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Those ubiquitous cut polyhedra
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August 3, 1975: Oakland Stadium
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Meanwhile at San Francisco airport...
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Meanwhile at San Francisco airport...

Photo: Adrian Bondy
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Geometry of Cuts and Metrics

about:blank

Michel Deza Monique Laurent

and a book ......




Equidistant points in L,
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Equidistant points in L,

e Easy question: How many Ly-equidistant points are there in
R™?



Outline Backdrop Li-embedding Hypercubes Correlations Cut Polytope Quantum correlations Mining

Equidistant points in L,

e Easy question: How many Ly-equidistant points are there in
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Equidistant points in L,

e Easy question: How many Ly-equidistant points are there in
R™?

e Answer: n+1

e Hard question: How many pairs of unit L,-distances can a
planar set of n points have?

Mining
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Equidistant points in L,

e Easy question: How many Ly-equidistant points are there in
R™?
Answer: n+1

Hard question: How many pairs of unit L,-distances can a
planar set of n points have?

Answer: Erdos knows now, but he is not telling ......

Mining
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Equidistant points in L,

e Easy question: How many Ly-equidistant points are there in
R™?

Answer: n+1

Hard question: How many pairs of unit L,-distances can a
planar set of n points have?

Answer: Erdos knows now, but he is not telling ......
How about L17?

Mining



Outline Backdrop L;-embedding Hypercubes Correlations Cut Polytope Quantum correlations

Three equidistant points: L; vs Ly
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Four equidistant points: L; vs L,
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From: Fichet (DAM,2008)
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The equilateral problem in L;

Let e(L]) = maximum number of L;-equidistant points in R".
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Let e(L]) = maximum number of L;-equidistant points in R".

o Kusner's Conjecture(1983): e(L]) =2n
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The equilateral problem in L;

Let e(L]) = maximum number of L;-equidistant points in R".
o Kusner's Conjecture(1983): e(L]) =2n

e H.-J. Bandelt, V. Chepoi and M. Laurent (1998):
True for d =3

Mining
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The equilateral problem in L;

Let e(L]) = maximum number of L;-equidistant points in R".

o Kusner's Conjecture(1983): e(L]) =2n
e H.-J. Bandelt, V. Chepoi and M. Laurent (1998):
True for d =3

e J. Koolen, M. Laurent and A. Schrijver (2000):
True for d =4
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The equilateral problem in L;

Let e(L]) = maximum number of L;-equidistant points in R".

o Kusner's Conjecture(1983): e(L]) =2n
e H.-J. Bandelt, V. Chepoi and M. Laurent (1998):

True ford =3
e J. Koolen, M. Laurent and A. Schrijver (2000):
True for d =4

e N. Alon and P. Pudldk (2003):
e(L]) = O(nlogn)
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Embedding problems

e A distance is a non-negative vector d = (djj),1 < i <j<n.
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Embedding problems

e A distance is a non-negative vector d = (djj),1 < i <j<n.

e dis L,-embeddable if 3 ut u?, ., u" € R™ st

dj=|lu' —|p, 1<i<j<n
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Embedding problems

e A distance is a non-negative vector d = (djj),1 < i <j<n.
e dis L,-embeddable if 3 ut u?, ., u" € R™ st

dj=|lu' —|p, 1<i<j<n

e We are concerned with exact embedding for p = 1,2
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Embedding problems

d is L,-embeddable if 3 ut u?, ., u" € R™ st
dj=|lu' —|p, 1<i<j<n

e We are concerned with exact embedding for p = 1,2
Which distances are Lp-embeddable?

A distance is a non-negative vector d = (dj;),1 < i <j<n.

Mining
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Four equidistant points: L; vs L,

% 2 y.z ¥
(a) o = (0,0,0) v = (1,0,0) o = (£,*2,0) u* = (4, 555, /2)
(b) Ui = (—%,0) ui = (%a?) U3 :3 (05 %1) U41: (?a_%) 11
(C) u = (07070) u = (57570) u = (57075) u = (07575)
(d) ul = (7%7070) U2 = (%77%70) u3 = (%705 %) b= (057%3 %)

Mining
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Hypercube embedding

e d is h-embeddable if 3 vertices u?, v?, ..., u" of a unit

hypercube H,, s.t. djj is the Hamming distance from u'to .
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Hypercube embedding

e d is h-embeddable if 3 vertices u?, v?, ..., u" of a unit

hypercube H,, s.t. djj is the Hamming distance from u'to .
e dis h-embeddable if 3 u!, v?,...,u" € 0,17 s.t.

