
Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

Chapter 12: Integer/Discrete Programming via Branch and
Bound

Thus far we have been dealing with models in which the variables can take on real values, for
example a solution value of 7.3 is perfectly fine. But the variables in some models are restricted
to taking only integer or discrete values. You can assign 6 or 7 people to a team, for example,
but not 6.3 people; or you can choose to make a transistor from silicon dioxide or gallium
arsenide, but not some mixture. Binary variables are a subset of integer/discrete variables that
are restricted to 0/1 values. Binary variables are usually associated with yes/no decisions, e.g. to
undertake a project or not.

You will often encounter integer models that look like they can be solved by methods suitable
for real-valued variables. For example, it is common to find models in which the objective
function and constraints are linear relations defined on integer variables. This looks exactly like
a standard linear program, except that the variables cannot take on real values. There is an
overwhelming temptation to just solve the problem by standard linear programming and then to
round any non-integer variable values to the closest integer value. Don’t do this! The following
simple example (due to Hillier and Lieberman) shows how misleading this can be.

Maximize Z = x1 + 5x2
Subject to: x1 + 10x2 ≤ 20
 x1 ≤ 2
 x1,x2 ≥ 0 and integer.

The linear programming solution to
this problem yields Z=11 at (2, 1.8).
The first instinct is to round x2 to the
nearest integer value, i.e. x2=2.
Unfortunately (2, 2) is infeasible by
the first constraint. The natural
inclination is then to try rounding x2 in
the opposite direction, i.e. x2=1. This
yields a feasible point (2, 1) with Z=7.

However, this is not the optimum
point! The integer-feasible optimum

point is at (0, 2) where Z=10. Figure 12.1 shows a sketch of this problem. The dots in Figure
12.1 show points at which both x1 and x2 have integer values simultaneously.

Notice that the integer optimum point is far away from the LP optimum. Notice also how you
can’t get to the integer optimum (0,2) by rounding the LP optimum (2, 1.8). The moral of the
story is that you simply can’t use real-valued solution methods to optimize integer-valued
models. Completely different methods are needed.

0

1

1 2

2

x1

x2
1. LP optimum

2. Rounding up

3. Rounding down

4. integer
optimum

Z=10

Figure 12.1: Why rounding doesn't work.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

2

The first thing you might think of for solving integer-valued problems is to simply enumerate all
of the possible solutions and then to choose the best one. This will actually work for very small
problems, but it very rapidly becomes unworkable for even small- to medium-size problems, let
alone industrial-scale problems. For example, consider a binary 0/1 problem that has 20
variables. This will have 220=1,048,576 solutions to enumerate, which might be possible to do
via computer. Now consider a slightly larger binary problem having 100 variables. Now there
are 2100=1.268×1030 solutions to enumerate, which is likely impossible, even for a very fast
computer. The combinatorial explosion is even worse for general integer variables that can take
on even more values than just the two possibilities for binary variables. It is easy to construct
problems in which the number of solutions is greater than the total number of atoms in the
universe! Enumeration just won’t work for most real-world problems – we need a better way of
tackling the combinatorial explosion.

The branch and bound method is the basic workhorse technique for solving integer and discrete
programming problems. The method is based on the observation that the enumeration of integer
solutions has a tree structure. For example, consider the complete enumeration of a model
having one general integer variable x1, and two binary variables x2 and x3, whose ranges are 1≤
x1≤3, 0≤x2≤1, and 0≤ x3≤1. Figure 12.2 shows the complete enumeration of all of the solutions

for these variables, even those which might be
infeasible due to other constraints on the model.

