Polyhedral Computation, Dec I6, 20II, Kyoto U.

Ham-Sandwich Cuts

Stefan Langerman
Université Libre de Bruxelles

FOOD!

Say we have a SANDWICH
say we have a SANDWICH

WITH HAM

BUT...

$$
\begin{aligned}
& \text { WE } A R E \\
& i 2 \pi
\end{aligned}
$$

How
Do
WE

$$
\begin{aligned}
& \text { WE } \\
& \text { SPLIT? }
\end{aligned}
$$

EASY CASE

TRICKY CASE!!

SIDE VIEW

TOP VIEW

HAM - SANDWICH CUT THEOREM
IT IS AL wAYS POSSIBLE
To CUT THE SANDWICH
So that both pieces
HAVE $1 / 2$ OF THE HAM
AND $1 / 2$ of THE BREAD
DISCRETE, RD

Given a set of η blue POINTS AND n RED POINTS

DISCRETE, LD
GIVEN A SET OF 1 BLUE
POINTS AND n RED POINTS
There is a line l with
$\leqslant \frac{n}{2}$ POINTS OF EACH COLOR in Both open halfplanes

Why??

WHY?

- Divide \& conquer \rightarrow algorithmic TOOL
- ミBORSÜK - SLAM / BROWER'S FP
- Fundamental \& fun

Application: Let's dance

Application: Let's dance

Application: Let's dance

Application: Red Blue matching

Given n red points and n blue points, find a noncrossing mai ching where every edge is redtblue

Application: Red-Blue matching

Application: Red-Blue matching

Application: RediBlue matching

Application: Red-Blue matching

Application: RediBlue matching

Application: RediBlue matching

Application: RediBlue matching

Combinatorial Problem:
Prove the ham-sandwich cut always exists

Algorithmic Problem:
How do we find such a line? (and how quickly?)

Duality Transform

point above line
$b \geqslant m a+c$
line above Point

$$
c \leqslant a(-m)+b
$$

Duality Transform

Point above line
$b \geqslant m a+C$

point on line
$b=m a+c$

$$
c \leqslant a(-m)+b
$$

LINE ON POINT

$$
c=a(-m)+b
$$

Duality Transform

DISCRETE, LD
GIVEN A SET OF 1 BLUE
POINTS AND n RED POINTS
There is a line l with
$\leqslant \frac{n}{2}$ POINTS OF EACH COLOR in Both open halfplanes

RED\& BLUE POINTS \rightarrow LINES

Levels

Levels

Levels

Levels

BISECTORS = MEDIAN LEVEL

RED\& BLUE POINTS \rightarrow LINES

RED \& BLUE MEDIAN LEVELS

RED \& BLUE MEDIAN LEVELS

INTERSECTION = HAM-SANDWKH CUT

Algori thms

Algori thms

- O(N) for separa ted case [Megiddo 1985.]

Algori thms

- O(n) for separated case [Megiddo 1985.]

- O($\log n$ general case [Edelstorumer 8 Waupotitsch 1986.$]$

Algori thms

- O(n) for separated case [Megiddo 1985.]

- O($\log n$ general case [Edelstorumer 8 Waupotitsch 1986]
- O(n) general case [Lo8Steiger 1990]

ALGO I (DISCRETE)
IF n IS ODD THEN
L MUST TOUCH ONE RED AND ONE BLUE POUT.

$$
\Rightarrow \begin{aligned}
& \text { TRY EACH PAIR AND } \\
& \text { VERIFY } O\left(n^{3}\right)
\end{aligned}
$$

ALGO II SWEEP LINE
SWEEP THE PLANE (DUAL)
WITH A VERTICAL LINE L

ALGA II SWEEP LINE
STORE THE UPCOMING X EVENTS IN A HEAP

- GET NEXT EVENT
- slap lines in tree
- store next events IN HEAP

$$
\rightarrow O\left(n^{2} \log n\right)
$$

AlG III

- Construct red \& BLUE median levels
- Find their intersections

RED \& BLUE MEDIAN LEVELS

INTERSECTION \rightarrow = HAM-SANDWICH CUT

THEY INTERSECT AN ODD NUMBER OF TIMES! $(\Rightarrow>0)$

How BIG is THE
MEDIAN LEVEL?
$O\left(n^{3 / 2}\right)$ [ERDö's, Lovasz,
$\Omega(n \log n)$ SIMMONS, STRAUS 173]

