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1 Crew Scheduling Problem

We define a crew scheduling problem as follows.
Input: a directed graph, each node represents an airport, each edge represents a flight,
and is labelled with the departure and arrival time.
Objective: assign crews to the flights and minimize a given cost function.

Figure 1: A flight graph

We define a pairing of flights as a series of flights which could be serviced by a single
crew. This means that the departure time of a flight in the series must be no earlier
than the arrival time of the previous flight in the series. In Figure 1 a possible pairing is
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given by flights 1,7,3,5. The flights 3,5,2 are not a pairing as flight 5 arrives after flight
2 departs. We will assume that each crew must service at least two flights, so that each
pairing contains at least two flights. We can assign multiple crews to one flight if necessary,
in order to transport a crew to another airport.

The cost of an pairing is expressed as time interval between the first departure time
and the last arrival time +5 hours.

2 Formulation of Flight Scheduling Problem as IP

We have n flights and assign m crews.
One possibility is to define decision variables yij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, where:

yij =

{
1 flight j has a crew i
0 otherwise

To cover flight j we introduce a constraint of the form:

n∑
i=1

yij ≥ 1

for each flight j. However it is not at all obvious how to link the flights together for any
given crew.

An alternative method is to construct all pairings by preprocessing . To do this it is
convenient to construct a flight connection graph showing which flights may follow which
others in a pairing. The flight connection graph for Figure 1 is given in Figure 2.

Figure 2: The flight connection graph for Figure 1

A flight connection graph has no cycles, and is constructed in time O(n). Each pairing
is a path in the graph of length at least two, and these paths can be enumerated in a
straight forward way. For the example they are listed in Table 1.

A valid crew assignment is given by a set of pairings that cover all the flights. This
can be formulated as a set covering problem. Define variables xi for each pairing i that
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No. Pairing Time
1 12 6
2 123 9
3 124 10
4 173 9
5 174 10
6 1735 12
7 1736 12
8 1235 12
9 1236 12
10 23 5
11 24 6

No. Pairing Time
12 73 4
13 74 6
14 735 7
15 736 7
16 235 8
17 236 8
18 86 5
19 35 5
20 36 5
21 17 7

Table 1: Pairings obtained from Figure 2

will satisfy:

xi =

{
1 pairing i is used
0 otherwise

(1)

For each flight we get a set cover inequality. In the example, we get the following inequal-
ities:

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 ≥ 1 (for flight 1)
x1 + x2 + x3 + x8 + x9 + x10 + x11 + x16 + x17 ≥ 1 (for flight 2)

... (2)
x18 ≥ 1 (for flight 8)

Recall that the cost coefficients in the objective function are obtained by adding 5 to each
of the times in Table 1.
The integer programming formulation is therefore:

minimize z = 11x1 + 14x2 + 15x3 + ... + 12x21 (3)

subject to (1) and (2).

3 Solving an integer program

1. First we try solving the integer program as a linear program with the objective of
minimizing the number of crews required. For this we replace (3) by

minimize z = x1 + x2 + x3 + ... + x21

Using lp-solve for the linear program, we obtain x3 = x6 = x18 = 1, z = 3, and
otherwise xj = 0. Note this solution has a double-covering for flight 1.

When we introduce the objective function (3), we obtain the solution x3 = x14 =
x18 = 1, z = 37. Since in each case the LP solution was integral, we were done.
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2. Next we check if all vertices are integer valued with lrs. This is done by running the
command:
% lrs sched.ine sched.ext
(A link to a directory containing all files is given on the course home page.) There
are 80 vertices, of which 12 are fractional, and 55 extreme rays. Since some vertices
are fractional, we will need to use integer programming for some objective functions.
For example with objective:

minimize z = x1 + x2 + x3 + x4 + 3x5 + 3x6 + 3x7 + 2x8 + 2x9 + x10 + x11

+ x12 + x13 + 2x14 + 2x15 + x16 + x17 + x18 + x19 + x20 + x21

we get the fractional LP solution x3 = x4 = x13 = 1/2, x16 = x18 = 1, z = 3.5. Using
lp-solve with the variables defined to be integers, we get the integer optimal solution
x3 = x4 = x16 = x18 = 1, z = 4.

3. We may also compute an ideal formulation by deleting fractional vertices, again by
using lrs. The command is:
% lrs isched.ext isched.ine
We find that there are 251 inequalities in the ideal formulation, compared to 30 in
the original formulation (including 21 non-negativity constraints).

3.1 Cutting Planes

Getting the ideal formulation is useful because we get new inequalities that have these
properties.

• These are satisfied by every integer solution.

• Each new inequality always removes some fractional vertex or vertices of the original
LP.

These inequalities are called cutting planes.

3.2 Solving any ILP by using LP + cutting plane

1. First solve the LP getting a fraction solution x∗ (or if integer stop)

2. Find a cutting plane that removes x∗ (i.e. violated by x∗)

3. Repeat from step 1 with new constraint added to LP
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