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Is the sieve of Eratosthenes efficient?

Here is a discussion of this question, given as an exercise on April 14. The sieve method is as
follows :

Algorithm 1

Input : n (positive integer)
Output : all primes up to n

1: Make a list 1, 2, . . . , n
2: Delete 1
3: Set a be the next number prime
4: Delete all multiples of a

5: Continue 3 − 4 until a =
√

n

We focus on two problems to discuss the efficiency of Algorithm 1.

Problem 1. Is n a prime number ? Yes or No ?

Problem 2. Generate a list of all primes less than n

Now, we will estimate the running time of the sieve. Consider a simple implementation when
n = 400. We proceed as follows:

1. Make a list 1, 2, · · · , n time · · · n

2. Delete multiples of 2 time · · · n
2

3. Delete multiples of 3 time · · · n
3

4. Delete multiples of 5 time · · · n
5

· · · · · ·

9. Delete multiples of 19 time · · · n
19

In this case, the number of iterations for loop is 8. In general, this will be the number of primes
≤

√
n.

In general

f(n) = the number of primes ≤ n

total number of steps = number of steps per iteration ∗ number of iterations ∼ nf(
√

n)
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The number of primes is estimated by the following famous result, known as the prime number
theorem. For more information, please consult the corresponding wiki page.

f(n) ∼
n

log n

(Note: Throughout this note we take all logarithms to base 10. Logarithms to different bases differ
only by a constant factor.) This result is very important for cryptography since it means that there
are lots of primes. We note that N = log n is the number of digits in n. If we choose a number at
random in the range 1, 2, · · · , n, the probability that it is prime is about f(n)

n
= 1

log n
= 1

N
. So, if

we want a 200 digits prime and guess one at random, then 1
200 is roughly the probability that it is

prime. If you choose 300 − 400 numbers, you almost surely get a prime.
Now, we come back to the discussion of the running time of the sieve. From the above discussion

we see that Algorithm 1 has running time upper bounded by:

nf(
√

n) ≤ n · n
1

2 ∼ n
3

2

We are ready to answer the question ”Is the sieve efficient?” In general, we say that an algorithm
is efficient when the running time of it is polynomial in the size of input and output. The input
size of the sieve is the number of digits in n, so it is N = log n(n = 10N ). The size of output is

constant in Problem 1 and is the number of primes ≤ n (∼ n
log n

= 10N

N
) in Problem 2. The running

time of the sieve is n
3

2 = 10
3N

2 . Thus, the time complexity of these two problems is as follows.

For Problem 1 : Input size = N, the run time is 10
3N

2 . It is inefficient.

For Problem 2 : Output size = M =
10N

N
,

the run time is about M
3

2 which is polynomial in the output size, so it is efficient.
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