The structure in Figure 12.2 looks like a tree
lying on its side with the root (or root node) on
the left, labeled “all solutions”, and the leaves
(or leaf nodes) on the right. The leaf nodes
represent the actual enumerated solutions, so
there are 12 of them: (3 possible values of x1) ×
(2 possible values of x2) × (2 possible values of
x3). For example, the node at the upper right
represents the solution in which x1=1, x2=0, and
x3=0. The other nodes can be thought of as
representing sets of possible solutions. For
example, the root node represents all solutions
that can be generated by growing the tree.
Another intermediate node, e.g. the first node
directly to the right of the root node, represents
another subset of all of the possible solutions, in
this case, all of the solutions in which x1=2 and
the other two variables can take on any of their

possible values. For any two directly connected nodes in the tree, the parent node is the one
closer to the root, and the child node is the one closer to the leaves.

Now the main idea in branch and bound is to avoid growing the whole tree as much as possible,
because the entire tree is just too big in any real problem. Instead branch and bound grows the
tree in stages, and grows only the most promising nodes at any stage. It determines which node
is the most promising by estimating a bound on the best value of the objective function that can
be obtained by growing that node to later stages. The name of the method comes from the

Figure 12.2: A full enumeration tree.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

branching that happens when a node is selected for further growth and the next generation of
children of that node is created. The bounding comes in when the bound on the best value
attained by growing a node is estimated. We hope that in the end we will have grown only a
very small fraction of the full enumeration tree.

Another important aspect of the method is pruning, in which you cut off and permanently discard
nodes when you can show that it, or any its descendents, will never be either feasible or optimal.
The name derives from gardening, in which pruning means to clip off branches on a tree, exactly
what we will do in this case. Pruning is one of the most important aspects of branch and bound
since it is precisely what prevents the search tree from growing too much.

To describe branch and bound in detail, we first need to introduce some terminology:

• Node: any partial or complete solution. For example, a node that is two levels down in a
5-variable problem might represent the partial solution 3-17-?-?-?, in which the first
variable has a value of 3 and the second variable has a value of 17. The values of the last
three variables are not yet set.

• Leaf (leaf node): a complete solution in which all of the variable values are known.

• Bud (bud node): a partial solution, either feasible or infeasible. Think of it as a node that
might yet grow further, just as on a real tree.

• Bounding function: the method of estimating the best value of the objective function
obtainable by growing a bud node further. Only bud nodes have associated bounding
function values. Leaf nodes have objective function values, which are actual values and
not estimates. It is important that the bounding function be an optimistic estimator. In
other words, if you are minimizing, it must underestimate the actual best achievable
objective function value; if maximizing it must overestimate the best achievable objective
function value. You want it to be as accurate an estimator as possible so that the resulting
branch and bound tree is as small as possible, but it must err in the optimistic direction.
The bounding function is the real magic in branch and bound. It takes ingenuity
sometimes to find a good bounding function, but the payoff in increased efficiency is
tremendous. Every problem is different.

• Branching, growing, or expanding a node: the process of creating the child nodes for a
bud node. One child node is created for each possible value of the next variable. For
example, if the next variable is binary, there will be one child node associated with the
value zero and one child node associated with the value one.

• Incumbent: the best complete feasible solution found so far. There may not be an
incumbent when the solution process begins. In that case, the first complete feasible
solution found during the solution process becomes the first incumbent.

Branch and bound is a very general framework. To completely specify how the process is to
proceed, you also need to define policies concerning selection of the next node, selection of the
next variable, how to prune, and when to stop. We’ll discuss these next.

At any intermediate point in the algorithm, we have the current version of the branch and bound
tree, which consists of bud nodes labeled with their bounding function values and other nodes

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

4

labeled in various ways that we will see later. The node selection policy governs how to choose
the next bud node for expansion. There are three popular policies for node selection:

• Best-first or global-best node selection: choose the bud node that has the best value of the
bounding function anywhere on the branch and bound tree. If we are minimizing, this
means choosing the bud node with the smallest value of the bounding function; if
maximizing choose the bud node with the largest value of the bounding function.

• Depth-first: choose only from among the set of bud nodes just created. Choose the bud
node with the best value of the bounding function. Depth-first node selection takes you
one step deeper into the branch and bound tree at each iteration, so it reaches the leaf
nodes quickly. This is one way of achieving an early incumbent solution. If you cannot
proceed any deeper into the tree, back up one level and choose another child node from
that level.