$O\left(n^{4 / 3}\right)$ [DEY 197]
$n \cdot 2^{\Omega(\sqrt{\log n})}$ [DOTH 100]

ALG IV BINARY SEARCH

COUNTING INTERSECTIONS
 \# of INTERSECTIDNS = \#inversions \Rightarrow SORT \& COUNT $O(n \log n)$

COUNTING INTERSECTIONS

\# of INTERSECTIDNS
= \#inversions
\Rightarrow SORT \& COUNT $O(n \log n)$
NOTE: COUNTING
\Rightarrow PICKING AT RANDOM

ALG IV BINARY SEARCH

Eachstep: $O(n), O_{\log n} n$ steps $\left.\rightarrow O_{n} \log n\right)$

Faster?

Sample the vertices

$$
x \quad \times \quad x
$$

Sample the vertices

Good SLAB

THROW AWAY lines that DOU'T TOUCH
\square
$\Rightarrow \geqslant \frac{n}{3}$

Summary
(1) SAMPLE VERTICES $O(n)$
(2) FIND ODD SLAB OC)
(3) Throw away lines ouTside of $O(n)$
(4) RECURSE

$$
T(n) \leqslant \theta(n)+T\left(\frac{2 n}{3}\right)
$$

$$
\text { HS History }\left(R^{3}\right)
$$

- Posed by Steinhaus, problem 123 in "The Scottish Book":
"Is it always possible to bisect three solids, arbitrarily located, with the aid of an appropriate plane?"

The enclosed collection of mathematical problems has its origin in a notebook which was started in Lwow, in Poland in 1935. If I remember correctly, it was $\underline{S \text { Banach who suggested keeping track of some of the }}$ problems occupying the group of mathematicians there The mathematical life was very intense in Lwow Some of us met practically every day, informally in small groups, at all times of the day to discuss problems of common interest, communicating to each other the latest work and results. Apart from the more official meetings of the local sections of the Mathematical Society (which took place Saturday evenings, almost every week!), there were frequent informal discussions mostly held in one of the coffee houses located near the University building - one of them a coffee house named "Roma" and the other "The Scottish Coffee House". This explains the name of the collection. A large notebook was purchased by Banach and deposited with the headwaiter of the Scottish Coffee House, who, upon demand, would bring it out of some secure hiding place, leave it at the table, and after the guests departed, return it to its secret location. [...]

S. Ulam, 1958

$$
\text { HS History }\left(R^{3}\right)
$$

- Posed by Steinhaus, problem 123 in "The Scottish Book"
- Attributed to Uam by [Stone and Turkey 1942.]
HS History (R3)
- Posed by Steinhaus, problem 123 in "The Scot Pish Book"
- Attributed to Uam by [Stone and Turkey 1942]
- Proved by Banach, published in a note in Ma thesis Polka 19387 (in polish, translated in 2004)

A Note on the Ham Sandwich Theorem Hugo Steinhaus and others From Mathesis Polska XI, (1938), pp. 26-28.
HS History (R3)

- Posed by Steinhaus, problem 123 in "The Scottish Book"
- Proved by Banach, published in a no te in [M athesis Polska 1938] (in polish, translated in 2004)
- Generalized to Rd by [Stone and Turkey 1942]

Ham Sandwich for Measures
Given d nice measures $\mu_{1}, \mu_{2}, \ldots, \mu_{d} \mid \mathbb{R} \mathbb{R}^{d}$, There Exists a hyperplane h
So that

$$
\mu_{i}\left(H^{+}\right)=1 / 2 \mu_{i}\left(\mathbb{R}^{d}\right) \quad i=1,2, \ldots d
$$

Borsuk-Ulam Theorem
For every con tinuous mapping $f: S n \rightarrow R$, there exists a point $x \in \operatorname{Si}$ such that f $(x)=f(-x)$.

Conjectured by Clam, Proof by Borsuk, 1933

Borsuk-Ulam Theorem
For every continuous mapping $f: S \rightarrow R$, there exists a point $x \in \operatorname{Sin}$ such that $f(x)=f(-x)$.

For every con tiruous mapping $f: S \rightarrow R$, antipodal $(f(x)=f(-x))$ there exists a point $x \in S_{\text {such that }} f(x)=0$.

