∈ B, j ∈

3 - 3



N(i ≥ n + 1). There are n(m − n) such choices. However many may be rejected due to
infeasibility. We define the adjacency oracle Adj(N, i, j) as follows:

Adj(N, i, j) =


∅ N ∪ {i}/{j} gives an infeasible dictionary
∅ xj has zero coefficient in row xi

N ∪ {i}/{j} if this gives a feasible dictionary

Consider the example, which is illustrated in Figure 2 :

1 + x1 = x3

2− x1 = x4

1 + x2 = x5

2− x2 = x6

3 + x1 + x2 = x7

Figure 2: Second example

Consider the dictionary with N = {4, 7}.

x1 = 2− x4

x2 = 1 + x4 − x7

x3 = 3− x4

x5 = 2 + x4 − x7

x6 = 1− x4 + x7

3 - 4



Adj(3, 4) = ∅ (infeasible point (-1,4))
Adj(3, 7) = ∅ (no solution)
Adj(5, 4) = ∅ (infeasible point (4,-1))
Adj(5, 7) = N = {4, 5} (feasible vertex (2,-1))
Adj(6, 4) = N = {6, 7} (feasible vertex (1,2))
Adj(6, 7) = ∅ (infeasible point (2,2))

A simple (ie. non-degenerate) polyhedron is one for which each vertex lies on exactly
n facets. In this case there are only n feasible adjacent dictionaries, one for each giving
one new vertex.

3 More on the DFS algorithm

3.1 More on the DFS Algorithm

Data structure needed are stack S and list of vertices found L.
DFS(V ):

• Add v to L and S.

• Find an adjacent vertex to top(S) not in L and add to L and S (bookkeeping).

• If none, remove top(S).

If the graph is huge, book keeping dominates. Output size upperbound is mbn
2
c vertices.

There can be as many as
(

m
n

)
feasible dictionaries for highly degenerate problems. In

the next lecture we explain reverse search, which is a method of eliminating these two
data structures.

3 - 5