• Breadth-first: expand bud nodes in the same order in which they were created.

Similarly, once a bud node has been chosen for expansion, how do we choose the next variable
to use in creating the child nodes of the bud node? The variable selection policy governs this
choice. There are few standard policies for variable selection. The variables are often selected
just in their natural order, though a good variable selection policy can improve efficiency greatly.

We also need to establish policies and rules for pruning bud nodes. As mentioned above, there
are two main reasons to prune a bud node: you can show that no descendent will be feasible, or
you can show that no descendent will be optimal.

The method for showing that no descendent will be optimal is standard: if the bud node bounding
function value is worse than the objective function value for the incumbent, then the bud node
can be pruned. This is because the bounding function is an optimistic estimator. Suppose you
are maximizing, and the incumbent solution has an objective function value of 87. If the
optimistic bounding function overestimate for the bud node has a value of only 79, then you
know that no descendent of the bud node will ever exceed 79, let alone 87, and so none of the
descendents can ever be optimal. So the bud node is pruned. The same reasoning applies in
reverse if minimizing.

Methods for showing that no descendent can ever be feasible vary with the specific problem. In
problems that include standard arithmetic constraints, it is sometimes easy to detect this
condition. For example, consider a partial solution (x1,x2,x3,x4)=(1,1,?,?) in an all-binary problem
which has the constraint -10x1-5x2+6x3+4x4≥0. Now that x1 and x2 are both set to 1, there are no
possible settings of x3 and x4 which will satisfy the constraint. Hence we can deduce that all of
the descendents of this bud node will be infeasible, so the node is pruned.

There is one other case in which the expansion of a bud node can be halted: when the best
possible value of the objective function obtainable by expansion can be seen directly. This is
known as fathoming a node. This is sometimes a by-product of the bounding function
calculations. Bounding functions often work by solving a simpler problem that is created by
ignoring some of the constraints on the real problem. Sometimes the solution to this simpler
problem actually does satisfy all of the constraints on the original problem, hence it is the best
possible solution for the original problem, and is obtained without expanding the bud node any

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

5

further. All that is necessary at this point is to compare this solution to the incumbent: if it is
better than the incumbent, then it replaces it, otherwise the node can be pruned.

Finally, we need a terminating rule to tell us when to stop expanding the branch and bound tree.
To guarantee that we have reached optimality, we stop when the incumbent solution’s objective
function value is better than or equal to the bounding function value associated with all of the
bud nodes. This means that none of the bud nodes could possibly develop into a better solution
than the complete feasible solution we already have in hand, so there is no point in expanding the
tree any further. Of course, according to our policies for pruning, all bud nodes in this condition
will already have been pruned, so this terminating rule amounts to saying that we stop when
there are no more bud nodes left to consider for further growth! This also proves that the
incumbent solution is optimum.

That’s a lot of theory, so it’s time for an example. Let’s revisit the person-task assignment
problem. Recall, though, that this problem can be cast in a network-flow format and solved
quickly by linear programming, so you would never actually solve it via branch and bound in
real life. However it’s an easy problem to understand, so we will re-use it to demonstrate a
branch and bound solution.

We have four persons, A though D, to assign to four tasks, 1 through 4. The table below shows
the number of minutes it takes for each person to do each task. Each person can do exactly one
task, and all tasks must have an assigned person. The objective is to minimize the total minutes
taken. How many possible assignments of persons to tasks are there? There are 4!=24. In
general, when there are n persons and n tasks there are n! possible assignments.

 task
 1 2 3 4

A 9 5 4 5
B 4 3 5 6
C 3 1 3 2 person

D 2 4 2 6

The formal branch and bound formulation follows. Any complete formulation must address all
of these items.

• Meaning of a node in the branch and bound tree: a partial or complete assignment of
persons to tasks. For example, a complete assignment ACBD represents the assignment
of person A to task 1, person C to task 2, etc.

• Node selection policy: global best value of the bounding function.