Proof of ham-Sandwich ThM

$$
f_{i}(u)=\mu_{i}\left(h^{+}(u)\right)
$$

if $f_{i}(u)=f_{i}(-u)$
$\Rightarrow h^{+}(u)$ Bisects μ_{i}

$$
f(u)=\left(f_{1}(v), f_{2}(v), \ldots, f_{d}(u)\right)
$$

$$
f: S^{d} \rightarrow \mathbb{R}^{d}
$$

Borsuk-ULAM \Rightarrow

$$
\exists u: f(u)=f(-U) \equiv \underset{\substack{\text { HAM-SANDWICH } \\ \text { CUT }}}{ }
$$

Ham Sandwich For Point Sets

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots, A_{d} \subseteq \mathbb{R}^{d} \cdot B_{1} \operatorname{sect} A_{i} \equiv \\
& \text { a } \\
& \leqslant\left\lfloor\frac{\left|A_{i}\right|}{2}\right\rfloor \\
& \text { OPEN } \\
& \text { halfspace } \\
& \text { - |Ai| ODD } \\
& \text { - General position } \\
& \text { = No } d+1 \text { Points on } \\
& \text { a hyperplane }
\end{aligned}
$$

Ham Sandwich For Point Sets

$$
A_{1}, A_{2}, \cdots, A_{d} \subseteq \mathbb{R}^{d}
$$

Ham Sandwich for Point Sets

$$
A_{1}, A_{2}, \cdots, A_{d} \subseteq \mathbb{R}^{d}
$$

© (0)
(0) (c)
(0) ©
©
(-) 0
(-) All d-Tuples are well separated
Then take limit $\varepsilon \rightarrow 0$
degenerate point sets

All well separated d-TUPLES stay well separated
Then snap back to original position
R^{3} and up

- [Lo Matousek Steiger 1994]

Same as median level construction in $R+1$
$O h^{43} \log n$) in R^{3}
$O\left({ }^{8 / 3-c)}\right.$ in R^{4}
$O_{n}^{d+1} d(d)$ in R^{d}

Well separated

- $S_{1}, S_{2}, \ldots, S_{d}$ are well separated of any subset of the Si can be separated from the others by a hyperplane
- $S_{1}, S_{2, \ldots,}, S_{d}$ are well separated iff the affine hull con taining one point in each set is a (d- 1)-flat

Well separated

- $S_{1}, S_{2}, \ldots, S_{d}$ are well separated iff any subset of the Si can be separated from the others by a hyperplane
- $S_{1}, S_{2}, \ldots, S_{d}$ are well separated then for any (a_{1}, \ldots, a_{d}), $0 \leq a_{d} \leq S_{d} d$, there is a hyperplane with a: points of S_{i} for all i [Barony, Hubbard, Jeronimo 2008]. [STeigen\&zhao 2009]

Well separated

Well separated

- O(n) in R3 [lo, Matousek, Steiger 1994]

Well sepanated

- O() in R3 [Lo, Matousek, Steiger 1994]
- On log dign) in Rd [Steigen8zhao 2009$]$

Partitions in to convex
sets

- Given ar red points an blue points, are there a disjoint convex polygons that each contain n red and m blue points? [Kaneko \& Kano 1999]

Care cutting

- Partition the surface and the prime ter of a polygon in to 3 equitable pieces. [Akiyama, Kaneko, Kano, Nakamura, Rivera-Campo, Tokunaga, Umutia 2000]

Partitions by 3 -fans

Partitions by 3-fans

- 3-fans for any 2 point sets [Bespamiatnikh, Kirkpatrick, Snoeyink 2000] [I to, Uehara, Yokoyama 2000] [Sakai 20027.