di=|u' =], 1<i<j<n
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Hypercube embedding

e d is h-embeddable if 3 vertices u?, v?, ..., u" of a unit
hypercube H,, s.t. djj is the Hamming distance from u' to /.

e dis h-embeddable if 3 u!, v?,...,u" € 0,17 s.t.
di=|u' =], 1<i<j<n

e d is h-embeddable = d is L1-embeddable.
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Hypercube embedding

d is h-embeddable if 3 vertices u', 12, ..., u" of a unit
hypercube H,, s.t. djj is the Hamming distance from u' to /.

d is h-embeddable if 3 u!, v?,...,u" € 0,1™ s.t.

di=|u' =], 1<i<j<n

d is h-embeddable = d is L1-embeddable.

A rational d is L1-embeddable = kd is h-embeddable for
some integer k.
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Testing h-embeddability: complexity

e In P if d is a graph metric. [Dj73]
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Testing h-embeddability: complexity

e In P if d is a graph metric. [Dj73]
e NP-complete if djj € {2,3,4,6} [Ch80]
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Testing h-embeddability: complexity

e In P if d is a graph metric. [Dj73]
e NP-complete if djj € {2,3,4,6} [Ch80]
e In Pif dj € {1,2,3} [Av90]
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e In P if d is a graph metric. [Dj73]

e NP-complete if djj € {2,3,4,6} [Ch80]

e In Pif dj € {1,2,3} [Av90]

e In Pif dj € {x,y,x+ y} where only one of x,y is odd. [La93]

Mining
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Testing h-embeddability: complexity

In P if d is a graph metric. [Dj73]

NP-complete if djj € {2,3,4,6} [Ch80]

In Pif dj € {1,2,3} [Av90]

In P if dj € {x,y,x + y} where only one of x, y is odd. [La93]

(curve ball)
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Testing h-embeddability: complexity

In P if d is a graph metric. [Dj73]

NP-complete if djj € {2,3,4,6} [Ch80]

In Pif dj € {1,2,3} [Av90]

In P if dj € {x,y,x + y} where only one of x, y is odd. [La93]

(curve ball)
Is testing h-embeddability in NP?
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Hypercube embedding and symmetric differences

e The following two statements are equivalent for a distance d
on n points:
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Hypercube embedding and symmetric differences

e The following two statements are equivalent for a distance d
on n points:

e d is h-embeddable to vertices u!

2 n
,us, ..., u™ of Hp,
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Hypercube embedding and symmetric differences

e The following two statements are equivalent for a distance d

on n points:

e d is h-embeddable to vertices u', u?, ..., u" of Hp,

e 3 A1, A ..., An C{1,2,....m} s.t.
dij = |AiAAj]|

where A is symmetric difference.

Mining
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Hypercube embedding and symmetric differences

The following two statements are equivalent for a distance d

on n points:

d is h-embeddable to vertices ul

dA;1,A, .. A, C {1,2, ooy m} s.t.

2 n
,us, ..., u™ of Hp,

dij = |AILA;|

where A is symmetric difference.
Proof:

Mining
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Hypercube embedding and symmetric differences

e The following two statements are equivalent for a distance d
on n points:
e d is h-embeddable to vertices u', u?, ..., u" of Hp,
e 3 A1, A ..., An C{1,2,....m} s.t.
dj = |[AiAA;]
where A is symmetric difference.
e Proof:
e Ul =1&keA, k=1,..m i=1,..n

Mining
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(anti)-Correlations

e Let A, B, C,... be events in a probability space.
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e Let A, B, C,... be events in a probability space.
e AAB is the event that exactly one of A and B occurs.
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(anti)-Correlations

e Let A, B, C,... be events in a probability space.
e AAB is the event that exactly one of A and B occurs.
e Pr(AAB) < Pr(AAC) + Pr(BAC)
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(anti)-Correlations

Let A, B, C, ... be events in a probability space.

AAB is the event that exactly one of A and B occurs.
Pr(AAB) < Pr(AAC) + Pr(BAC)

Proof:
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(anti)-Correlations

Let A, B, C, ... be events in a probability space.