• Variable selection policy: choose the next task in the natural order 1 to 4.

• Bounding function: for unassigned tasks, choose the best unassigned person, even if that
person is chosen more than once. This is a relaxation of the original problem in which
each person can do exactly one task.

• Terminating rule: when the incumbent solution objective function value is better than or
equal to the bounding function values associated with all of the bud nodes.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

• Fathoming: the “solution” generated by the bounding function is feasible if every task is
assigned to a different person.

As an example of the calculation of the bounding function, let’s look at the first-level node
associated with assigning person A to task 1. The set of solutions represented by this node is
A???. The bounding function value is calculated as follows:

• Actual value associated with assigning A to task 1: 9.

• Best unassigned person for task 2 is C, value: 1.

• Best unassigned person for task 3 is D, value: 2.

• Best unassigned person for task 4 is C, value: 2.

• The bounding function “solution” is ACDC, with total cost = 9+1+2+2=14. At this point
we know that the very best objective function value that we might find at a leaf node
descended from A??? is 14. Since person C is repeated, this is not a feasible solution, so
the node is not fathomed. Note that person A is actually assigned, so we will not see A
repeated in the bounding function calculations at this node or at any of the descendent
nodes.

In practice, this bounding function amounts to crossing out the tasks (columns) that have
assigned people, and the people (rows) that have assigned tasks, and then choosing the best
number in each of the remaining columns, even if a particular person (row) is chosen more than
once.

Now we are ready to develop the branch and bound tree. First
we create the root node. It’s always worth finding the
“solution” generated by the bounding function at the root
node, since there is a chance
that if you are fantastically
lucky this “solution” will
fathom the entire tree! Figure

12.3 shows the root node. In all of the figures, each node is
labeled with the “solution” generated by the bounding function,
and the bounding function value. Pruned nodes are indicated by
dashed borders, and feasible nodes are indicated by bold borders.
Pruned feasible nodes have both features.

Figure 12.4 shows the next level of the tree, generated from the
root node by enumerating the possible persons who can do task
1. Node C??? is fathomed, providing our first feasible solution,
and hence the first incumbent solution, CBDA=13. This allows
us to prune node A??? whose bounding function value is 14.

There are two bud nodes in Figure 12.4 that show promise of
improving on the incumbent solution: B??? with a bounding function value of 9 and D??? with a
bounding function value of 8. Since we are using the global-best node selection policy, we

All solns

DCDC=7

Incumbent
none

All solns

DCDC=7

Incumbent
CBDA=13

A

B

C

D

Task 1

ACDC=14

BCDC=9

CBDA=13

DCCC=8

Figure 12.3: Stage 1: the root
node.

Figure 12.4: Stage 2.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

7

choose node D??? for further expansion, which results in Figure 12.5. Note that the child nodes
of D??? are labeled A, B, and C, but not D. Why? Because person D is already assigned, and so
can’t be assigned again in descendent nodes. There are no new feasible solutions, so the
incumbent solution is unchanged, and none of the new nodes can be pruned by comparison with
the incumbent, or fathomed. So we choose the global best value of the bounding function
between nodes B??? with value 9, DA?? with value 12, DB?? with value 10 and DC?? with
value 12. The best of these is node B???, which is expanded in Figure 12.6.

Figure 12.6 shows that there are two new
fathomed nodes, BA?? and BC??. The feasible
bounding function “solution” associated with
BC?? has a lower value than the current
incumbent, and so replaces it and prunes the old incumbent. Node BA??, even though feasible,
is pruned by comparison with the new incumbent. Nodes DA?? and DC?? are also pruned by
comparison with the incumbent (these could be kept for potential later exploration if we wanted
to find all possible optimum solutions instead of just one). There remains only a single bud node
which has the possibility of producing a better solution than the incumbent: node DB??. This
node is expanded to produce Figure 12.7.