Partitions by 3 -fans

- 3-fans for any 2 point sets [Bespamiatnikh, Kirkpatrick, Snoeyink 2000] [I to, Uehara, Yokoyama 2000] [Sakai 20027.
- constrained 3-fans [Bespamiatnikh, Kirkpatrick 20037

$$
\text { Pantitions by } k \text {-fans }
$$

- [Barany 8 Ma tousek 2001.: ($\left.a_{1}, a_{2} . . ., a_{k}\right)$

	2 meas.	3 meas	4 meas
2 fan	aluavs	$(1 / 2,1 / 2)(2 / 3,1 / 13)$	$n o$
3 -fan	$(1 / 21 / 4,1 / 4)$	$n o$	$n o$
4 - $a n$	$(2 / 5,1 /, 1 / 1 / 1 / 5)$	$n o$	$n o$
conv. 4 - \tan	$n o$	$n o$	$n o$
5 - \tan	$n o$	$n o$	$n o$

- [Barany 8 Ma tousek 20027: 4-fan, 2 meas $(1 / 4,1 / 4,1 / 4,1 / 4)$
- [Bereg 2005.: 2fans for 3 meas in $O\left(n \log ^{2} n\right.$).

More partitions

- Equitable 4 -partition of n points by 2
 or thogonal lines.
- Equitable 6-partition of n points by 3 lines through 1 point [Buck8Buck 1987]
- Cobweb [Schuman 19927.
- On logn) algorithms TRoy 8 Steiger 2006.$]$

Applications

- dcolored sets in Ra [Akiyama 8 Alon 1989]
- Necklace thieves
necklace thieves

k KINDS OF BEADS CUT INTO HOW MANY PRES So Both Thees have SAME \# of EACH KIND
[GOLDBERG\& WEST 1985]
necklace thieves

SOMETIMES NEED k CUTS $\rightarrow R+1$ PI CBS

Moment Curve

$$
t \rightarrow\left(t, t^{2}, t^{3}, \cdots, t^{k}\right)
$$

in \mathbb{R}^{k}
any hyperplane
INTERSECTS IT $\leqslant k$ TIMES

Moment Curve in \mathbb{R}^{k} a $t \rightarrow\left(t, t^{2}, t^{3}, \cdots, t^{k}\right)$
(1)Wrap the necklace ON IT
(C) FIND ham-SANDWICH CUT [ALON]

Q: How To DECIDE IF a ham-SANDWICH CUT IS UNIQUE?

Q: How To DECIDE IF a ham-SANDWICH COT IS UNIQUE?

$$
O\left(x^{4 / 3} \log x\right)
$$

$\Omega(n \log n) \quad[C H I E N \& S T E / G E R / 95]$

WHS

But
What if I Really like sesame seeds?

But
What if I Really like sesame seeds?
\rightarrow PUT WEIGHTS ON THE POINTS

BUT
What if I Really like sesame seeds?
\rightarrow PUT WEIGHTS ON THE POINTS
What if I really don't like olives

BUT
What if I Really like sesame seeds?
\rightarrow PUT WEIGHTS ON THE POTS
What if I really don't like olives
\rightarrow The Weights can be negative.

RESULTS
ALGO: The weighted ham-SAndWich CUT OF n POiNTS IN \mathbb{R}^{2} CAN BE COMPUTED IN O($n \log n$)

Results
ALGO: THE WEIGHTED HMM-SANDWKCH CUT OF n POINTS IN \mathbb{R}^{2} CAN BE COMPUTED IN $O(n \log n)$

Th: DECIDING IF THE WEIGHTED HAM-SANDWICH COT IS UNIQUE IS 3 SUM -HARD

Definition:
a line l bisects a WEIGHTED SET OF PoINTS

$$
\left|w\left(L^{+} \cap S\right)-w(L \cap S)\right| \leqslant|W(L \cap S)|
$$

ID
THE WEIGHTED MEDIAN IS NOT UNIQUE

2-D: Median levels

2-D: Median levels

2-D: MEDIAN LEVELS

RED \& BLUE MEDIAN LEVELS

INTERSECTION

$$
=\text { HAM-SANDWICH CUT }
$$

\# OF INTERSECTIONS

LEMMA THE PARITY OF THE NUMBER OF INTERSECTIONS = THE PARITY OF $x_{2}+x_{4}+x_{6}+x_{8}+\cdots$
\# OF INTERSECTIONS

Lemma. The parity of
THE NUMBER OF INTERSECTIONS
$=$ THE PARITY OF $x_{2}+x_{4}+x_{6}+x_{8}+\cdots$
$\Rightarrow O(n \log n) A L G O!$

PRUNING
(1) Compute a 4-partition OF THE LINES

PRUNING
(1) COMPUTE A 4-PARTITION OF THE LINES

(2) DECIDE WHICH QUARTER CONTAINS A HTS CUT
(3) REMOVE $1 / 4$ OF TIE LINES

Not intersecting that quarter

PRUNING
(1) COMPUTE A 4-PARTITION OF THE LINES

(2) DECIDE WHICH QUARTER CONTAINS A HS CUT
(3) Remove $1 / 4$ of THE LINES

Not intersecting that quarter
$\Rightarrow O(n \log n)$ ALGO!

