Modelling and Optimization: All Meals for a Dollar

June 16, 2010

Introduction

Linear Programming

Vertex enumeration

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.
- The decisions are modelled as decision variables

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.
- The decisions are modelled as decision variables
- The constraints and the objective are stated in terms of the decision variables

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.
- The decisions are modelled as decision variables
- The constraints and the objective are stated in terms of the decision variables
- If the constraints and objective are linear functions, it is called a linear program

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.
- Decison variables: How much of each product you will buy.

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.
- Decison variables: How much of each product you will buy.
- Constraints: There are minimum daily requirements for calories, vitamins, calcium, etc. There is a maximum amount of each food you can eat.

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.
- Decison variables: How much of each product you will buy.
- Constraints: There are minimum daily requirements for calories, vitamins, calcium, etc. There is a maximum amount of each food you can eat.
- Objective Eat for less than $\$ 1$.

Sample data

Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price (cents)	Max Serv.	
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Whole Milk	237 cc	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

The decision variables are $x_{1}, x_{2}, \ldots, x_{6}$.
Fractional servings are allowed.
From Linear Programming , V. Chvátal, 1983

Linear programming formulation for diet problem

$$
\begin{array}{|ccl}
\operatorname{minimize} & 3 x_{1}+24 x_{2}+13 x_{3}+9 x_{4}+20 x_{5}+19 x_{6} & \\
\text { subject to } & 0 \leq x_{1} \leq 4 \\
0 \leq x_{2} \leq 3 \\
0 \leq x_{3} \leq 2 \\
0 \leq x_{4} \leq 8 \\
0 & \leq x_{5} \leq 2 \\
0 & \leq x_{6} \leq 2 & \\
& & \\
110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} & \geq 2000 \\
4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} & \geq 55 \\
2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} & \geq 800
\end{array}
$$

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price (cents)
x_{1}	Oatmeal	28 g	110	4	2	3
x_{2}	Chicken	100 g	205	32	12	24
x_{3}	Eggs	2 large	160	13	54	13
x_{4}	Whole Milk	237 cc	160	8	285	9
x_{5}	Cherry Pie	170 g	420	4	22	20
x_{6}	Pork w. beans	260 g	260	14	80	19
	Min. Daily Amt.		2000	55	800	

General linear programming problem

$$
\begin{aligned}
& \max z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n} \leq b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ are the decision variables

General linear programming problem

$$
\begin{array}{r}
\max z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
\text { s.t. } \quad a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} \leq b_{2} \\
\ldots \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n} \leq b_{m} \\
x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{array}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ are the decision variables
- $c_{1}, c_{2}, \ldots, c_{n}, b_{1}, b_{2}, \ldots, b_{m}$ and $a_{11}, \ldots, a_{i j}, \ldots, a_{m n}$ are input data

Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.

Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.
- "In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry..."

Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.
- "In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry..."
- It gave rise to the field of Operations Research (OR).

Operations Research faculty at Stanford (1969)

George Dantzig is on the far left, then Alan Manne, Frederick Hillier, Donald Iglehart, Arthur Veinott Jr., Rudolf E. Kalman, Gerald Lieberman, Kenneth Arrow and Richard Cottle.

Sensei and Seito

Vasek Chvátal

Another OR graduate from Stanford

Institute for Operations Research and the Management Sciences

In The Media

"Japan's former prime minister, Yukio Hatoyama, could not apply math modeling to solving two pressing political problems \qquad ."
"Before entering politics, Hatoyama in the 1970s received a Ph.D in engineering in a field called operations research, which employs applied mathematics to solve complex problems, at Stanford University."

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price (cents)	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Whole Milk	237 cc	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

- $x_{1}=4, x_{2}=4.5, x_{6}=2$. Cost is 92.5 cents.

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price (cents)	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Whole Milk	237 cc	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

- $x_{1}=4, x_{2}=4.5, x_{6}=2$. Cost is 92.5 cents.
- Where are the chicken, eggs and pork?

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price (cents)	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Whole Milk	237 cc	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

- $x_{1}=4, x_{2}=4.5, x_{6}=2$. Cost is 92.5 cents.
- Where are the chicken, eggs and pork?
- Do I have to eat the same food every day?

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?
- A: An infinite number! Add any small amount

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?
- A: An infinite number! Add any small amount
- Q: Can you give me some different meals at least?

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?
- A: An infinite number! Add any small amount
- Q: Can you give me some different meals at least?
- A: Yes! In fact I can describe all possible meals for under \$1

Any solution to these inequalities is a possible meal

All Meals for a Dollar

$$
\begin{aligned}
3 x_{1}+24 x_{2}+13 x_{3} & +9 x_{4}+20 x_{5}+19 x_{6} \leq 100 \\
0 & \leq x_{1} \leq 4 \\
0 & \leq x_{2} \leq 3 \\
0 & \leq x_{3} \leq 2 \\
0 & \leq x_{4} \leq 8 \\
0 & \leq x_{5} \leq 2 \\
0 & \leq x_{6} \leq 2
\end{aligned}
$$

$$
110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} \geq 2000
$$

$$
4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} \geq 55
$$

$$
2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} \geq 800
$$

Vertex Enumeration Problem:
Compute all vertices of this polyhedron.

A more useful solution

Example in R^{3}

H-representation:

$$
\begin{aligned}
1-x_{1}+x_{3} & \geq 0 \\
1-x_{2}+x_{3} & \geq 0 \\
1+x_{1}+x_{3} & \geq 0 \\
1+x_{2}+x_{3} & \geq 0 \\
-x_{3} & \geq 0
\end{aligned}
$$

V-representation:

$v_{1}=(-1,1,0), \quad v_{2}=(-1,-1,0), \quad v_{3}=(1,-1,0)$,

$$
v_{4}=(1,1,0), \quad v_{5}=(0,0,-1)
$$

Convex Hull and Vertex Enumeration

A convex polyhedron P in R^{d} has two representations:

H-representation:

A set of m facet generating inequalities.

$$
P=\left\{x \in R^{d} \mid b+A x \geq 0\right\}
$$

V-representation:

A set of vertices v_{1}, \cdots, v_{s} and extreme rays z_{1}, \cdots, z_{u}.

$$
\begin{gathered}
P=\left\{x \in R^{d} \mid x=\sum_{i=1}^{s} \lambda_{i} y_{i}+\sum_{j=1}^{u} \mu_{j} z_{j},\right. \\
\left.\lambda_{i} \geq 0, \mu_{j} \geq 0, \sum_{i=1}^{s} \lambda_{i}=1\right\} .
\end{gathered}
$$

Vertex Enumeration Problem:

H-representation => V-representation

Facet Enumeration Problem:

V-representation $=>$ H-representation

Reverse search algorithm

http://cgm.cs.mcgill.ca/ avis/C/Irs.html

(a) The "simplex tree" induced by the objective $\left(-\sum x_{i}\right)$.
(b) The corresponding reverse search tree.