Figure 12.7 shows the expansion of DB?? to produce two child nodes. Both of these are feasible
since once the first 3 persons are chosen, the only unassigned person is assigned to the final task,
producing a feasible solution. The newly produced solution DBAC has a better objective
function value than the incumbent, and so replaces it and prunes the old incumbent. The other
newly created solution, DBCA, is pruned by comparison with the new incumbent. At this point
there are no bud nodes remaining for possible expansion, so we stop. The final solution is given
by the current incumbent: DBAC with a minimum total time of 11 minutes for the assignment.

All solns

DCDC=7

Incumbent
CBDA=13

A

B

C

D

Task 1

ACDC=14

BCDC=9

CBDA=13

DCCC=8
B

A

C

DACC=12

DBCC=10

DCAA=12

Task 2

All solns

DCDC=7

Incumbent
BCDA=12

A

B

C

D

Task 1

ACDC=14

BCDC=9

CBDA=13

DCCC=8
B

A

C

DACC=12

DBCC=10

DCAA=12

Task 2

A

C

D

BADC=13

BCDA=12

BDCC=13

Figure 12.5: Stage 3.

Figure 12.6: Stage 4.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

8

Now how much work did we do?
We evaluated 13 nodes, including
the root node. This is about half of
the work of a full enumeration of
the 24 possible solutions, quite a
good speed-up. However, branch
and bound solutions for large
problems should do a much smaller
fraction of the work, more like a
tenth of a percent or less.

Some final notes on branch and
bound methodology. First, how do
we deal with ties for the next node
to choose for expansion? You can
simply choose arbitrarily: if you
choose wrongly, the branch and
bound method will eventually bring
you back to the unchosen node. A
general rule of thumb is to first
choose the node that is farthest
away from the root, since it is more
likely to be closer to a feasible
solution.

Second, suppose the incumbent solution objective function value is tied with the bounding
function value at some bud nodes. If we are only interested in a single solution to the problem,
then the bud nodes can be pruned because the best that they can do is to eventually grow into
solutions equal to the one we already have on hand, and even that is not very likely. On the other
hand, if we are interested in finding all of the optimal solutions, then those bud nodes are grown
until they either yield an equivalent solution or are pruned. This allows us to generate all of the
equivalent optimum solutions. In Figure 12.6 we pruned two bud nodes that had bounding
function values equal to the incumbent objective function value because we were interested in
finding just one single optimum solution.

More on Bounding Functions

A good bounding function is really what makes branch and bound work. Sometimes it takes a
bit of ingenuity to find a good one. Let’s consider a bounding function that we can use in a
completely different problem. In the well-known traveling salesman problem we are given a
graph whose arcs are labeled with distances. The goal is to find a tour that visits each node in
the graph exactly once and returns to the original node, and has the shortest total length. This is
the optimum route for the traveling salesman’s as he visits each node (city) to sell his wares.

In this case a node in the branch and bound tree represents a partial tour, and it is the bounding
function’s job to estimate the length of the shortest tour that might result from continuing this

All solns

DCDC=7

Incumbent
DBAC=11

A

B

C

D

Task 1

ACDC=14

BCDC=9

CBDA=13

DCCC=8
B

A

C

DACC=12

DBCC=10

DCAA=12

Task 2

A

C

D

BADC=13

BCDA=12

BDCC=13

A

C

DBAC=11

DBCA=13

Figure 12.7: Stage 5. The tree is complete.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

tour. Let’s suppose the partial tour is as shown in boldface in Figure 12.8. How can we estimate
the length of the shortest complete tour that incorporates the partial tour shown in Figure 12.8?

As usual the bounding function will solve a
simpler problem that violates some of the
constraints on the original problem. One clever
bounding function solves a minimum spanning
tree problem over the unvisited nodes and the two
end nodes on the partial tour, as shown in Figure
12.9 (the minimum spanning tree arcs are
dashed). The bounding function value associated
with Figure 12.9 is given by (length of partial
tour) + (length of minimum spanning tree) =
(10+5) + (5+5+10+10+5+5) = 55. The “solution”
generated by the bounding function is not feasible
in this case (some cities must be visited more
than once if this route is used), but it is a good
underestimate of the shortest route. It also has
the advantage that it is easy to recognize a
feasible solution if one is generated by the
bounding function, so fathoming is easy.