AAB is the event that exactly one of A and B occurs.
Pr(AAB) < Pr(AAC) + Pr(BAC)

Proof:
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MenOnline.com

KKK Dating claims to supply the following men:

e 90% are either rich or university educated,
e 50% are either rich or tall,
e 35% are either tall or university educated,

Mining



Correlations

MenOnline.com

KKK Dating claims to supply the following men:

e 90% are either rich or university educated,
e 50% are either rich or tall,
e 35% are either tall or university educated,

Alice doubts this, since if
A={rich}, B={univ. edu.}, C={tall}

Pr(AAB) = .9 > .85 = Pr(AAC) + Pr(BAC)
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MenOnline.com

e KKK Dating claims to supply men with these properties:

tall, handsome, rich, strong, intelligent
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MenOnline.com

e KKK Dating claims to supply men with these properties:
tall, handsome, rich, strong, intelligent

e They claim that for every pair of properties, at least 62.5% of
the men have exactly one the properties.
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MenOnline.com

e KKK Dating claims to supply men with these properties:
tall, handsome, rich, strong, intelligent
e They claim that for every pair of properties, at least 62.5% of
the men have exactly one the properties.

e For 4 properties tall, handsome, rich, strong it is possible:
B = {tall,strong}, D = {tall,handsome},
J = {strong,handsome}
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MenOnline.com

e KKK Dating claims to supply men with these properties:
tall, handsome, rich, strong, intelligent
e They claim that for every pair of properties, at least 62.5% of
the men have exactly one the properties.
e For 4 properties tall, handsome, rich, strong it is possible:
B = {tall,strong}, D = {tall,handsome},
J = {strong,handsome}
e For each pair of properties, two of the three have exactly one

of them.
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MenOnline.com

e KKK Dating claims to supply men with these properties:
tall, handsome, rich, strong, intelligent
e They claim that for every pair of properties, at least 62.5% of
the men have exactly one the properties.

e For 4 properties tall, handsome, rich, strong it is possible:
B = {tall,strong}, D = {tall,handsome},
J = {strong,handsome}

e For each pair of properties, two of the three have exactly one
of them.

e For 5 properties Alice has doubts...
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Correlations

o Let Aj,..., A, be events in a joint probability space.
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o Let Aj,..., A, be events in a joint probability space.
e Define x; = Pr(AiAAj), 1<i<j<n
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Correlations

o Let Aj,..., A, be events in a joint probability space.

e Define x; = Pr(AiAAj), 1<i<j<n

e Problem: Characterize vectors x = (x;;) for which there
exists a joint probability space.

Mining
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Correlations

Let A1,..., A, be events in a joint probability space.
Define xjj = Pr(AiAA;), 1<i<j<n

Problem: Characterize vectors x = (x;;) for which there
exists a joint probability space.

Answer: Cut polytope (Av77)
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Cut Polytope: definition

e Let S C{1,...,n} and @& denote exclusive or.
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Cut Polytope: definition

e Let S C{1,...,n} and @& denote exclusive or.
e Define

; 1<i<j<n

S {1 i®jeS

X.. = .
0 otherwise

Mining



Outline Backdrop Li-embedding Hypercubes Correlations Cut Polytope Quantum correlations

Cut Polytope: definition
e Let S C{1,...,n} and @& denote exclusive or.
e Define

S 1 i®eje$ . .
2 — < <
Xij { 0 otherwise l<i<js<n

e x° is the edge-incidence vector of the cut [S,V — S] in K.

Mining
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Cut Polytope: definition

Let S C {1,...,n} and @& denote exclusive or.
Define

S 1 i®eje$

u { 0 otherwise - =

x° is the edge-incidence vector of the cut [S, V — S] in K,,.

The cut polytope is

Cut,= CH{x*:SC{1,...,n—1}}

Mining
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Cut Polytope: definition

Let S C {1,...,n} and @& denote exclusive or.

Define

S 1 i®eje$

u { 0 otherwise - =

x° is the edge-incidence vector of the cut [S, V — S] in K,,.

The cut polytope is

Cut,= CH{x*:SC{1,...,n—1}}

Membership test is NP-complete (Av & De 91)

Mining
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Cut Polytope and correlations

o Let S C {A,...,A,} be a deterministic outcome.
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Cut Polytope and correlations

o Let S C {A,...,A,} be a deterministic outcome.

e Define

1 A,‘AAJ' €S . .
< <
0 otherwise l<i<jsn

x; = Pr(AiNA)) = {

Mining
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Cut Polytope and correlations

o Let S C {A,...,A,} be a deterministic outcome.

e Define

1 A,‘AAJ' )

) 1<i<j<n
0 otherwise - J =

x; = Pr(AiNA)) = {

e A joint probability space is just a probabilistic mixture of
deterministic outcomes.
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Cut Polytope and correlations
o Let S C {A,...,A,} be a deterministic outcome.

Define

1 A,‘AAJ' €S . .
< <
0 otherwise l<i<jsn

x; = Pr(AiNA)) = {

A joint probability space is just a probabilistic mixture of
deterministic outcomes.

