Computing N ash Equilibria
Supplemental Lecture Notes for cs566 - November 9, 2004
Commissioned by Prof. David Avis
School of Computer Science, McGill University

We first derive conditions for equilibria for zero sum games, then generalize them for non-zero sum games. Let 1_{n} denote a column vector of n ones. Let A be a $m \times n$ payoff matrix for Alice. Let (x, y), with $x \in R^{m}, y \in R^{n}$, be the strategies used by Alice and Bob respectively. The LP formulation for a zero sum game based on A is:

$$
\begin{align*}
\max z & \tag{1}\\
1_{n} z & \leq x^{T} A \\
1_{m}^{T} x & =1 \tag{2}\\
x & \geq 0 \\
& \tag{3}\\
\min w & \\
1_{m} w & \geq A y \tag{4}\\
1_{n}^{T} y & =1 \\
y & \geq 0
\end{align*}
$$

Note that these are a dual pair of LPs. In the first LP, if Alice chooses strategy x, Bob's best repsonse is to select from the minimum components of the vector $x^{T} A$. Bob's payoff is $-z$. In the second LP, if Bob chooses strategy y Alice's best response is to choose from the maximum components of the vector $A y$. Alice's payoff is w. By the duality theorem of LP, at optimality $z=w$, and this is the value of the game. The corresponding strategies (x, y) are equilibrium strategies: no player can improve the outcome by deviating unilaterally from his/her equilibrium strategy. The complementary slackness conditions for LP dictate that this occurs when the following additional conditions hold:

$$
\begin{align*}
& y^{T}\left(x^{T} A-1_{n} z\right)=0 \tag{5}\\
& x^{T}\left(1_{m} w-A y\right)=0 \tag{6}
\end{align*}
$$

For example, if $w>A_{i} y$ (A_{i} is the i-th row of A) then Alice will not choose row i, so $x_{i}=0$.
We move to non-zero sum games. Now there is no notion of a value of the game, but the idea of equilibrium strategies does generalize to this case. Let B be a $m \times n$ payoff matrix for Bob, and let v be his payoff. By substituting $v=-z$ in (1), we may rewrite the first LP:

$$
\begin{align*}
\min v & \tag{7}\\
1_{n} v & \geq x^{T}(-A) \\
1_{m}^{T} x & =1 \tag{8}\\
x & \geq 0
\end{align*}
$$

Letting B replace $-A$ as Bob's payoff matrix and dropping the objective functions, we get the constraint sets:

$$
\begin{align*}
1_{n} v & \geq B^{T} x \\
1_{m}^{T} x & =1 \tag{9}\\
x & \geq 0 \\
& \\
1_{m} w & \geq A y \tag{10}\\
1_{n}^{T} y & =1 \\
y & \geq 0
\end{align*}
$$

Then (x, y), with $x \in R^{m}, y \in R^{n}$, is a Nash Equilibrium pair of strategies if:

$$
\begin{align*}
& x^{T}\left(1_{m} w-A y\right)=0 \tag{11}\\
& y^{T}\left(1_{n} v-B^{T} x\right)=0 \tag{12}
\end{align*}
$$

A simple procedure for computing equilibrium pairs is as follows. We observe that (9) defines a polyhedron in R^{m+1} and (10) defines a polyhedron in R^{n+1}. We first compute the vertices of these two polyhedra, using a package such as lrs (http://cgm.cs.mcgill.ca/ ${ }^{\sim}$ avis/). For each pair of vertices $(v, x ; w, y)$ from the polyhedra (9) and (10) respectively, we check the conditions (11) and (12). The pair is an equilibrium pair if the conditions (11) and (12) are satisfied.

EXAMPLE:

$$
A=\left[\begin{array}{ll}
0 & 6 \\
2 & 5 \\
3 & 3
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
4 & 3
\end{array}\right]
$$

We first prepare the lrs input files. The format is a list of the coefficients of inequalities in the format $b+c x \geq 0$. The linearity option is used to specify an equation. The inputs are:

for (9):	for (10):
H-representation	H-representation
linearity 16	linearity 16
begin	begin
65 integer $01-10-4$ $010-2-3$	64 integer
00100	$010-6$
00010	$01-2-5$
00001	$01-3-3$
-1011	0010
end	0001

Using these inputs, we run lrs and we get the vertex lists:

v	x_{1}	x_{2}	x_{3}
1	1	0	0
$2 / 3$	$2 / 3$	$1 / 3$	0
2	0	1	0
$8 / 3$	0	$1 / 3$	$2 / 3$
4	0	0	1

and	w	y_{1}	y_{2}
	3	1	0
	3	$2 / 3$	$1 / 3$
	4	1/3	2/3
	6	0	1

Thus there are 20 pairs $(v, x ; w, y)$ to test conditions (11) and (12) on. But things can be done a bit more simply by fixing x and then listing vectors y (if any) that form a pair with x. We rewrite (11) and (12) as

$$
\begin{array}{ll}
x_{i}=0 \text { or } A_{i} y=w & i=1, \ldots, m \\
y_{j}=0 \text { or } B_{j}^{T} x=v & j=1, \ldots, n \tag{14}
\end{array}
$$

where A_{i} is row i of A, B_{j}^{T} is column j of B.
Take $x=(0,0,1), v=4$. We compute:

$$
\begin{aligned}
& B_{1}^{T} x=(1,0,4)(0,0,1)=4=v \\
& B_{2}^{T} x=(0,2,3)(0,0,1)=3 \neq v
\end{aligned}
$$

By (14), any Nash Equilibrium (x, y) with this x must have $y_{2}=0$. The only candidate is $y=(1,0)$ with $w=3$. We need to check (13). Since only $x_{3}>0$, we check $A_{3} y=(3,3)(1,0)=3=w$. This means that $(0,0,1),(1,0)$ is a Nash Equilibrium, and this is the only pair with $x=(0,0,1)$. Proceeding for each x we get a complete list of Equilibria: $(0,0,1),(1,0) ;(0,1 / 3,2 / 3),(2 / 3,1 / 3)$; and $(2 / 3,1 / 3,0),(1 / 3,2 / 3)$.

Exercise: check this list is correct!