The traveling salesman problem is one of those
interesting problems that are easy to state but
hard to solve. It has been the subject of a great
deal of work over many years since it has many
practical applications (e.g. the routing of the

welding head wielded by a robot on an automobile assembly line). There are now some
reasonably good heuristic methods for fairly large problems.

Keys to Success

There are several keys to using branch and bound successfully.

Have a good bounding function. It must be optimistic, but as close to feasibility as possible.
The more exact it is, the smaller the resulting search tree will be. There are often numerous
different ways to construct a bounding function for a particular problem. Be creative!

Get a good incumbent early. This is tremendously useful in pruning because many buds will
never be expanded if their bounding function value is worse than the objective function value of
the incumbent. Consider using a heuristic to generate an incumbent solution even before
beginning the branch and bound process. As an example, consider the following heuristic for
generating an initial incumbent in the person-task assignment problem. First choose the smallest
number anywhere in the table, then remove the associated task and person from the table.
Repeat this process until all tasks and people have been assigned. You could also use depth-first
node selection until the first incumbent is found, then switch to another node selection policy.

15

5

10

5

10

5

10

15

12 5
10

10 5

15

5

10

5

10

5

10

15

12 5
10

10 5

Figure 12.8: A partial tour in a traveling
salesman problem.

Figure 12.9: Bounding function: partial tour
plus minimum spanning tree.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2003
http://www.sce.carleton.ca/faculty/chinneck/po.html

10

Find ways to identify nodes that have no feasible descendents. This prevents nodes from being
expanded.

Order constraints and variables so that the most restrictive are tested first. The general idea is
to encourage early failure of nodes on the tree. The closer to the root that a node is pruned, the
more tree is cut off. If one variable has a very restricted range or is involved in a very restrictive
constraint, generate child nodes based on that variable first.

Sub-optimizing in Very Large Problems

Branch and bound slows down the combinatorial explosion in integer programs, but it doesn’t
stop it altogether. There are many problems in which even the standard branch and bound tree is
too large. In cases like this we can sacrifice the guarantee of optimality that is provided by
branch and bound in favour of getting a reasonable answer quickly, or within the memory
limitations of our computer. There are three main heuristics, all based on branch and bound.

Stopping with a guarantee of closeness to optimality. Choose an acceptable distance to
optimality, e.g. 5%. Now you simply halt the branch and bound process when the incumbent
solution is within 5% of the best bud node bounding function value. The incumbent solution is
definitely within 5% of the optimum, and it could be much closer, even optimum. It just takes a
lot more branch and bound nodes to prove it.

For example, global optimization of nonlinear functions can be done by a branch and bound
procedure which subdivides the search space as it goes. A recent Ph.D. student of mine used this
approach. We discovered that his procedure very often reached the optimum solution in the first
5 seconds of computing time, but it then took another 24 hours of computing time to prove that it
was really the optimum! Stopping within some stated fraction of the optimum can reduce
calculation time a great deal, sometimes without much effect on the final solution.

Beam search. This technique is especially useful if computer memory is limited. Set an upper
limit on the number of bud nodes that will be maintained in memory, e.g. 1000. If this limit is
reached, rank order all of the bud nodes based on their bounding function values and keep only
the best 1000. Of course the guarantee of optimality is lost (one of the discarded nodes may
have been the one which ultimately lead to the optimum solution), but the search can run in the
limited memory space available.

Depth-first search to first incumbent. If time is limited, depth-first search is preferred since it is
the most likely to reach a feasible incumbent solution first. If time runs out, at least one feasible
solution is available even though the branch and bound solution is halted prematurely. As we
will see later, depth-first search is especially preferred if linear programming is being used in the
bounding function since each LP solution is quite similar to the last one, so advanced starts can
be used.

Branch and bound methods can be customized to handle special situations. We will address
some of these in the next chapter.

