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We first derive conditions for equilibria for zero sum games, then generalize them for non-zero sum
games. Let 1,, denote a column vector of n ones. Let A be a m x n payoff matrix for Alice. Let (z,y),
with z € R™, y € R", be the strategies used by Alice and Bob respectively. The LP formulation for a

zero sum game based on A is:

maz z (1)
L,z <z'A
L@ = (2)
x>0
min w (3)
L,w > Ay
Ly =1 (4)
y=>0

Note that these are a dual pair of LPs. In the first LP, if Alice chooses strategy z, Bob’s best
repsonse is to select from the minimum components of the vector z! A. Bob’s payoff is —z. In the
second LP, if Bob chooses strategy y Alice’s best response is to choose from the maximum components
of the vector Ay. Alice’s payoff is w. By the duality theorem of LP, at optimality z = w, and this is
the value of the game. The corresponding strategies (x,y) are equilibrium strategies: no player can
improve the outcome by deviating unilaterally from his/her equilibrium strategy. The complementary

slackness conditions for LP dictate that this occurs when the following additional conditions hold:

yT(2TA—1,2) =0 (5)

2l (1w — Ay) =0 (6)

For example, if w > A;y (A; is the i-th row of A) then Alice will not choose row 4, so z; = 0.
We move to non-zero sum games. Now there is no notion of a value of the game, but the idea of
equilibrium strategies does generalize to this case. Let B be a m X n payoff matrix for Bob, and let v

be his payoff. By substituting v = —z in (1), we may rewrite the first LP:



min v (7)
1o > zl(—A)
1%3: =1 (8)
x>0

Letting B replace —A as Bob’s payoff matrix and dropping the objective functions, we get the con-
straint sets:

1,0 > BTz
1Tr=1 (9)
x>0
lpw > Ay
1y =1 (10)
y=>0

Then (z,y), with z € R™,y € R", is a Nash Equilibrium pair of strategies if:

' (1w — Ay) =0 (11)

yT (1,0 — BTz) =0 (12)

A simple procedure for computing equilibrium pairs is as follows. We observe that (9) defines
a polyhedron in R™*! and (10) defines a polyhedron in R"*!. We first compute the vertices of these
two polyhedra, using a package such as Irs (http://cgm.cs.mcgill.ca/ avis/). For each pair of vertices
(v, z;w,y) from the polyhedra (9) and (10) respectively, we check the conditions (11) and (12). The

pair is an equilibrium pair if the conditions (11) and (12) are satisfied.

EXAMPLE:
0 6 10
3 3 4 3

We first prepare the lrs input files. The format is a list of the coeflicients of inequalities in the

format b + cz > 0. The linearity option is used to specify an equation. The inputs are:



for (9):
H-representation
linearity 1 6
begin

6 5 integer
01-10-4
010-2-3
00100
00010
00001
-10111
end

for (10):
H-representation
linearity 1 6
begin

6 4 integer
010-6
01-2-5
01-3-3
0010
0001
-1011

end

Using these inputs, we run Irs and we get the vertex lists:

v il 9 I3
1 1 0 0
2/312/3 1/3 0
2 1 0

8
4

0 1

0
/310 1/3 2/3
0

w ‘ Y1 Y2
3|1 0
3 12/3 1/3
4 |11/3 2/3
6 |0 1

Thus there are 20 pairs (v, z;w,y) to test conditions (11) and (12) on. But things can be done a bit

more simply by fixing z and then listing vectors if any) that form a pair with z. We rewrite (11
ply by g g Yy y p

and (12) as

where A; is row ¢ of A, B]-T

Take z = (0,0,1),v = 4.

z;i=0o0r Ay =w

yj:0orBij:v

is column j of B.

We compute:

1=1,...m

j=1..n

Blz =(1,0,4)(0,0,1) =4 =v

Blx =1(0,2,3)(0,0,1) =3 # v.

By (14), any Nash Equilibrium (z,y) with this £ must have y, = 0. The only candidate is
y = (1,0) with w = 3. We need to check (13). Since only z3 > 0, we check Azy = (3,3)(1,0) =3 = w.
This means that (0,0,1),(1,0) is a Nash Equilibrium, and this is the only pair with z = (0,0,1).

Proceeding for each = we get a complete list of Equilibria: (0,0, 1), (

(2/3,1/3,0),(1/3,2/3).

Exercise: check this list is correct!

1,0); (0,1/3,2/3), (2/3,1/3); and