TM: DECIDING IF THE WEIGHTED HAM-SANDWICH COT IS UNIQUE IS 3 SUM -HARD

Friday 16 December 11

Geodesic

Geodesic Ham sandwich
Theorem:

Given blue and red points inside a polygon, there is a geodesic shortest path that bisects both simut aneously.
Can be found in $O(n \log k)$
$n=$ \# of points + vertices, $k=$ \# of reflex vertices [Bose, Demaine, Erickson, Her tado, Iacono, Langerman, Meijer, Morin, Overmars, Whitesides 20037

Partitioning with hyperplanes

- Can we partition Rd into gd regions with il 2^{d} points with a hyperplanes?
[Grunbaum 1960s.]
- Motivation.

Partitioning with hyperplanes

Partitioning with hyperplanes

- $R^{t} \rightarrow$ Easy

Partitioning with hyperplanes

- RI \rightarrow Easy
- R2: Yes (ham-sandwich cut) Algorithmic problem posed by [Willard 19827, solved On) by [Megiddo 1985.

Partitioning with hyperplanes

- R1 \rightarrow Easy
- R2: Yes (ham-sandwich cut) Algorithmic problem posed by [Wiland 19827, solved O(n) by [Megiddo 1985.].
- R?: Yes [Yao, Dobkin, Edelstrumer, Paterson 19897. On $n^{6} \log n$).

Partitioning with hyperplanes

- $R^{4} \rightarrow$ OPEN II
- RT:NOII

Moment Curve

$$
t \rightarrow\left(t, t^{2}, t^{3}, \cdots, t^{k}\right)
$$

in \mathbb{R}^{k}
any hyperplane INTERSECTS IT $\leqslant k$ TIMES

So khyperplanes intersect it $\leq k^{2}$ times \rightarrow at most $k^{2}+1$ regions have points [Avis 1984].

Part. wi hyperplanes

Part. wi hyperplanes

- What is the smallest dimension d($(, k)$ such that j distributions can be equipartitioned by k hyperplanes?

Part. wi hyperplanes

- What is the smallest dimension d($(, k)$ such that j distributions can be equipartitioned by k hyperplanes?
- $d(k, 1)=k$ (Ham-sandwich ohm)

Part. wi hyperplanes

- What is the smallest dimension d($(, k)$ such that j distributions can be equipartitioned by k hyperplanes?
- $d(k, 1)=k$ (Ham-sandwich ohm)
- $d(1,2)=2, d(1,3)=3, d(1,5)>5$

Part. wi hyperplanes

- What is the smallest dimension d($(, k)$ such that j distributions can be equipartitioned by k hyperplanes?
- $d(k, 1)=k$ (Ham-sandwich ohm)
- $d(1,2)=2, d(1,3)=3, d(1,5)>5$
- $d(2,2)=3$ [Edelstoruner 1986.].

Part. wi hyperplanes

- What is the smallest dimension d($j, k)$ such that j distributions can be equipartitioned by k hyperplanes?
- $d(k, 1)=k$ (Ham-sandwich ohm)
- $d(1,2)=2, d(1,3)=3, d(1,5)>5$
- $d(2,2)=3$ [Edelstoruner 1986.].
- $j 2^{k-1} \geq d(j, k) \geq j\left(2^{k}-1\right) / k[R a m o s 1996]$.

Partitioning with points
$\frac{\text { CENTER POINT }}{n \text { POINTS } P \subseteq \mathbb{R}^{2}}$
$\left[\frac{\text { CENTER POINT }}{n \text { POINTS } P \subseteq \mathbb{R}^{2}}\right.$

Central transversal tho

- For any $k+1$ mass distributions in $R d$ there exists a k-flat s.t. any hyperplane containing f has $>1 /\left(d-k _1\right)$ of the $i^{\text {th }}$ mass on each side.
[Dolnikor 1992]
[Zivaljevic8Vrecica 1990]

Arangements

Arrangements

- $S=S$ Set of curves (2D) or surfaces (3D) (Here: $S=$ lines, planes or hyperplanes)
- Arrangement $A(S)=$ Decomposition of space Rd in to comic ted cells of Rd -S

Line arrangement

Algorithm: Linesweep

Vertices, Edges, Faces

Envelopes

Zone

Zone

Zone: Algorithm?