Let ps be the probability that S occurs.

Mining



Cut Polytope

Cut Polytope and correlations

Let S C {A1,...,A,} be a deterministic outcome.
Define

1 A,‘AAJ' )

) 1<i<j<n
0 otherwise - J =

x; = Pr(AiNA)) = {

A joint probability space is just a probabilistic mixture of
deterministic outcomes.

Let ps be the probability that S occurs.

So the set of all probabilistic outcomes is

{ZpsxS:Zpsz L, ps 20} = CUT,.
S

S



Cut Polytope

Cutz and correlations

X12 — X13 — X23 =
PI’(A1AA2) Pr(A1AA3) Pr(AgAA3)
Events | {5}
@ or Al, /A27 A3} 0 0 0
A1 or [AQ, A3 1 1 0
A} or /41,/\3W 1 0 1
Az} or {A1, Ay 0 1 1
{Ar} 5 110
{events}
X12' X13'X23

x € CUT3 <= A, Ay, Az have joint distribution x
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Some facets of Cut,

e Triangle inequalities:

x12 < X13 + X23 X12 + x13 + X3 < 2
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Some facets of Cut,

e Triangle inequalities:

x12 < X13 + X23 X12 + x13 + X3 < 2
e Pentagon inequality:

Z X,'J'§6

1<i<j<5

Mining
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Some facets of Cut,

e Triangle inequalities:

x12 < X13 + X23 X12 + x13 + X3 < 2

e Pentagon inequality:

Z X,'J'§6

1<i<j<5

e Setting x;; = .625 violates the pentagon inequality ...

Mining
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Some facets of Cut,

Triangle inequalities:

x12 < X13 + X23 X12 + x13 + X3 < 2

Pentagon inequality:

Z X,'J'§6

1<i<j<5

Setting xj; = .625 violates the pentagon inequality ...

. so Alice was right!

Mining



Outline Backdrop Li-embedding Hypercubes Correlations Cut Polytope Quantum correlations Mining

L; embedding and the Cut cone CUT,
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L; embedding and the Cut cone CUT,

e CUT, is the cone defined by non-negative combinations of cut
vectors
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L; embedding and the Cut cone CUT,

e CUT, is the cone defined by non-negative combinations of cut
vectors

e (Switching) The vertex figure at each vertex of Cut, is
identical to CUT,
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L; embedding and the Cut cone CUT,

e CUT, is the cone defined by non-negative combinations of cut
vectors

e (Switching) The vertex figure at each vertex of Cut, is
identical to CUT,

e x € CUT, & x is Li-embeddable (As77)
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Quantum correlations

EPR, Bell & Aspect: The Original References http:/www.drchinese.com/David/EPR_Bell_Aspect.htm

EPR, Bell & Aspect: The Original References

1. A. Einstein, B. Podolsky, N. Rosen:

"Can quantum-mechanical description of physical reality be considered

complete?"

Physical Review 41, 777 (15 May 1935).

2.7].S. Bell:

"On the Einstein Podolsky Rosen paradox"

Physics 1 #3, 195 (1964).

3. A. Aspect, Dalibard, G. Roger:

"Experimental test of Bell's inequalities using time-varying analyzers"

Physical Review Letters 49 #25, 1804 (20 Dec 1982).
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Quantum correlations

e |ts another long story but.....
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Quantum correlations

e lts another long story but.....

e ... the cut polytope models what correlations are possible in
classical physics.
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Quantum correlations

e lts another long story but.....

e ... the cut polytope models what correlations are possible in
classical physics.

e In a quantum world you can stray outside the cut polytope

Mining



Quantum correlations

Quantum correlations

Its another long story but.....

... the cut polytope models what correlations are possible in
classical physics.
In a quantum world you can stray outside the cut polytope

... there can be 62.5% of quantum men with exactly one of
each pair of five properties!
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The Classical and Quantum Regions

Plot of x;j = Pr(A;AB;), 1<1i,j <2 with Ay = Bs.

B1

Quantum outcomes (elliptope) in grey.
Classical outcomes (cut polytope) in red.

Mining



Open pit mining

«O> < Fr «E=>»

«E>

DA
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Open pit mining

e Yet another long story so ...
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Open pit mining

e Yet another long story so ...

e ... please read Conor’s thesis!



Open question

«O> < Fr «E=>»

«E>

DA
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Open question

e A pit is convex if whenever blocks a and b are mined, all
blocks directly between them are also mined.
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Open question

e A pit is convex if whenever blocks a and b are mined, all
blocks directly between them are also mined.

e What is the complexity of finding the maximum value convex
pit?
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