Amangement: algorithm

How big is the median level ($=(n / 2)$-level)?

How Big is THE
MEDIAN LEVEL?
$O\left(n^{3 / 2}\right)$
[ERDớs, Lovasz,
$\Omega(n \log n)$
SIMMONS, STRAOS 173]

How BIG is THE
MEDIAN LEVEL?
$O\left(n^{3 / 2}\right)$ [ERDÓs, Lovasz,
$\Omega(n \log n)$ SIMMONS, STRAOS 173]

$$
O\left(\frac{n 3 / 2}{\log ^{*} n}\right) \underset{\substack{[P A C H, S T E I G E R, \\ \text { SZEMERED1 }}}{[89]}
$$

$$
\left.\begin{array}{l}
\text { HOw BIG IS THE } \\
\hline \text { MEDIAN LEVEL? } \\
O\left(n^{3 / 2}\right) \\
\Omega(n \log n) \text { SERDÖ'S, LOVASZ, } \\
O\left(n^{3 / 2} / \log ^{*} n\right)
\end{array} \begin{array}{c}
\text { [PACH, STEIGER, SZEMEREDI } 189]
\end{array}\right] \begin{aligned}
& \text { STRAUS 73] } \\
& O\left(n^{4 / 3}\right) \\
& \text { [DEY 197] }
\end{aligned}
$$

How BIG is THE
MEDIAN LEVEL?
$O\left(n^{3 / 2}\right)$ [ERDö's, Lovasz,
$\Omega(n \log n)$ SIMMONS, STRAUS 173]

$O\left(n^{4 / 3}\right)$ [DEY 197]
$n \cdot 2^{\Omega(\sqrt{\log n})}$ [DOTH 100]

Monotone paths

- How long can they be?

Monotone paths

- How long can they be?
$\Omega\left(n^{3 / 2}\right) \quad$ [Shan ir <1987].
$\Omega\left(n^{5 / 3}\right) \quad$ Matousek 1991]
$\Omega\left(n^{7 / 4}\right) \quad$ [Radoicic and To th 2001]

- How long can they be? $\Omega\left(n^{2-(d / \sqrt{\log n)}}\right)$
[Balogh, Smyth, Steiger, Szeged 2004]

\vdots
P_{3}

Slope selection
n points in the plane \rightarrow On) different slopes Select the $k^{\text {th }}$ smallest.

Thiel-Sen regression estimator

n lines in the plane $\rightarrow O\left(n^{2}\right)$ different vertices Select the one with the $k^{\text {th }}$ smallest x-coordinate

Vertex counting/ranking

Cant the number of vertices with x-coordinate $<x_{0}$

Vertex counting/ranking

Vertex counting/ranking

Vertex counting/ranking

Binary search

Binary search

Friday 16 December 11

- Pick a vertex at random
- Rank the vertex (Ω

Binary search

Binary search

- Pick a ver tex at random

Friday 16 December 11

Simony seonch

- Pick a vertex at random
- Rank the vertex (r)
- If $r=k$, done! if $r>k$, recourse left, if rokrecurse right

Binary search

Expected O(ogn) recursion steps
\rightarrow On $\log ^{2} n$ expected time

Binary search

Expected O(ogn) recursion steps
\rightarrow On $\log ^{2} n$ expected time

Binary search

- Pick a vertex at random inside the active slab On $\log n$

Expected $O(\log n)$ recursion steps
$\rightarrow O\left(n \log ^{2} n\right)$ expect ted time

Binary search

- Pick a vertex at random inside the active slat On $\log n$
- Rank the vertex (r) On log)

Expected O(ogn) recursion steps
\rightarrow On $\log ^{2} n$) expected time

Binary search

- Pick a vertex at random inside the active slat $\left.O_{n} \log n\right)$
- Rank the vertex (r) On $\log n$
- If $r=k$, done! if rok, recourse left, if re recurseright Expected O(logn) recursion steps $\rightarrow O\left(n \log ^{2} n\right)$ expect ted time
Deterministic?

Use Megiddo's parame tric search to transform ranking to selection:
run the ranking algorithm at $x=x^{*}$

Comparison

Running ranking at $x=x^{*}$

- Each comparison = ranking $O_{n} \log n$
- Ranking at $x=x^{*}$ uses $\left.O_{n} \log n\right)$ comparisons so $O\left(n^{2} \log ^{2} n\right)$
- Too much li But.

Rank/Sort using parallel sorting ne twork

Each processor does one comparison = is $x_{i j}$ left of x^{*} ?

Look a the firs t level

Each processor does one comparison $=$ is xu left of x ?

Sort the x_{i} :
$x_{0}<x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<\ldots<x_{n}$

Look at the firs t level

Each processor does one comparison $=$ is x_{j} left of x^{*} ?
Sort the $x_{i=1}$

$$
x_{0}<x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<\ldots<x_{n}
$$

Can answer half of them with one ranking

Look at the first level On) processors

Each processor does one comparison = is $x_{i j}$ left of x^{*} ?

Can answer half of them with one ranking Ologn) rankings for one level
O(ogn n levels $\rightarrow O\left(n \log ^{3} n\right)$
Can be improved to $O(n \log n)$
[Cole Salowe Steiger Szemeredi 1989]

Fast and easy?

More tools
$\boldsymbol{\varepsilon}$-Nets

- SetS of n points
- Family $R=$ all subsets of S that are contained in some disk
- $N \subseteq S$ is an $\boldsymbol{\varepsilon}$-net for (S, R) if every set in R that contains more than $\varepsilon \cap$ points contains a witness in N
$\boldsymbol{\varepsilon}$-Nets
- Sets of n points
- Family $R=$ al subsets of S that are contained in some disk
- $N \subseteq S$ is an $\boldsymbol{\varepsilon}$ net for (S, R) if every set in R that contains more than $\varepsilon \cap$ points contains a witness in N
- Tho: $\boldsymbol{\varepsilon}$-nets of size $O((1 / \varepsilon \log (1 / \varepsilon))$ always exist

$$
\boldsymbol{\varepsilon} \text { - Nets }
$$

- Sets of n points
- Family $R=$ all subsets of S that are contained in some halfplane
- $N \subseteq S$ is an $\boldsymbol{\varepsilon}$ net for (S, R) if every set in R that contains more than $\varepsilon \cap$ points contains a witness in N
- The: $\boldsymbol{\varepsilon}$-nets of size $O((1 / \varepsilon$ log $(1 / \varepsilon))$ always exist

$$
\boldsymbol{\varepsilon} \text { - Nets }
$$

- SetS of nines in R2
- Family $R=$ al subsets of S that intersect some segment
- $N \subseteq S$ is an $\boldsymbol{\varepsilon}$-net for (S, R) if every set in R that contains more than $\varepsilon \cap$ lines contains a witness in N
- Tho: $\boldsymbol{\varepsilon}$-nets of size $O((1 / \varepsilon \log (1 / \varepsilon))$ always exist

$$
\boldsymbol{\varepsilon} \text { - Nets }
$$

- SetS of hyperplanes in Rd
- Family $R=$ all subsets of S that intersect some simplex
- $N \subseteq S$ is an $\boldsymbol{\varepsilon}$-net for (S, R) if every set in R that contains more than ε n hyperplanes con rains a witness in N
- Thu: $\boldsymbol{\varepsilon}$-nets of size $O((d / \varepsilon \log (d / \varepsilon))$ always exist

$$
\boldsymbol{\varepsilon} \text { - Nets }
$$

- SetS of n elements
- Family $R=$ subsets of S of finite VC-Dimensiond
- $N \subseteq S$ is an $\boldsymbol{\varepsilon}$ net for (S, R) if every set in R that contains more than $\varepsilon \cap$ elements contains a witness in N
- Thu: $\boldsymbol{\varepsilon}$-nets of size $O((d / \varepsilon \log (d / \varepsilon))$ always exist

Questions

- What is the best partition of n lines by 3 lines? 4? ...
- For red and blue sets of points, caracterize the ($(, t)$ for which then is a line with r red points and bt blue points above.
- Ham-sandwich cuts in a plane with 2 speeds.
- How many measures can we split with a triangle, etc...

